State of Health Estimation of Lithium-Ion Battery Using Multi-Health Features Based on Savitzky–Golay Filter and Fitness-Distance Balance- and Lévy Roulette-Enhanced Coyote Optimization Algorithm-Optimized Long Short-Term Memory
Abstract
:1. Introduction
- Extraction of six health features: based on NASA battery charging and discharging data, the average discharge voltage, CC charging time, ratio of CC charging time to total charge time, CV charging time, ratio of CV charging time to total charge time, and equal voltage drop time are extracted;
- Savitzky–Golay is used to filter the extracted health features, it is demonstrated through correlation analysis that the filtering process improves the correlation between the extracted health features and SOH;
- By improving coyote optimization algorithm (COA) using Lévy routing strategy and fitness-distance balance (FDB) strategy, i.e., LRFDBCOA. Based on the improved algorithm, the parameters of LSTM network are optimized and SOH estimation is performed. Verification of battery datasets under three different testing conditions: SOH estimation research is conducted on the battery datasets obtained under three different testing conditions, and the results illustrate that the proposed model has high estimation accuracy, strong robustness, and strong generalization ability.
2. Battery Dataset Analysis and Feature Extraction
2.1. Definition of SOH
2.2. Description of the Battery Dataset
2.3. Health Feature Extraction and Correlation Analysis
2.4. Feature Processing Based on Savitzky–Golay Filter
2.5. Normalization Processing of Feature Data
3. Methodologies
3.1. LRFDBCOA
3.1.1. Lévy Roulette Strategy
3.1.2. FDB Strategy
3.1.3. COA
- 1.
- Coyote population initialization
- 2.
- Coyote growth
- 3.
- Pup birth and death
- 4.
- Coyotes migrate between populations
3.2. LSTM
- 1.
- Forget Gate: Decide to forget some invalid information in the primitive cell unit based on the current state [36].
- 2.
- Input Gate: Determines which input information to save to the cell unit [36].
- 3.
- Output Gate: Decides which information to save in the output [37].
3.3. LRFDBCOA-LSTM for SOH Estimation
4. Case Studies
4.1. Evaluation Criteria
4.2. Validation of B0005 Battery
4.3. Validation of B0006 Battery
4.4. Validation of B0007 Battery
5. Discussions
- (1)
- It is worth noting that the estimation results are not significant, and some estimation indicators even deteriorated with the quantity of data used for model training increases. The reason may be that the overall dataset in this work had fewer samples, so the difference in data size between samples with different starting points is not very significant.
- (2)
- Given that this method is limited to offline-state estimation of individual batteries, and that BMSs mainly focus on monitoring and managing the entire battery pack, this estimation method may not be suitable for practical battery pack management applications.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |
BMS | battery management system |
BP | back-propagation |
CC | constant current |
CV | constant voltage |
COA | coyote optimization algorithm |
COA-LSTM | coyote optimization algorithm optimized long short-term memory |
EV | electric vehicle |
FDB | fitness-distance balance |
IALO | improved ant lion optimization |
LIB | lithium-ion battery |
LRFDBCOA-LSTM | Lévy roulette- and fitness-distance balance-enhanced coyote optimization algorithm-optimized long short-term memory |
LSTM | long short-term memory |
MAE | mean absolute error |
MBE | mean bias error |
RBF | radial basis function |
RMSE | root mean square error |
SOH | state of health |
SVR | support vector regression |
Variables | |
the initial available capacity | |
the current available capacity | |
the number of battery data input | |
the number of coyotes | |
the number of coyote groups | |
the maximum value of battery data input | |
the minimum value of battery data input | |
the normalized battery data |
References
- Sun, Y.H.; Zhou, Y.; Wang, S.; Mahfoud, R.J.; Alhelou, H.H.; Sideratos, G.; Hatziargyriou, N.; Siano, P. Nonparametric probabilistic prediction of regional PV outputs based on granule-based clustering and direct optimization programming. J. Mod. Power Syst. Clean Energy 2023, 11, 1450–1461. [Google Scholar] [CrossRef]
- Arefifarf, S.A.; Alam, M.S.; Hamadi, A. A review on self-healing in modern power distribution systems. J. Mod. Power Syst. Clean Energy 2023, 11, 1719–1733. [Google Scholar] [CrossRef]
- Yang, B.; Zheng, R.Y.; Han, Y.M.; Huang, J.X.; Li, M.W.; Shu, H.C.; Su, S.; Guo, Z.X. Recent advances and summarization of fault diagnosis techniques for the photovoltaic system: A critical overview. Prot. Control Mod. Power Syst. 2024, 9, 36–59. [Google Scholar] [CrossRef]
- Kahali, R.; Jamil, M.; Lqbal, M.T. An improved perturb and observed maximum power point tracking algorithm for photovoltaic power systems. J. Mod. Power Syst. Clean Energy 2023, 11, 1165–1175. [Google Scholar]
- Yang, B.; Liu, B.Q.; Zhou, H.Y.; Wang, J.B.; Yao, W.; Wu, S.C.; Shu, H.C.; Ren, Y.X. A critical survey of technologies of large offshore wind farm integration: Summary, advances, and perspectives. Prot. Control Mod. Power Syst. 2022, 7, 1–32. [Google Scholar] [CrossRef]
- Yang, B.; Duan, J.H.; Yan, Y.F.; Liu, B.Q.; Huang, J.X.; Jiang, L.; Han, R. EMCO-based optimal layout design of hybrid wind-wave energy converters array. Prot. Control Mod. Power Syst. 2024, 9, 142–161. [Google Scholar] [CrossRef]
- Lyu, B.L.; Liu, Y.C.; Zhang, J.Y.; Tian, B.; Li, W.F. A consistency diagnosis method of series-connected lithium-ion batteries based on charging curve transformation. Shandong Electr. Power 2024, 51, 45–51. [Google Scholar]
- Wang, Y.T.; Yang, B. Optimal PV array reconfiguration under partial shading condition through dynamic leader based collective intelligence. Prot. Control Mod. Power Syst. 2023, 8, 1–16. [Google Scholar] [CrossRef]
- Yang, B.; Li, Y.L.; Li, J.L.; Shu, H.C.; Zhao, X.Y.; Ren, Y.X.; Li, Q. Comprehensive summary of solid oxide fuel cell control: A state of the art review. Prot. Control Mod. Power Syst. 2022, 7, 1–31. [Google Scholar] [CrossRef]
- Yang, B.; Qian, Y.C.; Li, Q.; Chen, Q.; Wu, J.Y.; Luo, E.B.; Xie, R.; Zheng, R.Y.; Yan, Y.F.; Su, S.; et al. Critical summary and perspectives on state-of-health of lithium-ion battery. Renew. Sustain. Energy Rev. 2024, 190, 114077. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.T.; Cao, P.L.; Zhu, T.J.; Shu, H.C.; Chen, J.; Zhang, J.; Zhu, J.W. Classification, summarization and perspectives on state-of-charge estimation of lithium-ion batteries used in electric vehicles: A critical comprehensive survey. J. Energy Storage 2021, 39, 102572. [Google Scholar] [CrossRef]
- Shrivastava, P.; Soon, T.K.; Idris, M.Y.I.B.; Mekhilef, S. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renew. Sustain. Energy Rev. 2019, 113, 109233. [Google Scholar] [CrossRef]
- Cuma, M.U.; Koroglu, T. A comprehensive review on estimation strategies used in hybrid and battery electric vehicles. Renew. Sustain. Energy Rev. 2015, 42, 517–531. [Google Scholar] [CrossRef]
- Wang, P.; Fan, L.F.; Cheng, Z. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter. Proc. CSEE 2022, 42, 1523–1534. [Google Scholar]
- Shen, J.W.; Ma, W.S.; Shu, X.; Shen, S.Q.; Chen, Z.; Liu, Y.G. Accurate state of health estimation for lithium-ion batteries under random charging scenarios. Energy 2023, 279, 128092. [Google Scholar] [CrossRef]
- Li, A.; Tian, H.X.; Li, K. Remaining useful life prediction of lithium-ion batteries using a spatial temporal network model based on capacity self-recovery effect. J. Energy Storage 2023, 67, 107557. [Google Scholar] [CrossRef]
- Wen, J.P.; Chen, X.; Li, X.H.; Li, Y.K. SOH prediction of lithium battery based on IC curve feature and BP neural network. Energy 2022, 261, 125234. [Google Scholar] [CrossRef]
- Zhang, F.; Xing, Z.X.; Wu, M.H. State of health estimation for Li-ion battery using characteristic voltage intervals and genetic algorithm optimized back propagation neural network. J. Energy Storage 2023, 57, 106277. [Google Scholar]
- Wu, M.Y.; Zhong, Y.M.; Wu, J.; Wang, Y.Q.; Wang, L. State of health estimation of the lithium-ion power battery based on the principal component analysis-particle swarm optimization-back propagation neural network. Energy 2023, 283, 129061. [Google Scholar] [CrossRef]
- Gong, D.L.; Gao, Y.; Kou, Y.L.; Wang, Y.R. State of health estimation for lithium-ion battery based on energy features. Energy 2022, 257, 124812. [Google Scholar] [CrossRef]
- Li, Q.L.; Li, D.Z.; Zhao, K.; Wang, L.C.; Wang, K. State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression. J. Energy Storage 2022, 50, 104215. [Google Scholar] [CrossRef]
- Zuo, H.Y.; Liang, J.W.; Zhang, B.; Wei, K.X.; Zhu, H.; Tan, J.Q. Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction. Energy 2023, 282, 128794. [Google Scholar] [CrossRef]
- Van, C.N.; Quang, D.T. Estimation of SOH and internal resistances of lithium ion battery based on LSTM network. Int. J. Electrochem. Sci. 2023, 18, 100166. [Google Scholar]
- Deng, Z.W.; Lin, X.K.; Cai, J.W.; Hu, X.S. Battery health estimation with degradation pattern recognition and transfer learning. J. Power Sources 2022, 525, 231027. [Google Scholar] [CrossRef]
- Qu, J.T.; Liu, F.; Ma, Y.X.; Fan, J.M. A neural-network-based method for RUL prediction and soh monitoring of lithium-ion battery. IEEE Access 2019, 7, 87178–87191. [Google Scholar] [CrossRef]
- Saha, B.; Goebel, K. Battery Data Set; NASA Prognostics Data Repository, NASA Ames Research Center: Moffett Field, CA, USA, 2007.
- Hu, X.S.; Che, Y.H.; Lin, X.K.; Onori, S. Battery health prediction using fusion-based feature selection and machine learning. IEEE Trans. Transp. Electrif. 2021, 7, 382–398. [Google Scholar] [CrossRef]
- Schettino, B.M.; Duque, C.A.; Silveira, P.M. Current-transformer saturation detection using Savitzky-Golay filter. IEEE Trans. Power Deliv. 2016, 31, 1400–1401. [Google Scholar] [CrossRef]
- Li, B.J.; Wang, Q.B.; Duan, D.P. Strain measurement errors with digital image correlation due to the Savitzky-Golay filter-based method. Meas. Sci. Technol. 2018, 29, 085004. [Google Scholar]
- Xia, Z.Y.; Qahouq, J.A.A. Lithium-ion battery ageing behavior pattern characterization and state-of-health estimation using data-driven method. IEEE Access 2021, 9, 98287–98304. [Google Scholar] [CrossRef]
- Duman, S.; Kahraman, H.T.; Guvenc, U.; Aras, S. Development of a Lévy flight and FDB-based coyote optimization algorithm for global optimization and real-world ACOPF problems. Methodol. Appl. 2021, 25, 6577–6617. [Google Scholar] [CrossRef]
- Zhang, Q.K.; Bu, X.L.; Zhan, Z.H.; Li, J.Q.; Zhang, H.X. An efficient optimization state-based coyote optimization algorithm and its applications. Appl. Soft Comput. 2023, 147, 110827. [Google Scholar] [CrossRef]
- Li, L.G.; Sun, L.J.; Xue, Y.; Li, S.J.; Huang, X.W.; Mansour, R.F. Fuzzy multilevel image thresholding based on improved coyote optimization algorithm. IEEE Access 2021, 9, 33595–33607. [Google Scholar] [CrossRef]
- Chin, V.J.; Salam, Z. Coyote optimization algorithm for the parameter extraction of photovoltaic cells. Sol. Energy 2019, 194, 656–670. [Google Scholar] [CrossRef]
- Jiang, N.J.; Yu, X.B.; Alam, M. A hybrid carbon price prediction model based-combinational estimation strategies of quantile regression and long short-term memory. J. Clean. Prod. 2023, 429, 139508. [Google Scholar] [CrossRef]
- Brahma, I. Using long short-term memory (LSTM) networks with the toy model concept for compressible pulsatile flow metering. Measurement 2023, 223, 113782. [Google Scholar] [CrossRef]
- Song, X.H.; Yao, Q.Z. Real-time state of health estimation for lithium-ion batteries based on daily segment charging data and dual extended Kalman filters-wavelet neural network-wavelet short memory neural network. Trans. China Electrotech. Soc. 2023, 39, 1565–1576. [Google Scholar]
- Li, N.; He, F.X.; Ma, W.T.; Wang, R.T.; Jiang, L.; Zhang, X.P. An indirect state-of-health estimation method based on improved genetic and back propagation for online lithium-ion battery used in electric vehicles. IEEE Trans. Veh. Technol. 2022, 71, 12682–12690. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, D.F.; Zhang, Y.; Wang, L.C.; Wang, K. Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network. Prot. Control Mod. Power Syst. 2022, 7, 1–17. [Google Scholar] [CrossRef]
- Mao, L.; Hu, H.Z.; Chen, J.J.; Zhao, J.B.; Qu, K.Q.; Jiang, L. Online state-of-health estimation method for lithium-ion battery based on CEEMDAN for feature analysis and RBF neural network. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 187–199. [Google Scholar] [CrossRef]
- Lin, M.Q.; Wu, J.; Meng, J.H.; Wang, W.; Wu, J. State of health estimation with attentional long short-term memory network for lithium-ion batteries. Energy 2023, 268, 126706. [Google Scholar] [CrossRef]
- Qian, Y.C.; Yang, B.; Zheng, R.Y.; Liang, B.X.; Wu, P.Y. State-of-health Estimation of Lithium-ion Batteries Based on EMD-DO-Elman and GRA. Power Syst. Technol. 2024, 48, 3695–3704. [Google Scholar]
- Yang, B.; Wang, J.B.; Zhang, X.S.; Yu, T.; Yao, W.; Shu, H.C.; Zeng, F.; Sun, L.M. Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification. Energy Convers. Manag. 2020, 208, 112595. [Google Scholar] [CrossRef]
- Qiao, J.S.; Liu, X.F.; Chen, Z.H. Prediction of the remaining useful life of lithium-ion batteries based on empirical mode decomposition and deep neural networks. IEEE Access 2020, 8, 42760–42767. [Google Scholar] [CrossRef]
Type | Characteristic |
---|---|
Direct measurement method | The principle is simple Easy to implement Suitable for different types of batterie Not suitable for online estimation Requires high accuracy of measurement equipment |
Model-based method | High accuracy Complex model Large computational load |
Data-driven method | Strong generalization performance High estimation accuracy Fast estimation speed |
Number | Nominal Capacity | Battery Type | Temperature | CC Charge Current | Charge Cut-Off Voltage | CC Discharge Current | Discharge Cut-Off Voltage |
---|---|---|---|---|---|---|---|
B0005 | 2 Ah | 18,650 LIB | 24 °C | 1.5 A | 4.2 V | 2 A | 2.7 V |
B0006 | 2 Ah | 18,650 LIB | 24 °C | 1.5 A | 4.2 V | 2 A | 2.5 V |
B0007 | 2 Ah | 18,650 LIB | 24 °C | 1.5 A | 4.2 V | 2 A | 2.2 V |
Features | Pearson Correlation Coefficient | Spearman Correlation Coefficient |
---|---|---|
F1 | 0.9824 | 0.9536 |
F2 | −0.2637 | −0.2247 |
F3 | 0.9968 | 0.9927 |
F4 | 0.9885 | 0.9769 |
F5 | −0.9968 | −0.9927 |
F6 | −0.9807 | −0.9774 |
F7 | 0.9999 | 0.9997 |
Features | Pearson Correlation Coefficient | Spearman Correlation Coefficient |
---|---|---|
F1 | 0.9652 | 0.9507 |
F2 | −0.2735 | −0.2300 |
F3 | 0.9921 | 0.9937 |
F4 | 0.9866 | 0.9894 |
F5 | −0.9921 | −0.9937 |
F6 | −0.9833 | −0.9809 |
F7 | 0.9999 | 0.9999 |
Features | Pearson Correlation Coefficient | Spearman Correlation Coefficient |
---|---|---|
F1 | 0.9611 | 0.9407 |
F2 | −0.2735 | −0.2254 |
F3 | 0.9959 | 0.9925 |
F4 | 0.9826 | 0.9702 |
F5 | −0.9959 | −0.9925 |
F6 | −0.9675 | −0.9677 |
F7 | 0.9997 | 0.9991 |
Features | Pearson Correlation Coefficient | Spearman Correlation Coefficient | ||
---|---|---|---|---|
Original | Filtered | Original | Filtered | |
M1 | 0.9824 | 0.9824 | 0.9536 | 0.9536 |
M2 | 0.9968 | 0.9974 | 0.9927 | 0.9944 |
M3 | 0.9885 | 0.9924 | 0.9769 | 0.9823 |
M4 | −0.9968 | −0.9974 | −0.9927 | −0.9944 |
M5 | −0.9807 | −0.9886 | −0.9774 | −0.9842 |
M6 | 0.9999 | 0.9996 | 0.9997 | 0.9991 |
Features | Pearson Correlation Coefficient | Spearman Correlation Coefficient | ||
---|---|---|---|---|
Original | Filtered | Original | Filtered | |
M1 | 0.9652 | 0.9652 | 0.9507 | 0.9507 |
M2 | 0.9921 | 0.9930 | 0.9937 | 0.9950 |
M3 | 0.9866 | 0.9893 | 0.9894 | 0.9918 |
M4 | −0.9921 | −0.9930 | −0.9937 | −0.9950 |
M5 | −0.9833 | −0.9896 | −0.9809 | −0.9882 |
M6 | 0.9999 | 0.9993 | 0.9999 | 0.9992 |
Features | Pearson Correlation Coefficient | Spearman Correlation Coefficient | ||
---|---|---|---|---|
Original | Filtered | Original | Filtered | |
M1 | 0.9611 | 0.9611 | 0.9407 | 0.9407 |
M2 | 0.9959 | 0.9966 | 0.9925 | 0.9939 |
M3 | 0.9826 | 0.9894 | 0.9702 | 0.9794 |
M4 | −0.9959 | −0.9966 | −0.9925 | −0.9939 |
M5 | −0.9675 | −0.9801 | −0.9677 | −0.9796 |
M6 | 0.9997 | 0.9993 | 0.9991 | 0.9983 |
Types | Parameters | Value |
---|---|---|
BP Elman RBF LSTM COA-LSTM LRFDBCOA-LSTM | Maximum iteration | 1000 |
Input layer nodes | 6 | |
Hidden layer nodes | 6 | |
LRFDBCOA | Nc | 4 |
Np | 5 | |
Maximum iteration | 10 | |
Solution dimension | 2 |
Methods | 60% | 70% | 80% | |||
---|---|---|---|---|---|---|
R2 | MBE | R2 | MBE | R2 | MBE | |
BP | −0.4032 | 0.0289 | −0.2218 | 0.0175 | −1.7847 | 0.0161 |
Elman | 0.7312 | 0.0112 | 0.6739 | 0.0087 | 0.7506 | 0.0046 |
RBF | 0.7734 | −0.0087 | 0.8491 | −0.0038 | 0.8473 | 0.0004 |
LSTM | 0.8216 | 0.0103 | 0.8034 | −0.0042 | 0.4845 | 0.0042 |
COA-LSTM | 0.9303 | −0.0028 | 0.8354 | 0.0018 | 0.8668 | 0.0008 |
LRFDBCOA-LSTM | 0.9896 | 0.0018 | 0.9875 | 0.0017 | 0.9772 | 0.0012 |
Methods | 60% | 70% | 80% | |||
---|---|---|---|---|---|---|
R2 | MBE | R2 | MBE | R2 | MBE | |
BP | −0.9016 | 0.0466 | 0.3436 | 0.0208 | 0.7773 | 0.0099 |
Elman | −0.5259 | 0.0399 | 0.5143 | 0.0178 | 0.8701 | 0.0012 |
RBF | 0.0374 | 0.0324 | 0.4211 | 0.0199 | 0.9399 | −0.0014 |
LSTM | 0.8958 | 0.0099 | 0.9077 | 0.0042 | 0.8317 | 0.0085 |
COA-LSTM | 0.9315 | 0.0082 | 0.9143 | 0.0070 | 0.8696 | 0.0076 |
LRFDBCOA-LSTM | 0.9887 | 0.0019 | 0.9842 | 0.0036 | 0.9749 | 0.0019 |
Methods | 60% | 70% | 80% | |||
---|---|---|---|---|---|---|
R2 | MBE | R2 | MBE | R2 | MBE | |
BP | −1.2922 | 0.0314 | 0.2959 | 0.0119 | 0.2053 | 0.0081 |
Elman | −0.7817 | 0.0275 | 0.5424 | 0.0097 | 0.3717 | 0.0073 |
RBF | 0.8963 | −0.0065 | 0.8574 | 0.0059 | 0.8296 | 0.0036 |
LSTM | 0.7346 | −0.0101 | 0.7525 | −0.0016 | 0.7139 | 0.0019 |
COA-LSTM | 0.8925 | 0.0065 | 0.9523 | 0.0023 | 0.9574 | −0.0011 |
LRFDBCOA-LSTM | 0.9767 | 0.0026 | 0.9731 | 0.0012 | 0.9711 | 0.0017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Gao, D.; Shi, L.; Zheng, F.; Yang, B. State of Health Estimation of Lithium-Ion Battery Using Multi-Health Features Based on Savitzky–Golay Filter and Fitness-Distance Balance- and Lévy Roulette-Enhanced Coyote Optimization Algorithm-Optimized Long Short-Term Memory. Processes 2024, 12, 2284. https://doi.org/10.3390/pr12102284
Li H, Gao D, Shi L, Zheng F, Yang B. State of Health Estimation of Lithium-Ion Battery Using Multi-Health Features Based on Savitzky–Golay Filter and Fitness-Distance Balance- and Lévy Roulette-Enhanced Coyote Optimization Algorithm-Optimized Long Short-Term Memory. Processes. 2024; 12(10):2284. https://doi.org/10.3390/pr12102284
Chicago/Turabian StyleLi, Hongbiao, Dengke Gao, Linlong Shi, Fei Zheng, and Bo Yang. 2024. "State of Health Estimation of Lithium-Ion Battery Using Multi-Health Features Based on Savitzky–Golay Filter and Fitness-Distance Balance- and Lévy Roulette-Enhanced Coyote Optimization Algorithm-Optimized Long Short-Term Memory" Processes 12, no. 10: 2284. https://doi.org/10.3390/pr12102284
APA StyleLi, H., Gao, D., Shi, L., Zheng, F., & Yang, B. (2024). State of Health Estimation of Lithium-Ion Battery Using Multi-Health Features Based on Savitzky–Golay Filter and Fitness-Distance Balance- and Lévy Roulette-Enhanced Coyote Optimization Algorithm-Optimized Long Short-Term Memory. Processes, 12(10), 2284. https://doi.org/10.3390/pr12102284