Dyes and Heavy Metals Removal from Aqueous Solutions Using Raw and Modified Diatomite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Materials
2.3. Adsorption
3. Results and Discussion
3.1. Characterization of Samples
3.2. Adsorption Studies
3.2.1. Influence of the Adsorbent Nature
3.2.2. Influence of the Sorbent Quantity
3.2.3. Effect of the Pollutant Initial Concentration
3.2.4. Effect of the Temperature
3.3. Kinetic Studies
3.4. Equilibrium Studies
3.5. Thermodynamic Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flower, R.J. Diatomites: Their Formation, Distribution, and Uses. Diatom methods. In Encyclopedia of Quaternary Science, 2nd ed.; Scott, A.E., Cary, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 501–506. [Google Scholar] [CrossRef]
- Cameron, N.G.; Diatoms Scott, A.E.; Cary, J.M. (Eds.) Encyclopedia of Quaternary Science, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 522–525. ISBN 9780444536426. [Google Scholar]
- Ghobara, M.M.; Ghobara, M.M.; Ghobara, M.M.; Mohamed, A. Diatomite in use: Nature, modifications, commercial applications and prospective trends. In Diatoms: Fundamentals and Applications; Seckbach, J., Gordon, R., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2019; pp. 471–509. [Google Scholar]
- Fathy, N.A.; Mousa, S.M.; Aboelenin, R.M.; Sherief, M.A.; Abdelmoaty, A.S. Strengthening the surface and adsorption properties of diatomite for removal of Cr(VI) and methylene blue dye. Arab. J. Geosci. 2022, 15, 1664–1675. [Google Scholar] [CrossRef]
- Datsko, T.I.; Zelentsov, V.I. Effect of microstructure of modified diatomite on its adsorption properties. Chem. Phys. Technol. Surf. 2017, 8, 65–72. [Google Scholar]
- Tzvetkova, P.G.; Nickolov, R.N.; Tzvetkova, C.T.; Bozhkov, O.D.; Voykova, D.K. Diatomite/carbon adsorbent for phenol removal. J. Chem. Technol. Metall. 2016, 51, 202–209. [Google Scholar]
- Yang, X.; Zhang, Y.; Wang, L.; Cao, L.; Li, K.; Hursthouse, A. Preparation of a thermally modified diatomite and a removal mechanism for 1-naphthol from solution. Water 2017, 9, 651. [Google Scholar] [CrossRef]
- Sriram, G.; Kigga, M.; Uthappa, U.T.; Rego, R.M.; Thendral, V.; Kumeria, T.; Jung, H.Y.; Kurkuri, M.D. Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review. Adv. Colloid Interface Sci. 2020, 282, 102198. [Google Scholar] [CrossRef]
- Sogut, E.G.; Caliskan, N. Removal of lead, copper and cadmium ions from aqueous solution using raw and thermally modified diatomite. Desalination Water Treat. 2017, 58, 154–167. [Google Scholar] [CrossRef]
- Aguedal, H.; Iddou, A.; Aziz, A.; Merouani, D.R.; Bensaleh, F.; Bensadek, S. Removal of textile dye from industrial wastewater by natural and modified diatomite. WASET J. Fash. Technol. Text. Eng. 2016, 10, 1317–1320. [Google Scholar]
- Badawi, A.K.; Elkodous, M.A.; Ali, G.A.M. Recent advances in dye and metal ion removal using efficient adsorbents and novel nano-based materials: An overview. RSC Adv. 2021, 11, 36528–36553. [Google Scholar] [CrossRef]
- Muntean, S.G.; Todea, A.; Bakardjieva, S.; Bologa, C. Removal of non benzidine direct red dye from aqueous solution by using natural sorbents: Beech and silver fir. Desalination Water Treat. 2017, 66, 235–250. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Vo, D.V.N. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef]
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2015: Water for a Sustainable World; United Nations World Water Assessment Programme: Paris, France, 2015; ISBN 978-92-3-100071-3. [Google Scholar]
- National Research Council, Division on Earth and Life Studies, Commission on Geosciences, Environment and Resources, Committee. Review the New York City Watershed Management Strategy Watershed Management for Potable Water Supply: Assessing the New York City Strategy; National Academies Press: Washington, DC, USA, 2000; ISBN 0309067774/9780309067775. [Google Scholar]
- Alqadami, A.A.; Khan, M.A.; Otero, M.; Siddiqui, M.R.; Jeon, B.-H.; Batoo, K.M. A magnetic nanocomposite produced from camel bones for an efficient adsorption of toxic metals from water. J. Clean. Prod. 2018, 178, 293–304. [Google Scholar] [CrossRef]
- Saleh, T.S.; Badawi, A.K.; Salama, R.S.; Mostafa, M.M.M. Design and development of novel composites containing nickel ferrites supported on activated carbon derived from agricultural wastes and its application in water remediation. Materials 2023, 16, 2170. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater. Adv. 2021, 2, 4497–4531. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon 2019, 5, e02711. [Google Scholar] [CrossRef]
- Hadia-e-Fatima, A.A. Heavy metal pollution—A mini review. J. Bacteriol. Mycol. Open Access. 2018, 6, 179–181. [Google Scholar]
- Dey, S.; Nagababu, B.H. Applications of food color and bio-preservatives in the food and its effect on the human health. Food Chem. Adv. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Shubair, T.; Tahara, A.; Khandaker, S. Optimizing the magnetic separation of strontium ion using modified zeolite with nano iron particles. Case Stud. Chem. Environ. Eng. 2022, 6, 100243–100253. [Google Scholar] [CrossRef]
- Braga, M.; Jaimes, R.; Borysow, W.; Gomes, O.; Salcedo, W. Portable multispectral colorimeter for metallic ion detection and classification. Sensors 2017, 17, 1730. [Google Scholar] [CrossRef] [Green Version]
- Jawad, A.H.; Abdulhameed, A.S.; Kashi, E.; Yaseen, Z.M.; ALOthman, Z.A.; Khan, M.R. Cross-Linked chitosan-glyoxal/kaolin clay composite: Parametric optimization for color removal and COD reduction of Remazol Brilliant Blue dye. J. Polym. Environ. 2021, 30, 164–178. [Google Scholar] [CrossRef]
- Hussein, F.H. Chemical properties of treated textile dyeing wastewater. Asian J. Chem. 2013, 25, 9393–9400. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2018, 16, 1193–1226. [Google Scholar] [CrossRef] [Green Version]
- Inglethorpe, S.D.J. Industrial Minerals Laboratory Manual. In Diatomite; Technical report WG/92/39; Mineralogy and Petrology Series; British Geological Survey: Nottingham, UK, 1992. [Google Scholar]
- Al-Maliky, E.A.; Gzar, H.A.; Al-Azawy, M.G. Determination of point of zero charge (PZC) of concrete particles adsorbents. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1184, 012004. [Google Scholar] [CrossRef]
- Nasiruddin Khan, M.; Sarwar, A. Determination of points of zero charge of natural and treated adsorbents. Surf. Rev. Lett. 2007, 14, 461–469. [Google Scholar] [CrossRef]
- Muntean, S.G.; Nistor, M.A.; Ianoș, R.; Păcurariu, C.; Căpraru, A.; Surdu, V.-A. Combustion synthesis of Fe3O4/Ag/C nanocomposite and application for dyes removal from multicomponent systems. Appl. Surf. Sci. 2019, 481, 825–837. [Google Scholar] [CrossRef]
- Andelescu, A.; Nistor, M.A.; Muntean, S.G.; Rădulescu-Grad, M.E. Adsorption studies on copper, cadmium, and zinc ion removal from aqueous solution using magnetite/carbon nanocomposites. Sep. Sci. Technol. 2018, 53, 2352–2364. [Google Scholar] [CrossRef]
- Rusu, V.; Vrânceanu, A.; Polevoi, I. Composition of mineral phases of the Ghidirim diatomite. Chem. J. Mold. 2007, 2, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, D.; Şahan, T. Design and optimization of Cu(II) adsorption conditions from aqueous solutions by low-cost adsorbent pumice with Response Surface Methodology. Pol. J. Environ. Stud. 2015, 24, 1749–1756. [Google Scholar] [CrossRef]
- Medjdoubi, Z.; Hachemaoui, M.; Boukoussa, B.; Hakiki, A.; Bengueddach, A.; Hamacha, R. Adsorption behavior of Janus Green B dye on Algerian diatomite. Mater. Res. Express 2019, 6, 085544. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Kumar, A. Diatomite chemical activation for effective adsorption of methylene blue dye from model textile wastewater. Int. J. Environ. Sci. Dev. 2021, 12, 23–28. [Google Scholar] [CrossRef]
- El Sayed, E.E. Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study). Water Sci. 2018, 32, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Kubilay, Ş.; Gürkan, R.; Savran, A.; Sahan, T. Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption 2007, 13, 41–51. [Google Scholar] [CrossRef]
- Akafu, T.; Chimdi, A.; Gomoro, K. Removal of Fluoride from drinking water by sorption using diatomite modified with aluminum hydroxide. J. Anal. Chem. 2019, 2019, 4831926. [Google Scholar] [CrossRef] [Green Version]
- Muntean, S.G.; Simu, G.M.; Kurunczi, L.; Szabadai, Z. Investigation of the aggregation of three disazo direct dyes by UV-Vis spectroscopy and mathematical analysis. Rev. Chim. 2009, 60, 152–155. [Google Scholar]
- Bilgin, M.; Tulun, Ș. Use of diatomite for the removal of lead ions from water: Thermodynamics and kinetics. Biotechnol. Biotechnol. Equip. 2015, 29, 696–704. [Google Scholar] [CrossRef] [Green Version]
- Flores-Cano, J.V.; Leyva-Ramos, R.; Padilla-Ortega, E.; Mendoza-Barron, J. Adsorption of heavy metals on diatomite: Mechanism and effect of operating variables. Adsorp. Sci. Technol. 2013, 31, 275–291. [Google Scholar] [CrossRef]
- Huang, L.; Wang, L.; Gong, L.; Xie, Q.; Chen, N. Preparation, characterization and adsorption characteristics of diatom-based Cd(II) surface ion-imprinted polymer. J. Dispers. Sci. Technol. 2022, 43, 1321–1332. [Google Scholar] [CrossRef]
- Koyuncu, M.; Kul, A.R. Thermodynamics and adsorption studies of dye (rhodamine-b) onto natural diatomite. Physicochem. Probl. Miner. Process. 2014, 50, 631–643. [Google Scholar]
- Lagergreen, S. About the theory of so-called adsorption of soluble substances. Vetenskapsakad Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process. Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Sarı, A.; Çıtak, D.; Tuzen, M. Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite. Chem. Eng. J. 2010, 162, 521–527. [Google Scholar] [CrossRef]
- Yusan, S.; Gok, C.; Erenturk, S.; Aytas, S. Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: Evaluation of equilibrium, kinetic and thermodynamic data. Appl. Clay Sci. 2012, 67-68, 106–116. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, J.; Shi, H.; Li, N.; Ping, Q. Adsorption of Malachite Green by diatomite: Equilibrium isotherms and kinetic studies. J. Dispers. Sci. Technol. 2015, 37, 1059–1066. [Google Scholar] [CrossRef]
- Beltrán, J.L.; Pignatello, J.J.; Teixidó, M. ISOT_Calc: A versatile tool for parameter estimation in sorption isotherms. Comput. Geosci. 2016, 94, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Erdem, E.; Çölgeçen, G.; Donat, R. The removal of textile dyes by diatomite earth. J. Colloid Interface Sci. 2005, 282, 314–319. [Google Scholar] [CrossRef]
- Lin, J.X.; Wang, L. Adsorption of dyes using magnesium hydroxide-modified diatomite. Desalination Water Treat. 2009, 8, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Ajenifuja, E.; Ajao, J.A.; Ajayi, E.O.B. Adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on photocatalytically modified diatomaceous ceramic adsorbents. Appl. Water Sci. 2017, 7, 3793–3801. [Google Scholar] [CrossRef] [Green Version]
- Bello, O.S.; Adegoke, K.A.; Oyewole, R.O. Insights into the adsorption of heavy metals from wastewater using diatomaceous earth. Sep. Sci. Technol. 2014, 49, 1787–1806. [Google Scholar] [CrossRef]
- Salman, T.; Temel, F.A.; Turan, N.G.; Ardali, Y. Adsorption of lead (II) ions onto diatomite from aqueous solutions: Mechanism, isotherm and kinetic studies. Glob. Nest J. 2016, 18, 1–18. [Google Scholar]
- Dalagan, J.Q.; Ibale, R.A. Adsorption behavior of heavy metal ions (Cr3+, Pb2+ and Cu2+) into magnetite-graphite oxide-diatomite. Asia Pac. High. Educ. Res. J. 2016, 3, 114–121. [Google Scholar]
- Pookmanee, P.; Thippraphan, P.; Phanichphant, S. Removal of heavy metals from aqueous solution by natural and modified diatomite. J. Microsc. Soc. Thail. 2011, 4, 103–107. [Google Scholar]
- Al-Ghouti, M.; Khraisheh, M.A.M.; Ahmad, M.N.M.; Allen, S. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A kinetic study. J. Colloid Interf. Sci. 2005, 287, 6–13. [Google Scholar] [CrossRef]
- Zhang, J.; Ping, Q.; Niu, M.; Shi, H.; Li, N. Kinetics and equilibrium studies from the methylene blue adsorption on diatomite treated with sodium hydroxide. Appl. Clay Sci. 2013, 83–84, 12–16. [Google Scholar] [CrossRef]
- Rusu, V.; Lupascu, T. Chemistry of sediments of aquatic systems. Surface properties. Physico-Chemical Models. Chisinau, ElenaV.I. 2004; 272p, ISBN 9975-9750-3-8. (In Romanian) [Google Scholar]
Metal | The Maximum Limit Allowed by WHO (mg/L) | Potential Health Effects |
---|---|---|
Zinc | 3–5 | lethargy, anemia, dizziness, abdominal pain, vomiting, skin irritations |
Cooper | 1.5–2 | kidney and liver damage; allergic contact dermatitis |
Lead | 0.05 | affects kidney function, the nervous, immune, reproductive and the cardiovascular systems. Lead exposure also affects the oxygen carrying capacity of the blood. |
Sample | Total Pore Volume (cm3/g) | Specific Surface Area (m2/g) | Pore Width (nm) |
---|---|---|---|
D1 | 0.080 | 36 | 5.7 |
D2 | 0.087 | 47 | 2.4 |
Pollutant | C0 (mg/L) | qe,exp (mg/g) | Pseudo First-Order Kinetic Model | Pseudo Second-Order Kinetic Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
qe,calc (mg/g) | k1·103 (min−1) | R2 | SD | qe,calc (mg/g) | k2·104 (g/mg·min) | R2 | SD | |||
AB | 10 | 6.97 | 8.94 | 25.15 | 0.9815 | 0.1104 | 7.46 | 25.17 | 0.9861 | 1.1026 |
30 | 19.86 | 30.67 | 10.64 | 0.9048 | 0.1102 | 21.39 | 2.53 | 0.9728 | 0.4309 | |
50 | 32.10 | 52.89 | 26.51 | 0.8751 | 0.1999 | 37.67 | 4.29 | 0.9317 | 0.7849 | |
100 | 61.47 | 101.89 | 21.44 | 0.8327 | 0.2678 | 95.01 | 0.74 | 0.8486 | 0.2873 | |
MB | 10 | 8.41 | 14.55 | 23.84 | 0.8233 | 0.3615 | 10.22 | 19.37 | 0.9913 | 0.7092 |
30 | 21.55 | 40.24 | 26.51 | 0.8179 | 0.3483 | 29.98 | 4.59 | 0.9553 | 0.5453 | |
50 | 33.16 | 50.38 | 24.89 | 0.8509 | 0.1576 | 48.15 | 2.37 | 0.9267 | 0.4418 | |
100 | 64.04 | 132.46 | 28.19 | 0.7927 | 0.4015 | 113.12 | 0.59 | 0.8983 | 0.2249 | |
RB2 | 10 | 6.40 | 7.73 | 15.52 | 0.9729 | 0.0847 | 6.59 | 29.67 | 0.9927 | 0.7852 |
30 | 17.43 | 20.96 | 16.08 | 0.8941 | 0.1542 | 17.81 | 8.91 | 0.9799 | 0.1308 | |
50 | 26.38 | 34.99 | 21.58 | 0.9631 | 0.0839 | 32.09 | 4.32 | 0.9811 | 0.1484 | |
100 | 40.51 | 69.78 | 18.52 | 0.9307 | 0.1847 | 67.11 | 1.04 | 0.9422 | 0.2683 | |
Cu(II) | 10 | 8.30 | 6.42 | 26.22 | 0.9444 | 0.1976 | 8.64 | 9.22 | 0.9795 | 1.1643 |
30 | 21.35 | 15.46 | 18.58 | 0.8577 | 0.1465 | 24.25 | 4.22 | 0.9845 | 1.0976 | |
50 | 30.58 | 54.24 | 27.11 | 0.7245 | 0.1987 | 37.45 | 2.66 | 0.9943 | 1.4064 | |
100 | 44.69 | 66.45 | 22.65 | 0.8456 | 0.1866 | 50.16 | 1.87 | 0.9766 | 1.0876 | |
Zn(II) | 10 | 8.04 | 15.51 | 18.44 | 0.9444 | 0.1875 | 11.25 | 20.44 | 0.9854 | 1.9431 |
30 | 19.67 | 28.65 | 20.48 | 0.9254 | 0.2676 | 25.41 | 11.33 | 0.9866 | 1.1143 | |
50 | 25.52 | 32.64 | 22.52 | 0.8644 | 0.1632 | 30.52 | 6.44 | 0.9912 | 2.2876 | |
100 | 39.52 | 45.87 | 25,87 | 0.7866 | 0.1876 | 41.87 | 4.87 | 0.9765 | 1.9876 | |
Pb(II) | 10 | 8.27 | 20.45 | 26.36 | 0.9111 | 0.8232 | 14.52 | 9.57 | 0.9855 | 1.4340 |
30 | 20.73 | 38.45 | 29.58 | 0.8755 | 0.1908 | 30.25 | 6.89 | 0.9914 | 2.1187 | |
50 | 28.15 | 49.81 | 18.55 | 0.8544 | 0.1254 | 31.42 | 2.21 | 0.9899 | 1.3982 | |
100 | 42.15 | 50.77 | 19.52 | 0.8654 | 0.1678 | 45.88 | 1.11 | 0.9815 | 1.2133 |
Pollutant | C0 (mg/L) | qe,exp (mg/g) | Pseudo First-Order Kinetic Model | Pseudo Second-Order Kinetic Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
qe,calc (mg/g) | k1·103 (min−1) | R2 | SD | qe,calc (mg/g) | k2·104 (g/mg·min) | R2 | SD | |||
AB | 10 | 6.57 | 7.36 | 15.41 | 0.8461 | 0.1453 | 6.43 | 24.13 | 0.9829 | 1.3821 |
30 | 16.88 | 26.61 | 16.56 | 0.9322 | 0.0783 | 18.00 | 3.50 | 0.9665 | 0.6133 | |
50 | 27.21 | 39.03 | 15.41 | 0.9185 | 0.0849 | 31.62 | 1.96 | 0.9622 | 0.5165 | |
100 | 47.42 | 49.02 | 22.45 | 0.9214 | 0.1827 | 48.99 | 0.96 | 0.9833 | 0.1823 | |
MB | 10 | 9.69 | 68.19 | 0.49 | 0.7027 | 0.0117 | 10.79 | 31.90 | 0.9899 | 0.7221 |
30 | 24.43 | 12.91 | 16.79 | 0.9230 | 0.1359 | 25.50 | 29.19 | 0.9989 | 0.0945 | |
50 | 38.43 | 45.71 | 16.93 | 0.8568 | 0.1926 | 39.27 | 4.45 | 0.9548 | 0.3626 | |
100 | 71.99 | 134.71 | 24.99 | 0.8879 | 0.24725 | 96.99 | 1.43 | 0.9834 | 0.3660 | |
RB2 | 10 | 8.22 | 8.16 | 17.20 | 0.9568 | 0.1197 | 9.64 | 28.73 | 0.9879 | 0.7852 |
30 | 24.31 | 28.65 | 23.58 | 0.9827 | 0.0872 | 28.38 | 9.39 | 0.9975 | 0.1308 | |
50 | 35.19 | 28.34 | 20.24 | 0.9631 | 0.1104 | 39.91 | 8.73 | 0.9939 | 0.1481 | |
100 | 60.58 | 69.95 | 20.70 | 0.7894 | 0.2978 | 67.78 | 3.39 | 0.9422 | 0.2683 | |
Cu(II) | 10 | 8.99 | 7.15 | 24.46 | 0.8462 | 0.7648 | 9.05 | 13.75 | 0.9915 | 2.2474 |
30 | 23.94 | 42.46 | 14.58 | 0.8111 | 0.5864 | 29.41 | 10.56 | 0.9788 | 1.1587 | |
50 | 32.69 | 62.24 | 27.54 | 0.7844 | 0.4300 | 38.52 | 8.55 | 0.9854 | 1.4135 | |
100 | 42.69 | 71.45 | 26.76 | 0.8543 | 0.1876 | 46.98 | 6.88 | 0.9755 | 1.1643 | |
Zn(II) | 10 | 8.54 | 21.25 | 15.64 | 0.8954 | 0.8534 | 14.11 | 22.35 | 0.9955 | 3.1143 |
30 | 21.09 | 34.25 | 1.88 | 0.8255 | 0.7643 | 27.21 | 15.64 | 0.9911 | 2.1554 | |
50 | 29.44 | 35.84 | 24.15 | 0.7888 | 0.5432 | 32.46 | 8.02 | 0.9855 | 1.2133 | |
100 | 42.44 | 55.65 | 19.66 | 0.7765 | 0.5014 | 44.33 | 6.22 | 0.9812 | 1.3971 | |
Pb(II) | 10 | 8.75 | 24.15 | 22.46 | 0.9142 | 0.8549 | 17.78 | 11.51 | 0.9945 | 2.0643 |
30 | 22.28 | 40.25 | 24.58 | 0.8865 | 0.7876 | 33.52 | 9.65 | 0.9965 | 2.1199 | |
50 | 30.96 | 52.45 | 28.65 | 0.8145 | 0.4256 | 40.66 | 5.21 | 0.9845 | 1.1334 | |
100 | 45.32 | 61.87 | 26.44 | 0.7855 | 0.5672 | 48.66 | 3.66 | 0.9822 | 1.2131 |
Pollutant | Adsorbent | Freundlich | Langmuir | ||||||
---|---|---|---|---|---|---|---|---|---|
KF (mg/g(mg/L)1/n) | n | R2 | Chi2 | qm (mg/g) | KL (L/mg) | R2 | Chi2 | ||
AB | D1 | 5.68 | 1.64 | 0.9769 | 38.42 | 152.66 | 0.016 | 0.9967 | 5.50 |
D2 | 4.69 | 1.85 | 0.9638 | 26.90 | 92.76 | 0.018 | 0.9935 | 4.85 | |
MB | D1 | 9.69 | 2.09 | 0.9644 | 50.27 | 116.51 | 0.030 | 0.9871 | 18.20 |
D2 | 12.68 | 2.06 | 0.9843 | 34.71 | 148.95 | 0.031 | 0.9885 | 25.34 | |
RB2 | D1 | 4.75 | 1.92 | 0.9909 | 5.46 | 81.67 | 0.019 | 0.9931 | 4.16 |
D2 | 8.95 | 1.94 | 0.9797 | 32.75 | 131.33 | 0.026 | 0.9955 | 7.35 | |
Cu(II) | D1 | 11.03 | 3.14 | 0.9445 | 22.27 | 55.86 | 0.07 | 0.9945 | 2.19 |
D2 | 13.63 | 3.36 | 0.9612 | 18.74 | 58.87 | 0.0949 | 0.9734 | 12.82 | |
Zn(II) | D1 | 9.16 | 3.09 | 0.9512 | 14.19 | 49.13 | 0.05 | 0.9732 | 7.79 |
D2 | 11.03 | 3.26 | 0.9564 | 14.98 | 52.15 | 0.0735 | 0.9841 | 5.48 | |
Pb(II) | D1 | 9.91 | 3.02 | 0.9638 | 13.04 | 53.92 | 0.06 | 0.9825 | 6.28 |
D2 | 11.79 | 3.18 | 0.9692 | 13.18 | 57.09 | 0.0754 | 0.9799 | 8.57 |
Pollutant | Adsorbent | qt (mg/g) | Reference |
---|---|---|---|
Orange Bezaktiv (SRL-150) | diatomite | 14.23 | [10] |
Janus Green B | Algerian diatomite | 39.89 | [37] |
Rhodamine-B | diatomite | 10.21 | [46] |
Sıf Blau BRF | diatomite earth samples | 10.11 | [53] |
Everzol Brill Red 3BS | 5.92 | ||
Int Yellow 5GF | 117.75 | ||
Methylene Blue | diatomite | 72 | [38] |
modified diatomite | 127 | ||
diatomite | 66.7 | [4] | |
diatomite | 47.7 | [54] | |
Mg(OH)2-modified diatomite | 41.5 | ||
Ramazol Golden Yellow | diatomite | 8.06 | |
Mg(OH)2-modified diatomite | 53.70 | ||
Telon Blue | diatomite | 109.00 | |
Mg(OH)2-modified diatomite | 173.90 | ||
Acid Blue 350 | diatomite | 152.66 | Present paper |
modified diatomite | 92.76 | ||
Methylene Blue | diatomite | 116.51 | |
modified diatomite | 148.95 | ||
Basic Red 2 | diatomite | 81.67 | |
modified diatomite | 131.33 | ||
Cd(II) | novel diatom-based Cd(II) ion-imprinted polymer | 5.502 | [45] |
Co(II) | modified diatomaceous ceramic | 31.29 | [55] |
Pb(II) | diatomite | 56.49 | [43] |
diatomite | 66.28 | [56] | |
diatomite | 26.00 | [57] | |
Cu(II) | modified diatomaceous ceramic | 121.80 | [55] |
Punice | 1.43 | [36] | |
Cr(II) | Mag-GO-diatomite | 0.0622 | [58] |
diatomite | 167.00 | [4] | |
Cu(II) | Mag-GO-diatomite | 0.0268 | [58] |
Pb(II) | 113.50 | ||
Cu(II) | modified diatomite | 11.40 | [59] |
Cd(II) | 5.41 | ||
Zn(II) | 7.22 | ||
Cu(II) | diatomite | 55.86 | Present paper |
modified diatomite | 58.87 | ||
Pb(II) | diatomite | 49.13 | |
modified diatomite | 52.15 | ||
Zn(II) | diatomite | 53.92 | |
modified diatomite | 57.09 |
Pollutant | Temperature (K) | ΔG0 (kJ/mol) | ΔH0 (kJ/mol) | ΔS0 (J/mol·K) |
---|---|---|---|---|
AB | 298 | −15.53 | 6.66 | 74.51 |
318 | −17.05 | |||
338 | −18.53 | |||
MB | 298 | −15.48 | 12.13 | 92.08 |
318 | −16.73 | |||
338 | −19.26 | |||
RB2 | 298 | −14.65 | 17.52 | 107.73 |
318 | −16.58 | |||
338 | −19.01 | |||
Cu(II) | 298 | −18.36 | 7.71 | 87.55 |
318 | −20.18 | |||
338 | −21.86 | |||
Zn(II) | 298 | −18.18 | 6.41 | 82.53 |
318 | −19.79 | |||
338 | −21.50 | |||
Pb(II) | 298 | −18.24 | 7.07 | 84.96 |
318 | −19.96 | |||
338 | −21.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muntean, S.G.; Nistor, M.A.; Nastas, R.; Petuhov, O. Dyes and Heavy Metals Removal from Aqueous Solutions Using Raw and Modified Diatomite. Processes 2023, 11, 2245. https://doi.org/10.3390/pr11082245
Muntean SG, Nistor MA, Nastas R, Petuhov O. Dyes and Heavy Metals Removal from Aqueous Solutions Using Raw and Modified Diatomite. Processes. 2023; 11(8):2245. https://doi.org/10.3390/pr11082245
Chicago/Turabian StyleMuntean, Simona Gabriela, Maria Andreea Nistor, Raisa Nastas, and Oleg Petuhov. 2023. "Dyes and Heavy Metals Removal from Aqueous Solutions Using Raw and Modified Diatomite" Processes 11, no. 8: 2245. https://doi.org/10.3390/pr11082245
APA StyleMuntean, S. G., Nistor, M. A., Nastas, R., & Petuhov, O. (2023). Dyes and Heavy Metals Removal from Aqueous Solutions Using Raw and Modified Diatomite. Processes, 11(8), 2245. https://doi.org/10.3390/pr11082245