Environmental Life Cycle Analysis of Açaí (Euterpe oleracea) Powders Obtained via Two Drying Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Experimental Setup
2.2. LCA of Dried Açaí Powder
2.2.1. Goal and Scope Definition
2.2.2. Functional Unit
2.2.3. System Boundaries
2.2.4. Inventory Data Selection and Description
- Açaí cultivation (see Figure 1).
- Açaí powder production:
2.2.5. Data Analyses
2.3. Sensibility Analyses
3. Results and Discussion
3.1. Drying Process
- -
- Drying yield: 59.23 ± 2.08%
- -
- Final moisture content: 3.06 ± 0.14%a
- -
- Drying yield: 44.15% ± 3.20%
- -
- Final moisture content: 2.76% ± 0.23%a
3.2. Environmental Results
3.3. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J. Food Eng. 2008, 88, 411–418. [Google Scholar] [CrossRef]
- Romualdo, G.R.; Fragoso, M.F.; Borguini, R.G.; de Araújo Santiago, M.C.P.; Fernandes, A.A.H.; Barbisan, L.F. Protective effects of spray-dried açaí (Euterpe oleracea Mart) fruit pulp against initiation step of colon carcinogenesis. Food Res. Int. 2015, 77, 432–440. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Xie, C.; Li, Z.; Nagarajan, S.; Schauss, A.G.; Wu, T.; Wu, X. Flavonoids from Açaí (Euterpe oleracea Mart.) pulp and their antioxidant and anti-inflammatory activities. Food Chem. 2011, 128, 152–157. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.B.; Annetta, F.E.; Alves, A.B.; Queiroz, M.B.; Fadini, A.L.; da Silva, M.G.; Efraim, P. Effect of differently processed açai (Euterpe oleracea Mart.) on the retention of phenolics and anthocyanins in chewy candies. Int. J. Food Sci. Technol. 2016, 51, 2603–2612. [Google Scholar] [CrossRef]
- Pavan, M.A.; Schmidt, S.J.; Feng, H. Water sorption behavior and thermal analysis of freeze-dried, Refractance Window-dried and hot-air dried açaí (Euterpe oleracea Martius) juice. LWT-Food Sci. Technol. 2012, 48, 75–81. [Google Scholar] [CrossRef]
- Lucas, B.F.; Zambiazi, R.C.; Costa, J.A.V. Biocompounds and physical properties of açaí pulp dried by different methods. LWT 2018, 98, 335–340. [Google Scholar] [CrossRef]
- de Almeida Magalhães, T.S.S.; de Oliveira Macedo, P.C.; Converti, A.; Neves de Lima, Á.A. The use of Euterpe oleracea Mart. as a new perspective for disease treatment and prevention. Biomolecules 2020, 10, 813. [Google Scholar] [CrossRef]
- Martins, D.R.D.S.; Sanjinez-Argandoña, E.J.; Ortega, N.D.F.; Garcia, V.A.D.S.; de Oliveira, V.S.; Cardoso, C.A.L. Production and characterization of Hibiscus sabdariffa by spray dryer using different sprinkler nozzles and carrier agents. J. Food Process. Preserv. 2020, 44, e14493. [Google Scholar] [CrossRef]
- Mas Colombia. Colombia se Posiciona Como el Principal Exportador de Frutas Exóticas en América. 2021. Available online: https://mascolombia.com/colombia-se-posiciona-como-el-principal-exportador-de-frutas-exoticas-en-america/ (accessed on 25 March 2023).
- Ciesielski, K.; Zbicinski, I. Evaluation of environmental impact of the spray-drying process. Dry. Technol. 2010, 28, 1091–1096. [Google Scholar] [CrossRef]
- Kudra, T. Energy aspects in drying. Dry. Technol. 2004, 22, 917–932. [Google Scholar] [CrossRef]
- Ladha-Sabur, A.; Bakalis, S.; Fryer, P.J.; Lopez-Quiroga, E. Mapping energy consumption in food manufacturing. Trends Food Sci. Technol. 2019, 86, 270–280. [Google Scholar] [CrossRef]
- Xu, T.; Flapper, J. Energy use and implications for efficiency strategies in global fluid-milk processing industry. Energy Policy 2009, 37, 5334–5341. [Google Scholar] [CrossRef]
- Rojas, T.; Cortés, C.; Noguera, M.; Rojas, N.; Cely, M.; Garzón, C.; García, J.A.; Murcia, M.; Aparicio, A.; Acuña, R. Diagnóstico de Experiencias Locales de Bioproductos y Negocios Verdes en Comunidades Locales Ubicadas en Zonas con alto Valor Ecológico y Frentes de Deforestación: Contribuciones de la Naturaleza y Bienestar; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2020. [Google Scholar]
- Sato, M.K.; de Lima, H.V.; Costa, A.N.; Rodrigues, S.; Mooney, S.J.; Clarke, M.; Pedroso, A.J.S.; de Freitas Maia, C.M.B. Biochar as a sustainable alternative to açaí waste disposal in Amazon, Brazil. Process. Saf. Environ. Prot. 2020, 139, 36–46. [Google Scholar] [CrossRef]
- Montenegro-Silva, I.L.; Mejía-Veléz, D.A. Oportunidades Comerciales Para la Gulupa en los Mercados Internacionales. 2020. Available online: https://repositorio.uniagustiniana.edu.co/bitstream/handle/123456789/1095/MontenegroSilva-IvanLeonardo-2019.pdf?sequence=4&isAllowed=y (accessed on 1 May 2023).
- Ferreira, S.F.; Buller, L.S.; Maciel-Silva, F.W.; Sganzerla, W.G.; Berni, M.D.; Forster-Carneiro, T. Waste management and bioenergy recovery from açaí processing in the Brazilian Amazonian region: A perspective for a circular economy. Biofuels Bioprod. Biorefin. 2021, 15, 37–46. [Google Scholar] [CrossRef]
- De Marco, I.; Lannone, R.; Miranda, S.; Riemma, S. Life cycle assessment of apple powders produced by a drum drying process. Chem. Eng. Trans. 2015, 43, 193–198. [Google Scholar]
- Ortiz-Sanchez, M.; Solarte-Toro, J.C.; Orrego-Alzate, C.E.; Acosta-Medina, C.D.; Cardona-Alzate, C.A. Integral use of orange peel waste through the biorefinery concept: An experimental, technical, energy, and economic assessment. Biomass Convers. Biorefin. 2021, 11, 645–659. [Google Scholar] [CrossRef]
- Klöpffer, W.; Grahl, B. Life Cycle Assessment (LCA): A Guide to Best Practice; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Gallego, A.; Hospido, A.; Moreira, M.T.; Feijoo, G. Environmental assessment of dehydrated alfalfa production in Spain. Resour. Conserv. Recycl. 2011, 55, 1005–1012. [Google Scholar] [CrossRef]
- Rodríguez, L.J.; Fabbri, S.; Orrego, C.E.; Owsianiak, M. Comparative life cycle assessment of coffee jar lids made from biocomposites containing poly (lactic acid) and banana fiber. J. Environ. Manag. 2020, 266, 110493. [Google Scholar] [CrossRef]
- van Oirschot, R.; Thomas, J.B.E.; Gröndahl, F.; Fortuin, K.P.; Brandenburg, W.; Potting, J. Explorative environmental life cycle assessment for system design of seaweed cultivation and drying. Algal Res. 2017, 27, 43–54. [Google Scholar] [CrossRef]
- Rietberg, E. Várzea Floodplain Agriculture in the Colombian Amazon; Van Hall Larenstein University of Applied Sciences: Leeuwarden, The Netherlands, 2014. [Google Scholar]
- Du, J.; Ge, Z.Z.; Xu, Z.; Zou, B.; Zhang, Y.; Li, C.M. Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders. Dry. Technol. 2014, 32, 1157–1166. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, C.; Yang, S.; Yin, H.; Yang, Z.; Chi, R. Life cycle assessment and life cycle cost analysis of compound microbial fertilizer production in China. Sustain. Prod. Consum. 2021, 28, 1622–1634. [Google Scholar] [CrossRef]
- Karlsson Potter, H.; Lundmark, L.; Röös, E. Environmental Impact of Plant-Based Foods–Data Collection for the Development of a Consumer Guide for Plant-Based Foods; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2020. [Google Scholar]
- Graefe, S.; Tapasco, J.; Gonzalez, A. Resource use and GHG emissions of eight tropical fruit species cultivated in Colombia. Fruits 2013, 68, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Barrera-Ramírez, J.; Prado, V.; Solheim, H. Life cycle assessment and socioeconomic evaluation of the illicit crop substitution policy in Colombia. J. Ind. Ecol. 2019, 23, 1237–1252. [Google Scholar] [CrossRef]
- Oagile, D.; Namasiku, M. Chicken manure-enhanced soil fertility and productivity: Effects of application rates. J. Soil Sci. Environ. Manag. 2010, 1, 46–54. [Google Scholar]
- Kitamura, R.; Sugiyama, C.; Yasuda, K.; Nagatake, A.; Yuan, Y.; Du, J.; Yamaki, N.; Taira, K.; Kawai, M.; Hatano, R. Effects of Three Types of Organic Fertilizers on Greenhouse Gas Emissions in a Grassland on Andosol in Southern Hokkaido, Japan. Front. Sustain. Food Syst. 2021, 5, 649613. [Google Scholar] [CrossRef]
- Prosapio, V.; Norton, I.; De Marco, I. Optimization of freeze-drying using a Life Cycle Assessment approach: Strawberries’ case study. J. Clean. Prod. 2017, 168, 1171–1179. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Zhou, Z.; Garvlehn, M.P.; Bi, F. Comparative Assessment of the Environmental Impacts of Hydro-Electric, Nuclear and Wind Power Plants in China: Life Cycle Considerations. Energy Procedia 2018, 152, 1009–1014. [Google Scholar] [CrossRef]
- Lansche, J.; Awiszus, S.; Latif, S.; Müller, J. Potential of biogas production from processing residues to reduce environmental impacts from cassava starch and crisp production—A case study from Malaysia. Appl. Sci. 2020, 10, 2975. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 2018, 129, 153–167. [Google Scholar] [CrossRef]
Vacuum Drying | Spray Drying | ||||
---|---|---|---|---|---|
Parameter | Value | Unit | Parameter | Value | Unit |
Shelf heating temperature | 55 | °C | Air inlet temperature | 120 | °C |
Condenser temperature | −40 | °C | Air outlet temperature | 60 | °C |
Pressure | 17 | mbar | Feed flow | 72 | mL/min |
Drying time/batch 1 | 6 | h | Drying time/batch | 1.5 | h |
Compounds Inlet | Equipment/Supplies Inlet | |||||||
---|---|---|---|---|---|---|---|---|
Stage | Activity | Time (Month) | Input | Amount | Unit | Input | Amount | Unit |
Nursery | Nursery construction | 1 | - | - | Wooden supports | 144 | kg | |
- | - | Polyethylene | 5.04 | kg | ||||
Germinator | Bed construction | 1.5 | Wood bed | 288 | kg | |||
Substrate | Land | 288 | kg | |||||
Bags transplant | Bags | - | - | Polyethylene | 11.81 | kg | ||
Substrate | Land | 2.81 | kg | |||||
Organic fertilizer | 14.41 | kg | ||||||
Irrigation | Water | 236.25 | m3 | |||||
Hollowed | Substrate | 0.1 | Organic fertilizer | 1875 | kg | |||
Harvest | Bag | 0.1 | Polyethylene | 0.022 | kg | |||
Basket | Polyethylene | 20.00 | kg | |||||
Packaging | Packing | 0.002 | Ethylene–Vinyl–Alcohol (EVAL) | 0.06 | kg |
Scenario | Stage | Activity | Input | Value | Unit | Output | Value | Unit |
---|---|---|---|---|---|---|---|---|
Scenario 1 | Pulping | Cleaning | Fruit | 4.11 | kg | |||
Water | 1.90 | kg | ||||||
Disinfection | Water | 1.90 | kg | |||||
Sodium hypochlorite | 0.002 | kg | ||||||
Softening | Water | 2.15 | kg | |||||
Liquid wastes | 1.88 | kg | ||||||
Solid wastes * | 1.63 | kg | ||||||
Raw material conditioning | Maltodextrin addition | Maltodextrin | 1.39 | kg | ||||
Drying | Vacuum drying | Water steam | 1.24 | kg | ||||
Açaí powder | 1.00 | kg | ||||||
Açaí powder moisture | 0.03 | kg | ||||||
Scenario 2 | Pulping | Cleaning | Fruit | 5.54 | kg | |||
Water | 2.56 | kg | ||||||
Disinfection | Water | 2.56 | kg | |||||
Sodium hypochlorite | 0.003 | kg | ||||||
Softening | Water | 2.90 | kg | |||||
Liquid wastes | 5.12 | kg | ||||||
Solid wastes * | 4.43 | kg | ||||||
Raw material conditioning | Maltodextrin addition | Maltodextrin | 1.87 | kg | ||||
Drying | Spray drying | Water steam | 1.25 | kg | ||||
Açaí powder | 1.00 | kg | ||||||
Açaí powder moisture | 0.03 | kg |
Scenario | Activity | Input | Value | Unit |
---|---|---|---|---|
Scenario 1 | Vacuum drying | Heating plate | 0.88 | kWh |
Vacuum pump + Cooler + Control system | 14.62 | kWh | ||
Packaging | Ethylene–Vinyl–Alcohol (EVAL) | 0.018 | kg | |
Energy consumption | 0.0095 | kWh | ||
Scenario 2 | Spray Drying | Heat exchanger | 0.54 | kWh |
Aspirator motor and peristaltic pump | 4.84 | kWh | ||
Packaging | Ethylene–Vinyl–Alcohol (EVAL) | 0.018 | kg | |
Energy consumption | 0.0095 | kWh |
Category | Unit | Sc 1 | Sc 2 | Sc 3 | Sc 4 |
---|---|---|---|---|---|
CC | kg CO2 eq | 8.04 | 7.93 | 8.26 | 8.22 |
TA | kg SO2 eq | 0.07 | 0.08 | 0.07 | 0.09 |
HT | kg 1.4-DCB eq | 4.16 | 4.28 | 4.24 | 4.39 |
TET | kg 1.4-DCB eq | 15.24 | 16.45 | 15.57 | 16.90 |
IR | kBq U235 eq | 0.14 | 0.18 | 0.15 | 0.19 |
ALO | m2 × yr | 6.00 | 4.84 | 6.01 | 4.85 |
WD | m3 | 10.25 | 13.76 | 10.25 | 13.76 |
MD | kg Fe e | 0.01 | 0.02 | 0.01 | 0.02 |
FD | kg oil eq | 2.45 | 2.78 | 2.48 | 2.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado-Aristizabal, N.; Agudelo-Patiño, T.; Ospina-Corral, S.; Álvarez-Lanzarote, I.; Orrego, C.E. Environmental Life Cycle Analysis of Açaí (Euterpe oleracea) Powders Obtained via Two Drying Methods. Processes 2023, 11, 2290. https://doi.org/10.3390/pr11082290
Salgado-Aristizabal N, Agudelo-Patiño T, Ospina-Corral S, Álvarez-Lanzarote I, Orrego CE. Environmental Life Cycle Analysis of Açaí (Euterpe oleracea) Powders Obtained via Two Drying Methods. Processes. 2023; 11(8):2290. https://doi.org/10.3390/pr11082290
Chicago/Turabian StyleSalgado-Aristizabal, Natalia, Tatiana Agudelo-Patiño, Sebastian Ospina-Corral, Ignacio Álvarez-Lanzarote, and Carlos Eduardo Orrego. 2023. "Environmental Life Cycle Analysis of Açaí (Euterpe oleracea) Powders Obtained via Two Drying Methods" Processes 11, no. 8: 2290. https://doi.org/10.3390/pr11082290
APA StyleSalgado-Aristizabal, N., Agudelo-Patiño, T., Ospina-Corral, S., Álvarez-Lanzarote, I., & Orrego, C. E. (2023). Environmental Life Cycle Analysis of Açaí (Euterpe oleracea) Powders Obtained via Two Drying Methods. Processes, 11(8), 2290. https://doi.org/10.3390/pr11082290