Paleo-Sedimentary Environments and Controlling Factors for Enrichment of Organic Matter in Alkaline Lake Sediments: A Case Study of the Lower Permian Fengcheng Formation in Well F7 at the Western Slope of Mahu Sag, Junggar Basin
Abstract
:1. Introduction
2. Geological Setting
3. Sample Collection and Data Processing
3.1. Sample Collection
3.2. Data Processing
4. Results
4.1. Contents of Major and Trace Elements
4.2. Contents of Rare Earth Elements
5. Discussion
5.1. Contents of Total Organic Matter
5.2. Analysis of Depositional Environments
5.2.1. Paleoclimate
5.2.2. Paleo-Salinity
5.2.3. Paleo-Redox Conditions
5.2.4. Primary Productivity
5.2.5. Detrital Influx
5.3. Control Factors for Organic Matter
5.4. Formation Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, J.; Lei, D.; Li, Y.; Tang, Y.; Abulimit, C.Q.; Wang, T. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin. Acta Pet. Sin. 2015, 36, 781–790. [Google Scholar]
- Cao, J.; Xia, L.; Wang, T.; Zhi, D.; Tang, Y.; Li, W. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth-Sci. Rev. 2020, 202, 103091. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Cao, J. Basic characteristics and highly efficient hydrocarbon generation of alkaline-lacustrine source rocks in Fengcheng formation of Mahu sag. Xinjiang Pet. Geol. 2018, 39, 9–15. [Google Scholar]
- Zhi, D.; Tang, Y.; Zheng, M.; Xu, Y.; Cao, J.; Ding, J.; Zhao, C. Geological characteristics and accumulation controlling factors of shale reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin. China Pet. Explor. 2019, 24, 615–623. [Google Scholar]
- Domagalski, J.L.; Orem, W.H.; Eugster, H.P. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes. Geochim. Cosmochim. Acta 1989, 53, 2857–2872. [Google Scholar] [CrossRef]
- Horsfield, B.; Curry, D.J.; Bohacs, K.; Littke, R.; Rullkötter, J.; Schenk, H.J.; Radke, M.; Schaefer, R.G.; Carroll, A.R.; Isaksen, G.; et al. Organic geochemistry of freshwater and alkaline lacustrine sediments in the Green River Formation of the Washakie Basin, Wyoming, USA. Org. Geochem. 1994, 22, 415–440. [Google Scholar] [CrossRef]
- Wang, S.; He, Z. Deepening geologic understanding and opening up new petroleum exploration araes in Biyang depression. Henan Pet. 2002, 16, 1–6. [Google Scholar]
- Wu, J.; Liang, C.; Hu, Z.; Yang, R.; Xie, J.; Wang, R.; Zhao, J. Sedimentation mechanisms and enrichment of organic matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin. Mar. Pet. Geol. 2019, 101, 556–565. [Google Scholar] [CrossRef]
- Hu, T.; Pang, X.; Jiang, S.; Wang, Q.; Xu, T.; Lu, K.; Huang, C.; Chen, Y.; Zheng, X. Impact of paleosalinity, dilution, redox, and paleoproductivity on organic matter enrichment in a saline lacustrine rift basin: A case study of paleogene organic-rich shale in dongpu depression, bohai bay basin, eastern China. Energy Fuels 2018, 32, 5045–5061. [Google Scholar] [CrossRef]
- Fu, J.; Li, S.; Xu, L.; Niu, X. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Pet. Explor. Dev. 2018, 45, 998–1008. [Google Scholar] [CrossRef]
- Qu, C.S.; Qiu, L.W.; Cao, Y.C.; Yang, Y.Q.; Yu, K.H. Sedimentary environment and the controlling factors of organic-rich rocks in the Lucaogou Formation of the Jimusar Sag, Junggar Basin, NW China. Pet. Sci. 2019, 16, 763–775. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, Y.; Pe-Piper, G.; Piper, D.J.W.; Guo, Z.; Li, W. Permian to early Triassic tectono-sedimentary evolution of the Mahu sag, Junggar Basin, western China: Sedimentological implications of the transition from rifting to tectonic inversion. Mar. Pet. Geol. 2021, 123, 104730. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, G.; Wang, X. Achievements and prospect for petroleum exploration and development in Junggar Basin. Xinjiang Pet. Geol. 2002, 23, 449–455. [Google Scholar]
- Zhi, D.; Tang, Y.; He, W.; Guo, X.; Zheng, M.; Huang, L. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar Basin. Pet. Explor. Dev. 2021, 48, 43–59. [Google Scholar] [CrossRef]
- Yu, K.; Cao, Y.; Qiu, L.; Sun, P. Depositional environment in an arid, closed basin and their implications for oil and gas exploration: The lower Permian Fengcheng Formation in the Junggar Basin, China. Am. Assoc. Pet. Geol. Bull. 2019, 103, 2073–2115. [Google Scholar] [CrossRef]
- Yu, K.; Qiu, L.; Cao, Y.; Sun, P.; Qu, C.; Yang, Y. Hydrothermal origin of early Permian saddle dolomites in the Junggar Basin, NW China. J. Asian Earth Sci. 2019, 184, 103990. [Google Scholar] [CrossRef]
- Tao, K.; Cao, J.; Chen, X.; Nueraili, Z.; Hu, W.; Shi, C. Deep hydrocarbons in the northwestern Junggar Basin (NW China): Geochemistry, origin, and implications for the oil vs. gas generation potential of post-mature saline lacustrine source rocks. Mar. Pet. Geol. 2019, 109, 623–640. [Google Scholar] [CrossRef]
- Kuang, L.; Tang, Y.; Lei, D.; Wu, T.; Qu, J. Exploration of fan-controlled large-area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu depression in Junggar Basin. China Pet. Explor. 2014, 19, 14–23. [Google Scholar]
- Chen, G.; An, Z.; Abulimiti, L.X.; Xu, Q.; Zhang, L. Petroleum exploration prospects of Carboniferous-Permian in peripheral Mahu sag, Junggar basin. Xinjiang Pet. Geol. 2014, 35, 259–263. [Google Scholar]
- Gao, G.; Yang, S.; Ren, J.; Zhang, W.; Xiang, B. Geochemistry and depositional conditions of the carbonate-bearing lacustrine source rocks: A case study from the Early Permian Fengcheng Formation of Well FN7 in the northwestern Junggar Basin. J. Pet. Sci. Eng. 2018, 162, 407–418. [Google Scholar] [CrossRef]
- GB/T 14506.28-2010; Methods for Chemical Analysis of Silicate Rocks—Part 28: Determination of 16 Major and Minor Elements Content. National Land and Resources Standardization Technical Committee: Beijing, China, 2010.
- GB/T 14506.30-2010; Methods for Chemical Analysis of Silicate Rocks—Part 30: Determination of 44 Elements. National Land and Resources Standardization Technical Committee: Beijing, China, 2010.
- SY/T 7035-2016; Method of Thermal Simulation in Gold Tubes for Hydrocarbon Generation of Source Rocks. Oil Industry Press: Beijing, China, 2016.
- Ardakani, O.H.; Chappaz, A.; Sanei, H.; Mayer, B. Effect of thermal maturity on remobilization of molybdenum in black shales. Earth Planet. Sci. Lett. 2016, 449, 311–320. [Google Scholar] [CrossRef]
- Li, X.; Gang, W.; Yao, J.; Gao, G.; Wang, C.; Li, J.; Liu, Y.; Guo, Y.; Yang, S. Major and trace elements as indicators for organic matter enrichment of marine carbonate rocks: A case study of Ordovician subsalt marine formations in the central-eastern Ordos Basin, North China. Mar. Pet. Geol. 2020, 111, 461–475. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Lv, D.W.; Fan, W.G.; John, I.E.; Wu, D.; Wang, D.D.; Li, Z.X.; Li, J.P.; Li, P.P. Depositional environments of limestones from the Taiyuan Formation in the North China Block interpreted from REE proxies. Carbonates Evaporites 2020, 35, 61. [Google Scholar] [CrossRef]
- Caetano-Filho, S.; Paula-Santos, G.M.; Dias-Brito, D. Carbonate REE + Y signatures from the restricted early marine phase of South Atlantic Ocean (late Aptian-Albian): The influence of early anoxic diagenesis on shale-normalized REE + Y patterns of ancient carbonate rocks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 500, 69–83. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, X.; Wang, M.; Zhou, C.; Tang, Y.; Chen, X.; Lin, M.; Cheng, D. Alkaline-lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu sag, Junggar Basin, NW China. Pet. Explor. Dev. 2018, 45, 1036–1049. [Google Scholar] [CrossRef]
- Wedepohl, K.H. Environmental influences on the chemical composition of shales and clays. Phys. Chem. 1971, 8, 307–333. [Google Scholar] [CrossRef]
- Jiang, Y.; Hou, D.; Li, H.; Zhang, Z.; Guo, R. Impact of the paleoclimate, paleoenvironment, and algae bloom: Organic matter accumulation in the lacustrine Lucaogou Formation of Jimsar Sag, Junggar Basin, NW China. Energies 2020, 13, 1488. [Google Scholar] [CrossRef]
- Li, Q.; Wu, S.; Xia, D.; You, X.; Zhang, H.; Lu, H. Major and trace element geochemistry of the lacustrine organic-rich shales from the Upper Triassic Chang 7 Member in the southwestern Ordos Basin, China: Implications for paleoenvironment and organic matter accumulation. Mar. Pet. Geol. 2020, 111, 852–867. [Google Scholar] [CrossRef]
- Vosoughi Moradi, A.; Sarı, A.; Akkaya, P. Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for Paleoclimate conditions, source–area weathering, provenance and tectonic setting. Sediment. Geol. 2016, 341, 289–303. [Google Scholar] [CrossRef]
- Lerman, A. Lakes: Chemistry, Geology, Physics; Springer: New York, NY, USA, 1978; pp. 237–289. [Google Scholar]
- Yin, J.T.; Yu, Y.X.; Jiang, C.F.; Liu, J.; Zhao, Q.P.; Shi, P. Relationship between element geochemical characteristic and organic matter enrichment in Zhangjiatan Shale of Yanchang Formation, Ordos Basin. J. China Coal Soc. 2017, 42, 1544–1556. [Google Scholar]
- Chen, J.; Wang, Y.; Chen, Y.; Liu, L.; Ji, J.; Lu, H. Rb and Sr geochemical characterization of the Chinese loess and its implications for palaeomonsoon climate. Acta Geol. Sin. 2001, 75, 259–266. [Google Scholar]
- Lei, K.; Liu, C.; Zhang, L.; Wu, B.; Cun, X.; Sun, L. Element geochemical characteristics of the Jurassic mudstones in the Northern Ordos Basin: Implications for tracing sediment sources and paleoenvironment restoration. Acta Sedimentol. Sin. 2017, 35, 621–636. [Google Scholar]
- Chen, G.; Gang, W.; Chang, X.; Wang, N.; Zhang, P.; Cao, Q.; Xu, J. Paleoproductivity of the Chang 7 unit in the Ordos Basin (North China) and its controlling factors. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 551, 109741. [Google Scholar] [CrossRef]
- Remírez, M.N.; Algeo, T.J. Paleosalinity determination in ancient epicontinental seas: A case study of the T-OAE in the Cleveland Basin (UK). Earth-Sci. Rev. 2020, 201, 103072. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Z.; Liu, J.; Xu, N.; Li, H. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta. Chem. Geol. 2021, 559, 119923. [Google Scholar] [CrossRef]
- Wei, W.; Algeo, T.J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochim. Cosmochim. Acta. 2020, 287, 341–366. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Dong, C.M.; Lin, C.Y.; Zhang, X.G.; Huang, X.; Li, B.J.; Guo, W.; Zhu, Z.Q. Sedimentary environment and facies of the Huagang Formation in the northern central Xihu Depression, East China Sea Basin, China. Aust. J. Earth Sci. 2020, 67, 379–392. [Google Scholar] [CrossRef]
- Li, F.; Webb, G.E.; Algeo, T.J.; Kershaw, S.; Lu, C.; Oehlert, A.M.; Gong, Q.; Pourmand, A.; Tan, X. Modern carbonate ooids preserve ambient aqueous REE signatures. Chem. Geol. 2019, 509, 163–177. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, Y.; Zhang, S.; Xia, B. Geochemical methods of boundary identification in terrigenous high-resolution sequence. Acta Sedimentol. Sin. 2004, 22, 79–86. [Google Scholar]
- Algeo, T.J.; Maynard, J.B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Tenger; Liu, W.; Xu, Y.; Chen, J. The discussion on anoxic environments and its geochemical identifying indices. Acta Sedimentol. Sin. 2004, 22, 365–372. [Google Scholar]
- Farouk, S.; Ahmad, F.; Baioumy, H.; Lehmann, B.; Mohammed, I.Q.; Al-Kahtany, K. Geochemical characteristics of carbonaceous chalk near the Cretaceous/Paleogene transition, central Jordan: Strong metal enrichment of redox-sensitive and biophile elements from remineralized calcitic plankton. Mar. Pet. Geol. 2020, 120, 104535. [Google Scholar] [CrossRef]
- Jones, B.; Manning, D.A.C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- Krim, N.; Tribovillard, N.; Riboulleau, A.; Bout-Roumazeilles, V.; Bonnel, C.; Imbert, P.; Aubourg, C.; Hoareau, G.; Fasentieux, B. Reconstruction of palaeoenvironmental conditions of the Vaca Muerta formation in the southern part of the Neuquén Basin (Tithonian-Valanginian): Evidences of initial short-lived development of anoxia. Mar. Pet. Geol. 2019, 103, 176–201. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, F.; Chen, C.; Pu, X. A Transgressive Depositional Setting for the Paleogene Shahejie Formation in the Qikou Depression, Eastern China: Inferences from the REE Geochemistry of Carbonates. J. Earth Sci. 2018, 29, 326–341. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, J.; Fu, X.; Chen, W.; Feng, X.; Wang, D.; Song, C.; Wang, Z. Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China. Mar. Pet. Geol. 2015, 64, 203–221. [Google Scholar] [CrossRef]
- Canfield, D.E. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 1994, 114, 315–329. [Google Scholar] [CrossRef]
- Steinmann, J.W.; Grammer, G.M.; Brunner, B.; Jones, C.K.; Riedinger, N. Assessing the application of trace metals as paleoproxies and a chemostratigraphic tool in carbonate systems: A case study from the “Mississippian Limestone” of the midcontinent, United States. Mar. Pet. Geol. 2020, 112, 104061. [Google Scholar] [CrossRef]
- Wang, L.; Guo, Q.; Zhao, C.; Wei, R.; Deng, Y.; Han, X.; Tian, L.; Kong, J.; Yang, X. Trace and rare earth elements geochemistry of sedimentary rocks in the Ediacaran-Cambrian transition from Tarim Basin, Northwest China: Constraints for redox environments. Precambrian Res. 2020, 352, 105942. [Google Scholar]
- Zhang, L.; Xiao, D.; Lu, S.F.; Jiang, S.; Lu, S.D. Effect of sedimentary environment on the formation of organic-rich marine shale: Insights from major/trace elements and shale composition. Int. J. Coal Geol. 2019, 204, 34–50. [Google Scholar] [CrossRef]
- Wu, L.; Lu, Y.; Jiang, S.; Liu, X.; He, G. Effects of volcanic activities in Ordovician Wufeng–Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China. Pet. Explor. Dev. 2018, 45, 862–872. [Google Scholar] [CrossRef]
- Wang, N.; Li, M.; Tian, X.; Hong, H.; Wen, L.; Wang, W. Climate-ocean control on the depositional watermass conditions and organic matter enrichment in lower cambrian black shale in the upper Yangtze Platform. Mar. Pet. Geol. 2020, 120, 104570. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, Y.; Pe-Piper, G.; Piper, D.J.W.; Guo, Z.; Li, W. Soft-sediment deformation structures in alkaline lake deposits of Lower Permian Fengcheng Formation, Junggar Basin, NW China: Implications for syn-sedimentary tectonic activity. Sediment. Geol. 2020, 406, 105719. [Google Scholar] [CrossRef]
Formation | SiO2 | Average | Al2O3 | Average | CaO | Average |
---|---|---|---|---|---|---|
P1f1 | 46.88–70% | 57.47% | 3.85–8.49% | 5.6% | 4.59–8.02% | 6.4% |
P1f2 | 41.67–75.73% | 54.83% | 2.82–11.22% | 7.96% | 2.1–13.07% | 7.43% |
P1f3 | 52.6–79.15% | 60.87% | 2.98–15.59% | 10.52% | 1.43–10.43% | 5.24% |
Formation | ∑LREE/∑HREE | Average | (La/Yb)N | Average | (La/Sm)N | Average | (Gd/Yb)N | Average | Ce/Ce* | Average |
---|---|---|---|---|---|---|---|---|---|---|
P1f1 | 3.17–4.77 | 3.74 | 0.59–1.04 | 0.77 | 0.62–0.84 | 0.74 | 0.8–1.27 | 0.95 | 0.98–0.99 | 0.99 |
P1f2 | 0.47–6.63 | 2.77 | 0.07–1.3 | 0.71 | 0.41–1.37 | 0.75 | 0.28–3.1 | 1.17 | 0.84–1.04 | 0.97 |
P1f3 | 1.51–6.46 | 2.38 | 0.31–1.56 | 0.57 | 0.41–0.89 | 0.58 | 0.59–1.88 | 1.05 | 0.8–1.04 | 0.96 |
Formation | Y/Ho | Average | Sr/Ba | Average | Lithology |
---|---|---|---|---|---|
P1f3 | 23.37–30.25 | 26.63 | 0.4–3.47 | 1.43 | Brackish water environment |
P1f2 | 21.09–29.6 | 26.1 | 0.63–4.19 | 2.07 | Brackish water environment |
P1f1 | 27.9–29.67 | 28.53 | 1.26–5.15 | 3.3 | Brackish water environment |
Formation | V/Cr | Average | V/(V + Ni) | Average | U/Th | Average |
---|---|---|---|---|---|---|
P1f1, P1f2 | 1.75–4.93 | 2.56 | 0.69–0.85 | 0.76 | 0.74–3.37 | 1.81 |
P1f3 | 0.95–5.74 | 2.33 | 0.4–0.94 | 0.71 | 0.21–3.08 | 1.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Tang, Y.; Nan, Y.; Yang, F.; Wang, D. Paleo-Sedimentary Environments and Controlling Factors for Enrichment of Organic Matter in Alkaline Lake Sediments: A Case Study of the Lower Permian Fengcheng Formation in Well F7 at the Western Slope of Mahu Sag, Junggar Basin. Processes 2023, 11, 2483. https://doi.org/10.3390/pr11082483
Chen G, Tang Y, Nan Y, Yang F, Wang D. Paleo-Sedimentary Environments and Controlling Factors for Enrichment of Organic Matter in Alkaline Lake Sediments: A Case Study of the Lower Permian Fengcheng Formation in Well F7 at the Western Slope of Mahu Sag, Junggar Basin. Processes. 2023; 11(8):2483. https://doi.org/10.3390/pr11082483
Chicago/Turabian StyleChen, Gangqiang, Yuantao Tang, Yuhang Nan, Fan Yang, and Dongyong Wang. 2023. "Paleo-Sedimentary Environments and Controlling Factors for Enrichment of Organic Matter in Alkaline Lake Sediments: A Case Study of the Lower Permian Fengcheng Formation in Well F7 at the Western Slope of Mahu Sag, Junggar Basin" Processes 11, no. 8: 2483. https://doi.org/10.3390/pr11082483
APA StyleChen, G., Tang, Y., Nan, Y., Yang, F., & Wang, D. (2023). Paleo-Sedimentary Environments and Controlling Factors for Enrichment of Organic Matter in Alkaline Lake Sediments: A Case Study of the Lower Permian Fengcheng Formation in Well F7 at the Western Slope of Mahu Sag, Junggar Basin. Processes, 11(8), 2483. https://doi.org/10.3390/pr11082483