Thermal and Crystallization Properties of a Polyhydroxyalkanoate Binary Copolymer Containing 3-Hydroxybutyrate and 3-Hydroxy-2-Methylvalerate Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bacterium Strain and Plasmids
2.3. Biosynthesis of PHA
2.4. Gas Chromatography Analysis
2.5. Polymer Extraction and Purification
2.6. Molecular Weight Analysis
2.7. NMR Analysis
2.8. Thermal Property Analysis
3. Results
3.1. Biosynthesis of PHA by Two-Step Cultivation
3.2. NMR Analysis of Biosynthesized PHA
3.3. Thermal Properties of PHA
3.4. Isothermal Crystallization of PHA
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Chen, G.Q.; Hajnal, I.; Wu, H.; Lv, L.; Ye, J. Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol. 2015, 33, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Tsuge, T. Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J. Biosci. Bioeng. 2002, 94, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Tachibana, Y.; Kasuya, K.I. Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polym. J. 2021, 53, 47–66. [Google Scholar] [CrossRef]
- Choi, S.Y.; Cho, I.J.; Lee, Y.; Kim, Y.-J.; Kim, K.-J.; Lee, S.Y. Microbial polyhydroxyalkanoates and nonnatural polyesters. Adv. Mater. 2020, 32, 1907138. [Google Scholar] [CrossRef] [PubMed]
- Jonnalagadda, D.; Kuboki, T. Effect of natural flours on crystallization behaviors of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J. Appl. Polym. Sci. 2016, 133, 43600. [Google Scholar] [CrossRef]
- Kai, W.; He, Y.; Inoue, Y. Fast crystallization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with talc and boron nitride as nucleating agents. Polym. Int. 2005, 54, 780–789. [Google Scholar] [CrossRef]
- Inoue, Y.; Sano, F.; Nakamura, K.; Yoshie, N.; Saito, Y.; Satoh, H.; Mino, T.; Matsuo, T.; Doi, Y. Microstructure of copoly(3-hydroxyalkanoates) produced in the anaerobic–aerobic activated sludge process. Polym. Int. 1996, 39, 183–189. [Google Scholar] [CrossRef]
- Dai, Y.; Lambert, L.; Yuan, Z.; Keller, J. Characterization of polyhydroxyalkanoate copolymer with controllable four-monomer composition. J. Biotechnol. 2008, 134, 137–145. [Google Scholar] [CrossRef]
- Dong, H.; Liffland, S.; Hillmyer, M.A.; Chang, M.C.Y. Engineering in vivo production of α-branched polyesters. J. Am. Chem. Soc. 2019, 141, 16877–16883. [Google Scholar] [CrossRef]
- Watanabe, Y.; Ishizuka, K.; Furutate, S.; Abe, H.; Tsuge, T. Biosynthesis and characterization of novel poly(3-hydroxybutyrate-co-3-hydroxy-2-methylbutyrate): Thermal behavior associated with α-carbon methylation. RSC Adv. 2015, 5, 58679. [Google Scholar] [CrossRef] [Green Version]
- Furutate, S.; Kamoi, J.; Nomura, C.T.; Taguchi, S.; Abe, H.; Tsuge, T. Superior thermal stability and fast crystallization behavior of a novel, biodegradable α-methylated bacterial polyester. NPG Asia Mater. 2021, 13, 31. [Google Scholar] [CrossRef]
- Furutate, S.; Abe, H.; Tsuge, T. Thermal properties of poly(3-hydroxy-2-methylbutyrate-co-3-hydroxybutyrate) copolymers with narrow comonomer-unit compositional distributions. Polym. J. 2021, 53, 1451–1457. [Google Scholar] [CrossRef]
- Furutate, S.; Nakazaki, H.; Maejima, K.; Hiroe, A.; Abe, H.; Tsuge, T. Biosynthesis and characterization of novel polyhydroxyalkanoate copolymers consisting of 3-hydroxy-2-methylbutyrate and 3-hydroxyhexanoate. J. Polym. Res. 2017, 24, 221. [Google Scholar] [CrossRef]
- Sivashankari, R.M.; Mierzati, M.; Miyahara, Y.; Mizuno, S.; Nomura, C.T.; Taguchi, S.; Abe, H.; Tsuge, T. Exploring Class I polyhydroxyalkanoate synthases with broad substrate specificity for polymerization of structurally diverse monomer units. Front. Bioeng. Biotechnol. 2023, 11, 1114946. [Google Scholar] [CrossRef]
- Langford, A.; Chan, C.M.; Pratt, S.; Garvey, C.J.; Laycock, B. The morphology of crystallisation of PHBV/PHBV copolymer blends. Eur. Polym. J. 2019, 112, 104–119. [Google Scholar] [CrossRef]
- Mohd Fadzil, F.I.; Kobayashi, M.; Miyahara, Y.; Ishii-Hyakutake, M.; Tsuge, T. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with a high 3-hydroxyhexanoate fraction and low molecular weight for polymer blending. J. Sib. Fed. Univ. Biol. 2021, 14, 442–453. [Google Scholar] [CrossRef]
- Tappel, R.C.; Wang, Q.; Nomura, C.T. Precise control of repeating unit composition in biodegradable poly(3-hydroxyalkanoate) polymers synthesized by Escherichia coli. J. Biosci. Bioeng. 2012, 113, 480–486. [Google Scholar] [CrossRef]
- Tappel, R.C.; Kucharski, J.M.; Mastroianni, J.M.; Stipanovic, A.J.; Nomura, C.T. Biosynthesis of poly[(R)-3-hydroxyalkanoate] copolymers with controlled repeating unit compositions and physical properties. Biomacromolecules 2012, 13, 2964–2972. [Google Scholar] [CrossRef]
- Ushimaru, K.; Watanabe, Y.; Hiroe, A.; Tsuge, T. A single-nucleotide substitution in phasin gene leads to enhanced accumulation of polyhydroxyalkanoate (PHA) in Escherichia coli harboring Aeromonas caviae PHA biosynthetic operon. J. Gen. Appl. Microbiol. 2015, 61, 63–66. [Google Scholar] [CrossRef]
- Kichise, T.; Taguchi, S.; Doi, Y. Enhanced accumulation and changed monomer composition in polyhydroxyalkanoate (PHA) copolyester by in vitro evolution of Aeromonas caviae PHA synthase. Appl. Environ. Microbiol. 2002, 68, 2411–2419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuge, T.; Watanabe, S.; Shimada, D.; Abe, H.; Doi, Y.; Taguchi, S. Combination of N149S and D171G mutations in Aeromonas caviae polyhydroxyalkanoate synthase and impact on polyhydroxyalkanoate biosynthesis. FEMS Microbiol. Lett. 2007, 277, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taguchi, S.; Yamada, M.; Matsumoto, K.I.; Tajima, K.; Satoh, Y.; Munekata, M.; Ohno, K.; Kohda, K.; Shimamura, T.; Kambe, H.; et al. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc. Natl. Acad. Sci. USA 2008, 105, 17323–17327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamiya, N.; Yamamoto, Y.; Inoue, Y.; Chujo, R.; Doi, Y. Microstructure of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 1989, 22, 1676–1682. [Google Scholar] [CrossRef]
- Tanadchangsaeng, N.; Kitagawa, A.; Yamamoto, T.; Abe, H.; Tsuge, T. Identification, biosynthesis, and characterization of polyhydroxyalkanoate copolymer consisting of 3-hydroxybutyrate and 3-hydroxy-4-methylvalerate. Biomacromolecules 2009, 10, 2866–2874. [Google Scholar] [CrossRef]
- Gunaratne, L.M.W.K.; Shanks, R.A. Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur. Polym. J. 2005, 41, 2980–2988. [Google Scholar] [CrossRef]
- Zhou, Z.; LaPointe, A.M.; Shaffer, T.D.; Coates, G.W. Nature-inspired methylated polyhydroxybutyrates from C1 and C4 feedstocks. Nat. Chem. 2023, 15, 856–861. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Z.; Shi, C.; Scoti, M.; Barange, D.K.; Gowda, R.R.; Chen, E.Y.X. Chemically circular, mechanically tough, and melt-processable polyhydroxyalkanoates. Science 2023, 380, 64–69. [Google Scholar] [CrossRef]
Sample | Mn (×105) | PDI | D | 1st Heating | 2nd Heating | Cooling | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tm_1st (°C) | ΔHm_1st (J/g) | Tg (°C) | Tcc (°C) | ΔHcc (J/g) | Tm_2nd (°C) | ΔHm_2nd (J/g) | Tc (°C) | ΔHc (J/g) | ||||
PHB | 4.0 | 2.18 | - | 186 | 84.8 | 3.0 | 37.8 | 35.3 | 181 | 74.2 | 86.5 | 56.2 |
PHBV12 | 1.4 | 1.88 | 1.40 | 139, 157 | 27.3 | 3.7 | 42.0 | 36.6 | 136 | 52.0 | 53.5 | 8.6 |
PHBMV11 | 19.2 | 1.22 | 3.85 | 162, 176 | 44.5 | −2.8 | 39.3 | 34.6 | 175 | 69.2 | 72.2 | 38.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyahara, Y.; Nakamura, T.; Mierzati, M.; Qie, Z.; Shibasaka, T.; Nomura, C.T.; Taguchi, S.; Abe, H.; Tsuge, T. Thermal and Crystallization Properties of a Polyhydroxyalkanoate Binary Copolymer Containing 3-Hydroxybutyrate and 3-Hydroxy-2-Methylvalerate Units. Processes 2023, 11, 1901. https://doi.org/10.3390/pr11071901
Miyahara Y, Nakamura T, Mierzati M, Qie Z, Shibasaka T, Nomura CT, Taguchi S, Abe H, Tsuge T. Thermal and Crystallization Properties of a Polyhydroxyalkanoate Binary Copolymer Containing 3-Hydroxybutyrate and 3-Hydroxy-2-Methylvalerate Units. Processes. 2023; 11(7):1901. https://doi.org/10.3390/pr11071901
Chicago/Turabian StyleMiyahara, Yuki, Tomoya Nakamura, Maierwufu Mierzati, Zihan Qie, Tomoki Shibasaka, Christopher T. Nomura, Seiichi Taguchi, Hideki Abe, and Takeharu Tsuge. 2023. "Thermal and Crystallization Properties of a Polyhydroxyalkanoate Binary Copolymer Containing 3-Hydroxybutyrate and 3-Hydroxy-2-Methylvalerate Units" Processes 11, no. 7: 1901. https://doi.org/10.3390/pr11071901
APA StyleMiyahara, Y., Nakamura, T., Mierzati, M., Qie, Z., Shibasaka, T., Nomura, C. T., Taguchi, S., Abe, H., & Tsuge, T. (2023). Thermal and Crystallization Properties of a Polyhydroxyalkanoate Binary Copolymer Containing 3-Hydroxybutyrate and 3-Hydroxy-2-Methylvalerate Units. Processes, 11(7), 1901. https://doi.org/10.3390/pr11071901