Fabricating Porous Carbon Materials by One-Step Hydrothermal Carbonization of Glucose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HTC Experiments
2.3. Characterizations of Hydrochar
2.4. Adsorption Experiment
2.5. Adsorbent Regeneration Experiment
3. Results and Discussion
3.1. Hydrochar Yields and Distribution of Organic Carbon between Hydrochar and Process Water
3.2. Hydrothermal Carbon Morphologies
3.3. The Textural Properties of Hydrothermal Carbon
3.4. FTIR Analysis
3.5. Zeta Potential
3.6. MB Adsorption Isotherms
3.6.1. Adsorption Kinetics Study
3.6.2. Adsorption Equilibrium Isotherms Study
3.7. Effect of Solution pH
3.8. Adsorbent Regeneration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hao, S.; Zhang, Q.; Shi, Y.; Guo, Q.; Li, P.; Huang, J. Preparation and characterization of the poplar micro-nano cellulose sustainable carbon spheres. Biomass Convers. Biorefinery 2022, 12, 1–14. [Google Scholar] [CrossRef]
- Yang, D.P.; Li, Z.; Liu, M.; Zhang, X.; Chen, Y.; Xue, H.; Ye, E.; Luque, R. Biomass-Derived Carbonaceous Materials: Recent Progress in Synthetic Approaches, Advantages, and Applications. ACS Sustain. Chem. Eng. 2019, 7, 4564–4585. [Google Scholar] [CrossRef]
- Lubura, J.; Kobera, L.; Abbrent, S.; Pavlova, E.; Strachota, B.; Bera, O.; Pavličević, J.; Ikonić, B.; Kojić, P.; Strachota, A. Natural Rubber Composites Using Hydrothermally Carbonized Hardwood Waste Biomass as a Partial Reinforcing Filler- Part I: Structure, Morphology, and Rheological Effects during Vulcanization. Polymers 2023, 15, 1176. [Google Scholar] [CrossRef]
- Khan, T.A.; Kim, H.J.; Gupta, A.; Jamari, S.S.; Jose, R. Synthesis and characterization of carbon microspheres from rubber wood by hydrothermal carbonization. J. Chem. Technol. Biotechnol. 2018, 94, 1374–1383. [Google Scholar] [CrossRef]
- Poerschmann, J.; Weiner, B.; Koehler, R.; Kopinke, F.D. Hydrothermal Carbonization of Glucose, Fructose, and Xylose—Identification of Organic Products with Medium Molecular Masses. ACS Sustain. Chem. Eng. 2017, 5, 6420–6428. [Google Scholar] [CrossRef]
- He, Q.; Yu, Y.; Wang, J.; Suo, X.; Liu, Y. Kinetic Study of the Hydrothermal Carbonization Reaction of Glucose and Its Product Structures. Ind. Eng. Chem. Res. 2021, 60, 4552–4561. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 2009, 15, 4195–4203. [Google Scholar] [CrossRef]
- Shi, N.; Liu, Q.; Liu, Y.; Chen, L.; Chen, N.; Peng, J.; Ma, L. Formation of Soluble Furanic and Carbocyclic Oxy-Organics during the Hydrothermal Carbonization of Glucose. Energy Fuels 2020, 34, 1830–1840. [Google Scholar] [CrossRef]
- Yao, C.; Shin, Y.; Wang, L.Q.; Windisch, C.F.; Samuels, W.D.; Arey, B.W.; Wang, C.; Risen, W.M.; Exarhos, G.J. Hydrothermal dehydration of aqueous fructose solutions in a closed system. J. Phys. Chem. C 2007, 111, 15141–15145. [Google Scholar] [CrossRef]
- Mi, Y.; Hu, W.; Dan, Y.; Liu, Y. Synthesis of carbon micro-spheres by a glucose hydrothermal method. Mater. Lett. 2008, 62, 1194–1196. [Google Scholar] [CrossRef]
- Tooming, T.; Thomberg, T.; Romann, T.; Palm, R.; Jänes, A.; Lust, E. Carbon materials for supercapacitor application by hydrothermal carbonization of D-glucose. IOP Conf. Ser. Mater. Sci. Eng. 2013, 49, 012020. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Xu, H.; Gao, Y.; Zhang, X. Preparation and characterization of hydrochar-derived activated carbon from glucose by hydrothermal carbonization. Biomass Convers. Biorefinery 2021, 13, 3785–3796. [Google Scholar] [CrossRef]
- Jiang, G.H.; Xu, X.Q.; Xu, G. Synthesis of Colloidal Carbon Spheres by Hydrothermal Carbonization of Glucose at Different Initial pH. Mater. Sci. Forum 2011, 685, 123–129. [Google Scholar] [CrossRef]
- Reiche, S.; Kowalew, N.; Schlogl, R. Influence of synthesis pH and oxidative strength of the catalyzing acid on the morphology and chemical structure of hydrothermal carbon. ChemPhysChem 2015, 16, 579–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefin. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, W.; Rao, P.; Wang, R. Nonylphenol ethoxylate-assisted hydrothermal preparation of carbon adsorbent from phenolic waste liquid. Desalin. Water Treat. 2020, 175, 108–114. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, W.; Xue, G.; Rao, P.; Wang, R. Treatment of distillation residue waste liquid from NPEOs by hydrothermal carbonization process for resource recovery. Desalin. Water Treat. 2018, 125, 26–31. [Google Scholar] [CrossRef]
- Titirici, M.M.; Thomas, A.; Antonietti, M. Replication and Coating of Silica Templates by Hydrothermal Carbonization. Adv. Funct. Mater. 2007, 17, 1010–1018. [Google Scholar] [CrossRef]
- Falco, C.; Baccile, N.; Titirici, M.M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem. 2011, 13, 3273–3281. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, W.; Liu, S. Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydr. Res. 2011, 346, 999–1004. [Google Scholar] [CrossRef]
- Chandrasekar, R.; Rajendran, H.K.; Priyan, V.V.; Narayanasamy, S. Valorization of sawdust by mineral acid assisted hydro-thermal carbonization for the adsorptive removal of bisphenol A: A greener approach. Chemosphere 2022, 303, 135171. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ma, X.; Peng, X.; Lin, Y.; Yao, Z. Conversion of sweet potato waste to solid fuel via hydrothermal carbonization. Bioresour. Technol. 2018, 249, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, Y.; Zhang, J. Effect of Solution pH on the Carbon Microsphere Synthesized by Hydrothermal Carbonization. Procedia Environ. Sci. 2011, 11, 1322–1327. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Zhang, H.; Sheng, K. Mustafa AM and Yu Y, Evaluation of engineered hydrochar from KMnO4 treated bamboo res-idues: Physicochemical properties, hygroscopic dynamics, and morphology. Bioresour. Technol. 2018, 250, 806–811. [Google Scholar] [CrossRef]
- Indran, S.; Raj, R.E. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydr. Polym. 2015, 117, 392–399. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.; Park, K.Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014, 130, 120–125. [Google Scholar] [CrossRef]
- Zhang, S.; Sheng, K.; Yan, W.; Liu, J.; Shuang, E.; Yang, M.; Zhang, X. Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization. Chemosphere 2021, 263, 128093. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Chen, L.; Huang, X. Monodispersed hard carbon spherules with uniform nanopores. Carbon 2001, 39, 2211–2214. [Google Scholar] [CrossRef]
- Krishnan, D.; Raidongia, K.; Shao, J.; Huang, J. Graphene Oxide Assisted Hydrothermal Carbonization of Carbon Hydrates. ACS Nano 2014, 8, 449–457. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, M.; Qi, L.; Qi, Y. Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization. RSC Adv. 2013, 6, 20814–20823. [Google Scholar] [CrossRef]
- Sun, X.; Li, Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Lian, L.; Jiang, X.; Lv, J.; Bai, F.; Zhu, B.; Lou, D. Fabrication of glucose-derived carbon-decorated magnetic microspheres for extraction of bisphenols from water and tea drinks. J. Sep. Sci. 2019, 42, 3451–3458. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Lian, Y.; Yan, L.; Smith, R.L. One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of glucose for cellulose hydrolysis. Catal. Commun. 2014, 57, 50–54. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, C.; Tang, C.; Wang, Y. Morphological Control of Biochar with Emerging Functionalities by Thermodynamic and Kinetic Approaches. Acc. Mater. Res. 2022, 3, 525–539. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Wang, Y.; Srinivasakannan, C.; Wang, H.; Xue, G.; Wang, L.; Wang, X.; Duan, X. Preparation of novel biochar containing graphene from waste bamboo with high methylene blue adsorption capacity. Diam. Relat. Mater. 2022, 125, 109034. [Google Scholar] [CrossRef]
- Elaigwu, S.E.; Greenway, G.M. Chemical, structural and energy properties of hydrochars from microwave-assisted hydrothermal carbonization of glucose. Int. J. Ind. Chem. 2016, 7, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Titirici, M.M.; Antonietti, M.; Baccile, N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem. 2008, 10, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Liang, F.; Wang, J.; Zhang, H.; Zhang, S. Preparation of mono-dispersed carbonaceous spheres via a hydrothermal process. Adv. Powder Technol. 2017, 28, 2648–2657. [Google Scholar] [CrossRef]
- Kang, S.; Li, X.; Fan, J.; Chang, J. Characterization of Hydrochars Produced by Hydrothermal Carbonization of Lignin, Cellulose, d-Xylose, and Wood Meal. Ind. Eng. Chem. Res. 2012, 51, 9023–9031. [Google Scholar] [CrossRef]
- Aydıncak, K.; Yumak, T.; Sınağ, A.; Esen, B. Synthesis and Characterization of Carbonaceous Materials from Saccharides (Glucose and Lactose) and Two Waste Biomasses by Hydrothermal Carbonization. Ind. Eng. Chem. Res. 2012, 51, 9145–9152. [Google Scholar] [CrossRef]
- Demir-Cakan, R.; Baccile, N.; Antonietti, M.; Titirici, M.M. Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chem. Mater. 2009, 21, 484–490. [Google Scholar] [CrossRef]
- Mosa, J.; Durán, A.; Aparicio, M. Sulfonic acid-functionalized hybrid organic–inorganic proton exchange membranes synthesized by sol–gel using 3-mercaptopropyl trimethoxysilane (MPTMS). J. Power Sources 2015, 297, 208–216. [Google Scholar] [CrossRef]
- Liu, X.J.; Li, M.F.; Ma, J.F.; Bian, J.; Peng, F. Chitosan crosslinked composite based on corncob lignin biochar to adsorb methylene blue: Kinetics, isotherm, and thermodynamics. Colloids Surf. A 2022, 642, 128621. [Google Scholar] [CrossRef]
- Patra, C.; Shahnaz, T.; Subbiah, S.; Narayanasamy, S. Comparative assessment of raw and acid-activated preparations of novel Pongamia pinnata shells for adsorption of hexavalent chromium from simulated wastewater. Environ. Sci. Pollut. Res. 2020, 27, 14836–14851. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, W.; Lu, M.; Shao, Z.; Huang, W.; Li, J.; Li, Y.; Mo, J.; Li, Y.; Chen, C. Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol. Carbon 2020, 167, 351–363. [Google Scholar] [CrossRef]
- Zubrik, A.; Matik, M.; Hredzák, S.; Lovás, M.; Danková, Z.; Kováčová, M.; Briančin, J. Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J. Clean. Prod. 2017, 143, 643–653. [Google Scholar] [CrossRef]
- Liu, L.; Lin, Y.; Liu, Y.; Zhu, H.; He, Q.; Data, E. Removal of methylene blue from aqueous solutions by sewage sludge based granular activated carbon: Adsorption equilibrium, kinetics, and thermodynamics. J. Chem. Eng. Data 2013, 58, 2248–2253. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Dhedan, S.K. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilibria 2012, 317, 9–14. [Google Scholar] [CrossRef]
- Liu, X.J.; Li, M.F.; Singh, S.K. Manganese-modified lignin biochar as adsorbent for removal of methylene blue. J. Mater. Res. Technol. 2021, 12, 1434–1445. [Google Scholar] [CrossRef]
- Pak, S.; Ahn, J.; Kim, H. Synthesis of Saccharide-based Hydrochar with Macroporous Structure for Effective Organic Pollutant Removal. Fibers Polym. 2022, 23, 1789–1796. [Google Scholar] [CrossRef]
- Hessien, M. Microwave-Assisted Hydrothermal Carbonization of Pomegranate Peels into Hydrochar for Environmental Applications. Energies 2022, 15, 3629. [Google Scholar] [CrossRef]
- Grassi, P.; Lunardi, P.; Foletto, E.L.; Dotto, G.L.; Lima, E.C.; Jahn, S.L. Production of sugar-derived carbons by different routes and their applications for dye removal in water. Chem. Eng. Res. Des. 2022, 182, 237–245. [Google Scholar] [CrossRef]
- Liang, C.; Shi, Q.; Feng, J.; Yao, J.; Huang, H.; Xie, X. Adsorption Behaviors of Cationic Methylene Blue and Anionic Reactive Blue 19 Dyes onto Nano-Carbon Adsorbent Carbonized from Small Precursors. Nanomaterials 2022, 12, 1814. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Wu, D.; Xiao, P. Synthesis of chitosan-glutaraldehyde/activated carbon composite for methylene blue adsorption: Optimization and mechanisms. Desalin. Water Treat. 2022, 270, 275–288. [Google Scholar] [CrossRef]
- Wang, B.; Li, C.; Liang, H. Bioleaching of heavy metal from woody biochar using Acidithiobacillus ferrooxidans and activation for adsorption. Bioresour. Technol. 2013, 146, 803–806. [Google Scholar] [CrossRef]
Sample | Sulfuric Acid (mL) | Elemental Composition (wt%) | |||||
---|---|---|---|---|---|---|---|
C | H | O | S | O/C | H/C | ||
H-G0 | 0 | 63.15 | 4.58 | 31.82 | -- | 0.50 | 0.07 |
H-G1 | 1 | 66.56 | 4.90 | 28.22 | 0.15 | 0.42 | 0.07 |
H-G3 | 3 | 66.77 | 5.07 | 27.44 | 0.54 | 0.41 | 0.08 |
H-G6 | 6 | 63.94 | 4.75 | 29.82 | 1.27 | 0.46 | 0.07 |
H-G9 | 9 | 60.93 | 4.08 | 31.98 | 2.85 | 0.52 | 0.07 |
Sample | SBET (m2 g−1) a | VP (cm3 g−1) b | DP (nm) c |
---|---|---|---|
H-G0 | 2.01 | 0.002899 | 12.66 |
H-G1 | 0.94 | 0.001464 | 14.86 |
H-G3 | 2.45 | 0.003334 | 14.75 |
H-G6 | 19.49 | 0.028130 | 18.38 |
H-G9 | 296.71 | 0.237274 | 4.63 |
Adsorbent | Pseudo-First Order Kinetic Model | Pseudo-Second Order Kinetic Model | ||||
---|---|---|---|---|---|---|
k1 (min−1) | Qe (mg g−1) | R2 | k2 (g mg−1 min−1) | Qe (mg g−1) | R2 | |
H-G9 | 0.0582 | 231.38 | 0.9863 | 5.6882 | 216.71 | 0.8471 |
AC | 0.1419 | 191.92 | 0.9991 | 1.5711 | 189.58 | 0.9856 |
Adsorbent | Langmuir Isotherm Model | Freundlich Isotherm Model | ||||
---|---|---|---|---|---|---|
Qm (mg g−1) | KL (L mg−1) | R2 | KF | n | R2 | |
H-G9 | 332.46 | 2.2146 | 0.9682 | 267.31 | 5.5279 | 0.9880 |
AC | 259.37 | 1.8172 | 0.9379 | 215.56 | 9.7628 | 0.9944 |
Adsorbent | Qm (mg g−1) | References |
---|---|---|
Lignin derived carbon-based | 234.65 | Liu et al. (2021) [50] |
Glucose-based hydrochar | 179.8 | Pak et al. (2022) [51] |
Hydrochar from Pomegranate Peels | 194.9 | Hessien et al. (2022) [52] |
The carbon sample prepared with FeCl3 and KOH | 248.9 | Grassi et al. (2022) [53] |
Nano-carbon material (N-CM) adsorbent | 120.77 | Liang et al. (2022) [54] |
The chitosan-glutaraldehyde/activated carbon | 300.75 | Cao et al. (2022) [55] |
Glucose-based porous carbon material | 332.46 | The present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Z.; Zhang, W.; Yu, X. Fabricating Porous Carbon Materials by One-Step Hydrothermal Carbonization of Glucose. Processes 2023, 11, 1923. https://doi.org/10.3390/pr11071923
Yao Z, Zhang W, Yu X. Fabricating Porous Carbon Materials by One-Step Hydrothermal Carbonization of Glucose. Processes. 2023; 11(7):1923. https://doi.org/10.3390/pr11071923
Chicago/Turabian StyleYao, Ziyun, Wenqi Zhang, and Xinying Yu. 2023. "Fabricating Porous Carbon Materials by One-Step Hydrothermal Carbonization of Glucose" Processes 11, no. 7: 1923. https://doi.org/10.3390/pr11071923