Steel Slag Decorated with Calcium Oxide and Cerium Oxide as a Solid Base for Effective Transesterification of Palm Oil
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalyst Synthesis and Evaluation of Activity
2.3. Catalyst Characterization
3. Results
3.1. Optimization of the Ca-Ce/Slag Catalyst Synthesis
3.2. Catalyst Characterization
3.2.1. XRD Analysis
3.2.2. N2 Adsorption–Desorption Analysis
3.2.3. SEM-EDS Analysis
3.2.4. FTIR Analysis
3.2.5. XPS Analysis
3.2.6. CO2-TPD Analysis
3.3. Catalytic Activity
3.3.1. Transesterification Parameters Optimization
3.3.2. Effect of FFAs Content
3.4. Catalyst Reusability
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Woranuch, W.; Ngaosuwan, K.; Kiatkittipong, W.; Wongsawaeng, D.; Appamana, W.; Powell, J.; Rokhum, S.L.; Assabumrungrat, S. Fine-tuned fabrication parameters of CaO catalyst pellets for transesterification of palm oil to biodiesel. Fuel 2022, 323, 124356. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Ma, X.; Guo, M.; Li, Y.; Li, G.; Cui, P.; Zhou, S.; Yu, M. Synthesis of CaO/ZrO2 based catalyst by using UiO–66(Zr) and calcium acetate for biodiesel production. Renew. Energy 2022, 185, 970–977. [Google Scholar] [CrossRef]
- Zul, N.A.; Ganesan, S.; Hamidon, T.S.; Oh, W.D.; Hussin, M.H. A review on the utilization of calcium oxide as a base catalyst in biodiesel production. J. Environ. Chem. Eng. 2021, 9, 105741. [Google Scholar] [CrossRef]
- Yaşar, F. Biodiesel production via waste eggshell as a low-cost heterogeneous catalyst: Its effects on some critical fuel properties and comparison with CaO. Fuel 2019, 255, 115821–115828. [Google Scholar] [CrossRef]
- Teo, S.H.; Rashid, U.; Taufiq-Yap, Y.H. Heterogeneous catalysis of transesterification of jatropha curcas oil over calcium-cerium bimetallic oxide catalyst. RSC. Adv. 2014, 4, 48836–48847. [Google Scholar] [CrossRef]
- Pandit, P.R.; Fulekar, M.H. Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material. Renew. Energy 2019, 136, 837–845. [Google Scholar] [CrossRef]
- Dehghani, S.; Haghighi, M.; Vardast, N. Structural/texture evolution of CaO/MCM nanocatalyst by doping various amounts of cerium for active and stable catalyst: Biodiesel production from waste vegetable cooking oil. Int. J. Energy. Res. 2019, 43, 3779–3793. [Google Scholar] [CrossRef]
- Zhang, N.; Xue, H.; Hu, R. The activity and stability of CeO2@CaO catalysts for the production of biodiesel. RSC. Adv. 2018, 8, 32922. [Google Scholar] [CrossRef]
- Shu, K.; Sasaki, K. Occurrence of steel converter slag and its high value-added conversion for environmental restoration in China: A review. J. Clean. Prod. 2022, 373, 133876. [Google Scholar] [CrossRef]
- Gan, Y.; Li, C.; Ke, W.; Deng, Q.; Yu, T. Study on pavement performance of steel slag asphalt mixture based on surface treatment. Case. Stud. Constr. Mat. 2022, 16, e1131. [Google Scholar] [CrossRef]
- Song, B.; Wang, Z.; Li, J.; Ma, Y. Preparation and electrocatalytic properties of kaolin/steel slag particle electrodes. Catal. Commun. 2021, 148, 106177. [Google Scholar] [CrossRef]
- Liu, G.; Yang, J.; Xu, X. Synthesis of hydrotalcite-type mixed oxide catalysts from waste steel slag for transesterification of glycerol and dimethyl carbonate. Sci. Rep-UK 2020, 10, 10273. [Google Scholar] [CrossRef]
- Casiello, M.; Losito, O.; Aloia, A.; Caputo, D.; Fusco, C.; Attrotto, R.; Monopoli, A.; Nacci, A.; D’Accolti, L. Steel Slag as New Catalyst for the Synthesis of Fames from Soybean Oil. Catalyst 2021, 11, 619. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, Y.J.; Zhang, L.; Zhang, K. Preparation, characterization and photocatalytic activity of novel CeO2 loaded porous alkali-activated steel slag-based binding material. Int. J. Hydrogen. Energy. 2017, 42, 17341–17349. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, T.; Cao, X.; Liu, X. Recovery of converter steel slag to prepare catalytic H2O2 degradation of dye wastewater as a catalyst. J. Mater. Sci-Mater. El. 2021, 32, 24889–24901. [Google Scholar] [CrossRef]
- Gao, L.; Teng, G.; Xiao, G.; Wei, R. Biodiesel from palm oil via loading KF/Ca–Al hydrotalcite catalyst. Biomass Bioenergy 2010, 34, 1283–1288. [Google Scholar] [CrossRef]
- Kesserwan, F.; Ahmad, M.N.; Khalil, M.; El-Rassy, H. Hybrid CaO/Al2O3 aerogel as heterogeneous catalyst for biodiesel production. Chem. Eng. J. 2020, 385, 123834. [Google Scholar] [CrossRef]
- Borah, M.J.; Das, A.; Das, V.; Bhuyan, N.; Deka, D. Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel 2019, 242, 345–354. [Google Scholar] [CrossRef]
- Ning, Y.; Niu, S. Preparation and catalytic performance in esterification of a bamboo-based heterogeneous acid catalyst with microwave assistance. Energy Convers. Manag. 2017, 153, 446–454. [Google Scholar] [CrossRef]
- Qu, T.; Niu, S.; Zhang, X.; Han, K.; Lu, C. Preparation of calcium modified Zn-Ce/Al2O3 heterogeneous catalyst for biodiesel production through transesterification of palm oil with methanol optimized by response surface methodology. Fuel 2021, 284, 118986. [Google Scholar] [CrossRef]
- Yadav, M.; Sharma, Y.C. Process optimization and catalyst poisoning study of biodiesel production from kusum oil using potassium aluminum oxide as efficient and reusable heterogeneous catalyst. J. Clean. Prod. 2018, 199, 593–602. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, S.; Kan, H.; Li, Y.; Lu, C. Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel. Renew. Energy 2021, 168, 981–990. [Google Scholar]
- Foroutan, R.; Mohammadi, R.; Razeghi, J.; Ramavandi, B. Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst. Renew. Energy 2021, 168, 1207–1216. [Google Scholar] [CrossRef]
- Murguía-Ortiz, D.; Cordova, I.; Manriquez, M.E.; Ortiz-Islas, E.; Cabrera-Sierra, R.; Contreras, J.L.; Alcantar-Vazquez, B.; Trejo-Rubio, M.; Vazquez-Rodriguez, J.T.; Castro, L.V. Na-CaO/MgO dolomites used as heterogeneous catalysts in canola oil transesterification for biodiesel production. Mater. Lett. 2021, 291, 129587. [Google Scholar] [CrossRef]
- Niu, S.; Zhang, X.; Ning, Y.; Zhang, Y.; Qu, T.; Hu, X.; Gong, Z.; Lu, C. Dolomite incorporated with cerium to enhance the stability in catalyzing transesterification for biodiesel production. Renew. Energy 2020, 154, 107–116. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.; Luo, W.; Yang, G.; Miao, C.; Fu, J.; Xing, S.; Fan, P.; Lv, P.; Wang, Z. Sustainable biodiesel production via transesterification by using recyclable Ca2MgSi2O7 catalyst. Fuel 2017, 196, 306–313. [Google Scholar] [CrossRef]
- Ma, S.; Tan, H.; Li, Y.; Wang, P.; Zhu, Y. Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1−yOx (y = 0.1, 0.2, 0.3) catalysts. Chemosphere 2019, 243, 125309. [Google Scholar] [CrossRef]
- Ma, Y.; Li, W.; Wang, H.; Chen, J.; Wen, J.; Xu, S.; Tian, X.; Gao, L.; Hou, Z.; Zhang, Q. Enhanced performance of iron-cerium NOx reduction catalysts by sulfuric acid treatment: The synergistic effect of surface acidity and redox capacity. Appl. Catal. A-Gen. 2021, 621, 118200. [Google Scholar] [CrossRef]
- Lin, T.; Zhao, S.; Niu, S.; Lyu, Z.; Hu, X. Halloysite nanotube functionalized with La-Ca bimetallic oxides as novel transesterification catalyst for biodiesel production with molecular simulation. Energy Convers. Manag. 2020, 220, 113138. [Google Scholar] [CrossRef]
- Dahdah, E.; Estephane, J.; Haydar, R.; Youssef, Y.; Khoury, B.E.; Gennequin, C.; Aboukais, A.; Abi-Aad, E.; Aouad, S. Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment. Renew. Energy 2020, 146, 1242–1248. [Google Scholar] [CrossRef]
- Li, H.; Niu, S.; Lu, C.; Liu, M.; Huo, M. Transesterification catalyzed by industrial waste—Lime mud doped with potassium fluoride and the kinetic calculation. Energy Convers. Manag. 2014, 86, 1110–1117. [Google Scholar] [CrossRef]
- Al-Muhtaseb, A.H.; Osman, A.I.; Jamil, F.; Mehta, N.; Al-Haj, L.; Coulon, F.; Al-Maawali, S.; Al Nabhani, A.; Kyaw, H.H.; Myint, M.T.Z.; et al. Integrating life cycle assessment and characterisation techniques: A case study of biodiesel production utilising waste Prunus Armeniaca seeds (PAS) and a novel catalyst. J. Environ. Manag. 2022, 304, 114319. [Google Scholar] [CrossRef]
- Farooq, M.; Ramli, A.; Naeem, A. Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renew. Energy 2015, 76, 362–368. [Google Scholar] [CrossRef]
- Al-Muhtaseb, A.H.; Osman, A.I.; Kumar, P.S.M.; Jamil, F.; Al-Haj, L.; Al Nabhani, A.; Kyaw, H.H.; Myint, M.T.Z.; Mehta, N.; Rooney, D.W. Circular economy approach of enhanced bifunctional catalytic system of CaO/CeO2 for biodiesel production from waste loquat seed oil with life cycle assessment study. Energy Convers. Manag. 2021, 236, 114040. [Google Scholar] [CrossRef]
- Salimi, Z.; Hosseini, S.A. Study and optimization of conditions of biodiesel production from edible oils using ZnO/BiFeO3 nano magnetic catalyst. Fuel 2019, 239, 1204–1212. [Google Scholar] [CrossRef]
- Junior, E.S.; Perez, V.H.; Reyero, I.; Serrano-Lotina, A.; Justo, O.R. Biodiesel production from heterogeneous catalysts based K2CO3 supported on extruded γ-Al2O3. Fuel 2019, 241, 311–318. [Google Scholar] [CrossRef]
- Helmi, M.; Hemmati, A. Synthesis of magnetically solid base catalyst of NaOH/Chitosan-Fe3O4 for biodiesel production from waste cooking oil: Optimization, kinetics and thermodynamic studies. Energy Convers. Manag. 2021, 248, 114807. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Mohamed, A.S.; El-Sherbeeny, A.M.; Soliman, A.T.A.; Elgawad, A.E.E.A. Sonication induced transesterification of castor oil into biodiesel in the presence of MgO/CaO nanorods as a novel basic catalyst: Characterization and optimization. Chem. Eng. Process. 2020, 154, 108024. [Google Scholar] [CrossRef]
- Guo, M.; Jiang, W.; Ding, J.; Lu, J. Highly active and recyclable CuO/ZnO as photocatalyst for transesterification of waste cooking oil to biodiesel and the kinetics. Fuel 2022, 315, 123254. [Google Scholar] [CrossRef]
- Mares, E.K.L.; Gonçalves, M.A.; Lourenço, E.K.; Luz, P.T.S.; Filho, G.N.R.; Zamian, J.R.; Conceição, L.R.V. Acai seed ash as a novel basic heterogeneous catalyst for biodiesel synthesis: Optimization of the biodiesel production process. Fuel 2021, 299, 120887. [Google Scholar] [CrossRef]
- Lee, S.L.; Wong, Y.C.; Tan, Y.P.; Yew, S.Y. Transesterification of palm oil to biodiesel by using waste obtuse horn shell-derived CaO catalyst. Energy Convers. Manag. 2015, 93, 282–288. [Google Scholar] [CrossRef]
CaO | SiO2 | Al2O3 | MgO | SO3 | TiO2 | P2O5 | Fe2O3 | MnO | K2O | Na2O | Other |
---|---|---|---|---|---|---|---|---|---|---|---|
41.36 | 31.09 | 13.34 | 8.85 | 2.30 | 1.11 | 0.40 | 0.38 | 0.36 | 0.34 | 0.34 | 0.13 |
Reagent | AV mgKOH/g | SV mgKOH/g | M g/mol |
---|---|---|---|
Palm oil | 0.42 | 182.60 | 923.98 |
Samples | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
slag | 0.27 | 0.00049 | - |
Ca-Ce/slag-0.4 | 1.29 | 0.022 | 22.19 |
Ca-Ce/slag-0.8 | 3.66 | 0.043 | 39.27 |
Samples | Temperature Interval/°C | Peak Temperature/°C | Basicity /(mmol/g) | Total Basicity/(mmol/g) |
---|---|---|---|---|
Slag | 50–530 | 476 | 0.009 | 0.188 |
530–745 | 656 | 0.110 | ||
745–900 | 745 | 0.069 | ||
Ca-Ce/slag-0.4 | 50–350 | 206 | 0.017 | 0.445 |
350–540 | 446 | 0.235 | ||
540–750 | 649 | 0.193 | ||
Ca-Ce/slag-0.8 | 50–340 | 168 | 0.022 | 1.289 |
340–560 | 469 | 0.758 | ||
560–800 | 664 | 0.509 |
Catalyst | Oil Feedstock | Transesterification Parameters | Con. or Yield 4/% | Ref. | |||
---|---|---|---|---|---|---|---|
C. Dosage 1 /wt.% | Molar Ratio 2 | Temp 3 /°C | Time /min | ||||
CaO/CeO2 | Waste seed oil | 4 | 9 | 70 | 90 | 90.14 | [34] |
ZnO/BiFeO3 | Canola oil | 4 | 15 | 65 | 360 | 95.43 | [35] |
K2CO3/γ-Al2O3 | Sunflower oil | 5 | 12 | 80 | 240 | 99.3 | [36] |
Ca-Mg-Al | Sunflower oil | 2.5 | 15 | 60 | 360 | 95 | [30] |
NaOH/Chitosan-Fe3O4 | Waste cooking oil | 0.5 | 6 | 25 | 270 | 92 | [37] |
biochar/CaO-K2CO3 | Waste edible oil | 4 | 18 | 65 | 200 | 98.83 | [23] |
MgO/CaO nanorods | Castor oil | 6 | 15 | 70 | 70 | 96.2 | [38] |
CuO/ZnO | Waste cooking oil | 5 | 9 | 65 | 120 | 93.5 | [39] |
Acai seed ash | Soybean oil | 12 | 18 | 100 | 60 | 98.5 | [40] |
Ca-Ce/slag-0.8 | Palm oil | 7 | 9 | 70 | 180 | 95.3 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Yu, H.; Zhang, P.; Qi, G.; Chen, X.; Liang, X.; Si, H. Steel Slag Decorated with Calcium Oxide and Cerium Oxide as a Solid Base for Effective Transesterification of Palm Oil. Processes 2023, 11, 1810. https://doi.org/10.3390/pr11061810
Sun J, Yu H, Zhang P, Qi G, Chen X, Liang X, Si H. Steel Slag Decorated with Calcium Oxide and Cerium Oxide as a Solid Base for Effective Transesterification of Palm Oil. Processes. 2023; 11(6):1810. https://doi.org/10.3390/pr11061810
Chicago/Turabian StyleSun, Jichao, Hewei Yu, Peisen Zhang, Gaoyu Qi, Xiuxiu Chen, Xiaohui Liang, and Hongyu Si. 2023. "Steel Slag Decorated with Calcium Oxide and Cerium Oxide as a Solid Base for Effective Transesterification of Palm Oil" Processes 11, no. 6: 1810. https://doi.org/10.3390/pr11061810
APA StyleSun, J., Yu, H., Zhang, P., Qi, G., Chen, X., Liang, X., & Si, H. (2023). Steel Slag Decorated with Calcium Oxide and Cerium Oxide as a Solid Base for Effective Transesterification of Palm Oil. Processes, 11(6), 1810. https://doi.org/10.3390/pr11061810