A Hybrid Cluster Variational Autoencoder Model for Monitoring the Multimode Blast Furnace System
Abstract
:1. Introduction
2. Variational Autoencoder and Gaussian Mixture Model
3. Multimodal Process Monitoring Method Based on Hybrid Cluster Variational Autoencoder
3.1. Model Structure and Parameter Estimation of the Hybrid Cluster Variational Autoencoders
3.2. Process Monitoring Method
- Network Architecture: Design the architecture of the hybrid clustering variational autoencoder model. This includes defining the number of layers, the size of each layer, and the activation functions to be used. The model should have separate encoding and decoding parts, with the clustering component integrated into the hidden layer.
- Training Data Preparation: Split the collected and standardized dataset into training and validation sets. The training set is used to update the model parameters.
- Validation and Hyperparameter Tuning: learning rate, batch size, and the number of clusters, through techniques like cross-validation or grid search.
4. Application to a Real Blast Furnace
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Hua, C.; Yang, Y.; Guan, X. Bayesian Block Structure Sparse Based T–S Fuzzy Modeling for Dynamic Prediction of Hot Metal Silicon Content in the Blast Furnace. IEEE Trans. Ind. Electron. 2017, 65, 4933–4942. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Ye, H.; Huang, D.; Zhang, H.; Li, M. Fault detection for ironmaking process based on stacked denoising autoencoders. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3261–3267. [Google Scholar]
- Yan, F.; Zhang, X.; Yang, C.; Hu, B.; Qian, W.; Song, Z. Data-driven modelling methods in sintering process: Current research status and perspectives. Can. J. Chem. Eng. 2022, 101, 4506–4522. [Google Scholar] [CrossRef]
- Otsuka, K.; Matoba, Y.; Kajiwara, Y.; Kojima, M.; Yoshida, M. A hybrid expert system combined with a mathematical model for blast furnace operation. ISIJ Int. 1990, 30, 118–127. [Google Scholar] [CrossRef]
- Vanhatalo, E. Multivariate process monitoring of an experimental blast furnace. Qual. Reliab. Eng. Int. 2010, 26, 495–508. [Google Scholar] [CrossRef]
- Qian, J.; Song, Z.; Yao, Y.; Zhu, Z.; Zhang, X. A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes. Chemometr. Intell. Lab. Syst. 2022, 231, 104711. [Google Scholar] [CrossRef]
- Saxén, H.; Lassus, L.; Seppänen, M.; Karjalahti, T. Pattern recognition and classification of blast furnace wall temperatures. Ironmak. Steelmak. 2000, 27, 207–211. [Google Scholar]
- Zhang, T.; Ye, H.; Wang, W.; Zhang, H. Fault diagnosis for blast furnace ironmaking process based on two-stage principal component analysis. ISIJ Int. 2014, 54, 2334–2341. [Google Scholar]
- Tian, H.; Wang, A. A novel fault diagnosis system for blast furnace based on support vector machine ensemble. ISIJ Int. 2010, 50, 738–742. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, R.; Liang, M.; Fu, J.; Wang, H.; Chai, T. Fault identification for quality monitoring of molten iron in blast furnace ironmaking based on KPLS with improved contribution rate. Control Eng. Pract. 2020, 97, 104354. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, J.; Bao, J.; Xie, L. A unified probabilistic monitoring framework for multimode processes based on probabilistic linear discriminant analysis. IEEE Trans. Ind. Inform. 2020, 16, 6291–6300. [Google Scholar] [CrossRef]
- Zhou, B.; Ye, H.; Zhang, H.; Li, M. Process monitoring of iron-making process in a blast furnace with PCA-based methods. Control Eng. Pract. 2016, 47, 1–14. [Google Scholar] [CrossRef]
- Wang, L.; Yang, C.; Sun, Y.; Zhang, H.; Li, M. Effective variable selection and moving window HMM-based approach for iron-making process monitoring. J. Process Control 2018, 68, 86–95. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, R.; Xie, J.; Liu, J.; Wang, H.; Chai, T. Data-driven monitoring and diagnosing of abnormal furnace conditions in blast furnace ironmaking: An integrated PCA-ICA method. IEEE Trans. Ind. Electron. 2020, 68, 622–631. [Google Scholar] [CrossRef]
- Doersch, C. Tutorial on variational autoencoders. arXiv 2016, arXiv:1606.05908. [Google Scholar] [CrossRef]
- Chen, T.; Sun, Y. Probabilistic contribution analysis for statistical process monitoring: A missing variable approach. Control Eng. Pract. 2009, 17, 469–477. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, Y.; Song, B.; Shi, H. An aligned mixture probabilistic principal component analysis for fault detection of multimode chemical processes. Chin. J. Chem. Eng. 2015, 23, 1357–1363. [Google Scholar] [CrossRef]
- Tang, P.; Peng, K.; Jiao, R. A process monitoring and fault isolation framework based on variational autoencoders and branch and bound method. J. Frankl. Inst. 2022, 359, 1667–1691. [Google Scholar] [CrossRef]
- Cai, J.; Zeng, J.; Luo, S. A state space model for monitoring of the dynamic blast furnace system. ISIJ Int. 2012, 52, 2194–2199. [Google Scholar] [CrossRef]
- Wang, K.; Forbes, M.G.; Gopaluni, B.; Chen, J.; Song, Z. Systematic development of a new variational autoencoder model based on uncertain data for monitoring nonlinear processes. IEEE Access 2019, 7, 22554–22565. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, B.; Xie, L.; Peng, L. Process monitoring based on recursive probabilistic PCA for multi-mode process. IFAC-Pap. 2015, 8, 1294–1299. [Google Scholar]
Modes | The Number of Samples |
---|---|
Mode 1 | 356 |
Mode 2 | 357 |
Mode 3 | 787 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Cai, J. A Hybrid Cluster Variational Autoencoder Model for Monitoring the Multimode Blast Furnace System. Processes 2023, 11, 2580. https://doi.org/10.3390/pr11092580
Chen C, Cai J. A Hybrid Cluster Variational Autoencoder Model for Monitoring the Multimode Blast Furnace System. Processes. 2023; 11(9):2580. https://doi.org/10.3390/pr11092580
Chicago/Turabian StyleChen, Chenyu, and Jinhui Cai. 2023. "A Hybrid Cluster Variational Autoencoder Model for Monitoring the Multimode Blast Furnace System" Processes 11, no. 9: 2580. https://doi.org/10.3390/pr11092580
APA StyleChen, C., & Cai, J. (2023). A Hybrid Cluster Variational Autoencoder Model for Monitoring the Multimode Blast Furnace System. Processes, 11(9), 2580. https://doi.org/10.3390/pr11092580