Low-Carbon Energy Transition for the Sarawak Region via Multi-Period Carbon Emission Pinch Analysis
Abstract
:1. Introduction
- A multi-period CEPA will allow strategic planning for the decarbonization of the electricity sector. However, limited works have attempted a multi-period CEPA-based mathematical optimization model, and none of the works have addressed the decarbonization of Sarawak’s electricity sector;
- No previous work analyzed the effect of biomass co-firing in existing coal power plants with respect to energy demand, emission reduction targets, and costs using CEPA. Moreover, co-firing is typically factored in as a non-linear correlation in planning models, which makes them more complex to solve;
- A limited number of the previous works have accounted for technology selection within the CEPA framework;
- A limited amount of work in the literature has considered systematic strategies within the CEPA framework as an energy transition tool to phase out fossil-based power plants gradually.
- A multi-period optimization model for long-term energy planning and decarbonization strategies;
- Co-firing of biomass in coal power plants is included in the CEPA framework. A linear correlation is developed in this work to consider the co-firing performance;
- Technology selection accounting for efficiency, costs, and emissions are considered.
2. Problem Statement
- A set of coal resources available for a set of coal power plants ;
- A set of biomass resources available for the coal power plants with co-firing ratio, ;
- A set of natural gas resources available for the natural gas power plants ;
- A set of diesel resources available for diesel power plants ;
- A set of hydro resources available for hydro power plants ;
- A set of time periods considered for energy planning;
- A set of regions whose electricity demand (MWh) for each of the time periods are taken for electricity sector planning;
- The emissions target, (tCO2/MWh) set for the electricity sector during each of the time periods .
- The quantity of renewables required, (MWh) to meet the electricity demand, within the set emission target, ;
- The electricity generated from the existing power plants for each of the time periods;
- The operating costs incurred at the existing power plants for each of the time periods.
- Installed capacity of the existing power plants (MWh);
- Maximum and minimum operating capacity of the power plants (MWh);
- Operations and maintenance cost of the power plants (USD/MWh);
- Efficiency of the considered power plants;
- Fuel cost of the fuel types (USD/MWh);
- Carbon emissions from each of the power plants (tCO2/MWh);
- Energy demand for the considered regions (MWh).
3. Methodology
- Energy resource consumption;
- Operational constraint;
- Co-firing constraint;
- Energy constraint;
- Emission constraint;
- Cost estimation.
3.1. Energy Resource Consumption
3.2. Operational Constraint
3.3. Co-Firing Constraint
3.4. Energy Constraint
3.5. Emission Constraint
3.6. Cost Estimation
4. Low-Carbon Energy Transition Planning for Sarawak
- All the power plants are assumed to be operating for 8000 h annually;
- The efficiency of the power plants based on different energy sources is assumed to be constant throughout the years unless new technologies are introduced. In this work, the efficiency for biomass co-firing in coal power plants is assumed to be 30%;
- The operating and maintenance cost of the power plants is assumed to remain constant as business as usual throughout the years;
- It is assumed that biomass and hydro resources have negligible carbon emissions due to the nature of such renewable energy sources. Biomass is taken from agricultural waste and hydro power does not consume fossil fuels during the operation;
- The carbon emission factor is assumed to remain constant for each type of energy source throughout the years;
- Water resource for hydro power plants is assumed to have no feedstock cost.
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Indices | |
Fuel type | |
Index for coal resource | |
Index for biomass resource | |
Index for natural gas resource | |
Index for diesel resource | |
Index for hydro resource | |
Power plants | |
Index for coal power plants | |
Index for natural gas power plants | |
Index for diesel power plants | |
Index for hydro power plants | |
Index for time period | |
Index for region or location | |
Parameters | |
Efficiency of coal power plant cp operated with coal resource c for the time period t (%) | |
Efficiency of coal power plant cp operated with biomass resource b for the time period t (%) | |
Efficiency of natural gas power plant ngp with natural gas resource ng for the time period t (%) | |
Efficiency of diesel power plant dp with diesel resource d for the time period t (%) | |
Efficiency of hydro power plants hp with hydro resource h for the time period t (%) | |
Installed capacity of coal power plants (MWh) | |
Installed capacity of natural gas power plants (MWh) | |
Installed capacity of diesel power plants (MWh) | |
Installed capacity of hydro power plants (MWh) | |
Maximum capacity factor of coal power plants (%) | |
Maximum capacity factor of natural gas power plants (%) | |
Maximum capacity factor of diesel power plants (%) | |
Maximum capacity factor of hydro power plants (%) | |
Minimum capacity factor of coal power plants (%) | |
Minimum capacity factor of natural gas power plants (%) | |
Minimum capacity factor of diesel power plants (%) | |
Minimum capacity factor of hydro power plants (%) | |
Co-firing ratio at coal power plants | |
Energy demand at region l for time-period t (MWh) | |
Carbon emission target for region l during time period t (tCO2/MWh) | |
Carbon emissions from coal power plants (tCO2/MWh) | |
Carbon emissions from natural gas power plants (tCO2/MWh) | |
Carbon emissions from diesel power plants (tCO2/MWh) | |
Carbon emissions from hydro power plants (tCO2/MWh) | |
O&M cost at coal power plants (USD/MWh) | |
O&M cost at natural gas power plants (USD/MWh) | |
O&M cost at diesel power plants (USD/MWh) | |
O&M cost at hydro power plants (USD/MWh) | |
Fuel cost of coal at coal power plants (USD/MWh) | |
Fuel cost of biomass at coal power plants (USD/MWh) | |
Fuel cost at natural gas power plants (USD/MWh) | |
Fuel cost at diesel power plants (USD/MWh) | |
Fuel cost at hydro power plants (USD/MWh) | |
Levelized cost of energy for renewables (USD/MWh) | |
Variables | |
Coal consumption at coal power plants (MWh) | |
Biomass consumption at coal power plants (MWh) | |
Natural gas consumption at natural gas power plants (MWh) | |
Diesel consumption at diesel power plants (MWh) | |
Water consumption at hydro power plants (MWh) | |
Electricity generated from coal power plant using coal resource (MWh) | |
Electricity generated from coal power plant using biomass resource (MWh) | |
Electricity generated from natural gas power plant (MWh) | |
Electricity generated from diesel power plant (MWh) | |
Electricity generated from hydro power plant (MWh) | |
Renewables required (MWh) | |
Operating cost at coal power plants (MWh) | |
Operating cost at natural gas power plants (MWh) | |
Operating cost at diesel power plants (MWh) | |
Operating cost at hydro power plants (MWh) | |
Estimated cost of renewables for the time period t (MWh) | |
Total cost of electricity generation for the time period t (MWh) |
References
- Lindsey, R. Atmospheric Carbon Dioxide. 2020. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (accessed on 20 April 2023).
- IEA. Global Energy Review: CO2 Emissions in 2021. 2021. Available online: https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (accessed on 3 March 2023).
- Andiappan, V. State-of-the-art review of mathematical optimisation approaches for synthesis of energy systems. Process Integr. Optim. Sustain. 2017, 1, 165–188. [Google Scholar] [CrossRef]
- Tan, R.R.; Foo, D.C.Y. Pinch analysis approach to carbon-constrained energy sector planning. Energy 2007, 32, 1422–1429. [Google Scholar] [CrossRef]
- Linnhoff, B.; Flower, J.R. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. AIChE J. 1978, 24, 633–642. [Google Scholar]
- Lee, C.S.; Ng, D.K.S.; Foo, D.C.Y.; Tan, R.R. Extended Pinch Targeting Techniques for Carbon-Constrained Energy Sector Planning. Appl. Energy 2009, 86, 60–67. [Google Scholar] [CrossRef]
- Tan, R.R.; Ng, D.K.S.; Foo, D.C.Y. Pinch Analysis Approach to Carbon-Constrained Planning for Sustainable Power Generation. J. Clean. Prod. 2009, 17, 940–944. [Google Scholar] [CrossRef]
- Atkins, M.J.; Morrison, A.S.; Walmsley, M.R.W. Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector. Appl. Energy 2010, 87, 982–987. [Google Scholar] [CrossRef]
- Crilly, D.; Zhelev, T. Further emissions and energy targeting: An application of CO2 emissions pinch analysis to the Irish electricity generation sector. Clean Technol. Environ. Policy 2010, 12, 177–189. [Google Scholar] [CrossRef]
- Jia, X.; Liu, C.-H.; Qian, Y. Carbon Emission Reduction using Pinch Analysis. In Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010. [Google Scholar]
- Priya, G.S.K.; Bandyopadhyay, S. Emission constrained power system planning: A pinch analysis based study of Indian electricity sector. Clean Technol. Environ. Policy 2013, 15, 771–782. [Google Scholar] [CrossRef]
- Lim, X.Y.; Foo, D.C.Y.; Tan, R.R. Pinch analysis for the planning of power generation sector in the United Arab Emirates: A climate-energy-water nexus study. J. Clean. Prod. 2018, 180, 11–19. [Google Scholar] [CrossRef]
- Baležentis, T.; Štreimikienė, D.; Melnikienė, R.; Zeng, S. Resources, Conservation & Recycling Prospects of green growth in the electricity sector in Baltic States: Pinch analysis based on ecological footprint. Resour. Conserv. Recycl. 2019, 142, 37–48. [Google Scholar]
- Nair, P.N.S.B.; Tan, R.R.; Foo, D.C.; Gamaralalage, D.; Short, M. DECO2—An Open-Source Energy System Decarbonisation Planning Software including Negative Emissions Technologies. Energies 2023, 16, 1708. [Google Scholar] [CrossRef]
- Jia, X.; Wang, S.; Li, Z.; Wang, F.; Tan, R.R.; Qian, Y. Pinch analysis of GHG mitigation strategies for municipal solid waste management: A case study on Qingdao City. J. Clean. Prod. 2018, 174, 933–944. [Google Scholar] [CrossRef]
- Li, Z.; Jia, X.; Foo, D.C.Y.; Tan, R.R. Minimizing carbon footprint using pinch analysis: The case of regional renewable electricity planning in China. Appl. Energy 2016, 184, 1051–1062. [Google Scholar] [CrossRef]
- Walmsley, M.R.W.; Walmsley, T.G.; Atkins, M.J.; Kamp, P.J.J.; Neale, J.R. Minimising carbon emissions and energy expended for electricity generation in New Zealand through to 2050. Appl. Energy 2014, 135, 656–665. [Google Scholar] [CrossRef]
- Sinha, R.K.; Chaturvedi, N.D. A graphical dual objective approach for minimizing energy consumption and carbon emission in production planning. J. Clean. Prod. 2018, 171, 312–321. [Google Scholar] [CrossRef]
- Mohd Yahya, N.S.; Ng, L.Y.; Andiappan, V. Optimisation and planning of biomass supply chain for new and existing power plants based on carbon reduction targets. Energy 2021, 237, 121488. [Google Scholar] [CrossRef]
- Ramli, A.F.; Muis, Z.A.; Ho, W.S.; Idris, A.M.; Mohtar, A. Carbon Emission Pinch Analysis: An application to the transportation sector in Iskandar Malaysia for 2025. Clean Technol. Environ. Policy 2019, 21, 1899–1911. [Google Scholar] [CrossRef]
- Leong, H.; Leong, H.; Foo, D.C.Y.; Yin Ng, L.; Andiappan, V. Hybrid approach for carbon-constrained planning of bioenergy supply chain network. Sustain. Prod. Consum. 2019, 18, 250–267. [Google Scholar] [CrossRef]
- Salman, B.; Nomanbhay, S.; Foo, D.C.Y. Carbon emissions pinch analysis (CEPA) for energy sector planning in Nigeria. Clean Technol. Environ. Policy 2018, 21, 93–108. [Google Scholar] [CrossRef]
- De Lira Quaresma, A.C.; Francisco, F.S.; Pessoa, F.L.P.; Queiroz, E.M. Carbon emission reduction in the Brazilian electricity sector using Carbon Sources Diagram. Energy 2018, 159, 134–150. [Google Scholar] [CrossRef]
- Walmsley, M.R.W.; Walmsley, T.G.; Atkins, M.J. Achieving 33% renewable electricity generation by 2020 in California. Energy 2015, 92, 260–269. [Google Scholar] [CrossRef]
- Cossutta, M.; Foo, D.C.Y.; Tan, R.R. Carbon emission spinch analysis (CEPA) for planning the decarbonization of the UK power sector. Sustain. Prod. Consum. 2021, 25, 259–270. [Google Scholar] [CrossRef]
- Ramsook, D.; Boodlal, D.; Maharaj, R. Multi-period Carbon Emission Pinch Analysis (CEPA) for reducing emissions in the Trinidad and Tobago power generation sector. Carbon Manag. 2022, 13, 164–177. [Google Scholar] [CrossRef]
- Lopez, N.S.A.; Foo, D.C.Y.; Tan, R.R. Optimizing regional electricity trading with Carbon Emissions Pinch Analysis. Energy 2021, 237, 121544. [Google Scholar] [CrossRef]
- Ilyas, M.; Lim, Y.; Han, C. Pinch based approach to estimate CO2 capture and storage retrofit and compensatory renewable power for South Korean electricity sector. Korean J. Chem. Eng. 2012, 29, 1163–1170. [Google Scholar] [CrossRef]
- Thengane, S.K.; Tan, R.R.; Foo, D.C.Y.; Bandyopadhyay, S. A Pinch-Based Approach for Targeting Carbon Capture, Utilization, and Storage Systems. Ind. Eng. Chem. Res. 2019, 58, 3188–3198. [Google Scholar] [CrossRef]
- Nair, P.N.S.B.; Tan, R.R.; Foo, D.C.Y. Extended Graphical Approach for the Deployment of Negative Emission Technologies. Ind. Eng. Chem. Res. 2020, 59, 18977–18990. [Google Scholar] [CrossRef]
- Nair, P.N.S.B.; Tan, R.R.; Foo, D.C.Y. Extended graphical approach for the implementation of energy-consuming negative emission technologies. Renew. Sustain. Energy Rev. 2022, 158, 112082. [Google Scholar] [CrossRef]
- Tan, R.R.; Aviso, K.B.; Foo, D.C.Y. Carbon emissions pinch analysis of economic systems. J. Clean. Prod. 2018, 182, 863–871. [Google Scholar] [CrossRef]
- Mu, P.; Yang, Y.; Han, Y.M.; Gu, X.; Zhu, Q.X. Raw material management networks based on an improved P-graph integrated carbon emission pinch analysis (CEPA-P-graph) method. Can. J. Chem. Eng. 2020, 98, 676–689. [Google Scholar] [CrossRef]
- Kong, K.G.H.; How, B.S.; Lim, J.Y.; Leong, W.D.; Teng, S.Y.; Ng, W.P.Q.; Moser, I.; Sunarso, J. Shaving electric bills with renewables? A multi-period pinch-based methodology for energy planning. Energy 2022, 239, 122320. [Google Scholar] [CrossRef]
- The Official Portal of Sarawak Government. Available online: https://sarawak.gov.my/web/home/article_view/240/175/?id=158#175 (accessed on 20 April 2023).
- Post COVID-19 Development Strategy 2030, 2022. Economic Planning Unit, Sarawak Government. Available online: https://sarawak.gov.my/media/attachments/PCDS_-Compressed_22_July_2021.pdf (accessed on 20 April 2023).
- National Energy Balance (NEB), 2019. Energy commission, Government of Malaysia. Available online: https://meih.st.gov.my/documents/10620/19759/National+Energy+-Balance+2019 (accessed on 20 April 2023).
- Sönnichsen, N. Projection of Coal and Natural Gas Prices from 2016 to 2050. Statista. 2021. Available online: https://www.statista.com/statistics/189185/projected-natural-gas-vis-a-vis-coal-prices/ (accessed on 20 April 2023).
- US Energy Information Administration. Gasoline and Diesel Fuel Update 2022. Available online: https://www.eia.gov/petroleum/gasdiesel/ (accessed on 17 February 2022).
- Annual and Sustainability Report, 2019. Sarawak Energy. Available online: https://www.sarawakenergy.com/investors/annual-and-sustainability-reports (accessed on 20 April 2023).
Country | Reference |
---|---|
China | [10,15,16] |
New Zealand | [8,17] |
Ireland | [9] |
India | [11,18] |
Estonia, Latvia, and Lithuania | [13] |
Malaysia | [19,20,21] |
Nigeria | [22] |
Brazil | [23] |
United States of America | [24] |
United Kingdom | [25] |
Trinidad and Tobago | [26] |
Southeast Asia | [27] |
Fuel type | Power Plant | Referred to in this Work as |
---|---|---|
Coal | PPLS Power Generation | C1 |
Sejingkat Power Corporation | C2 | |
Balingian Power Generation | C3 | |
Mukah Power Sdn. Bhd. | C4 | |
Natural Gas | Sarawak Power Generation | NG1 |
Bintulu PS | NG2 | |
Miri PS | NG3 | |
Diesel | Sg Biawak PS | D1 |
Limbang PS | D2 | |
Lawas PS | D3 | |
Kapit PS | D4 | |
Belaga PS | D5 | |
Song PS | D6 | |
Ng Mujong PS | D7 | |
Ng Ngungun PS | D8 | |
Ng Jagau PS | D9 | |
Ng Entawau PS | D10 | |
Mulu PS | D11 | |
Long Lama PS | D12 | |
Banting PS | D13 | |
Paloh PS | D14 | |
Hydro | Batang Ai | H1 |
Bakun | H2 | |
Murum | H3 | |
Baleh | H4 |
Power Plant | 2020 | 2025 | 2030 | 2035 | 2040 |
---|---|---|---|---|---|
C1 | 637,197 | 637,197 | 637,197 | 637,197 | 637,197 |
C2 | 553,290 | 553,290 | 553,290 | 553,290 | 553,290 |
C3 | 1,562,640 | 1,562,640 | 1,562,640 | 1,562,640 | 1,562,640 |
C4 | 1,515,106 | 1,515,106 | 1,515,106 | 1,515,106 | 1,515,106 |
NG1 | 2,145,919 | 2,145,919 | 2,145,919 | 2,145,919 | 2,145,919 |
NG2 | 625,274 | 7,233,274 | 7,233,274 | 7,233,274 | 7,233,274 |
NG3 | 541,988 | 541,988 | 541,988 | 541,988 | 541,988 |
D1 | 2127 | 2127 | 2127 | 2127 | 2127 |
D2 | 90,570 | 90,570 | 90,570 | 90,570 | 90,570 |
D3 | 57,467 | 57,467 | 57,467 | 57,467 | 57,467 |
D4 | 0 | 90 | 100 | 0 | 0 |
D5 | 4256 | 4256 | 4256 | 4256 | 4256 |
D6 | 6223 | 6223 | 6223 | 6223 | 6223 |
D7 | 178 | 178 | 178 | 178 | 178 |
D8 | 0 | 1000 | 1350 | 800 | 1250 |
D9 | 218 | 218 | 218 | 218 | 218 |
D10 | 329 | 329 | 329 | 329 | 329 |
D11 | 1641 | 1641 | 1641 | 1641 | 1641 |
D12 | 3629 | 3629 | 3629 | 3629 | 3629 |
D13 | 342 | 342 | 342 | 342 | 342 |
D14 | 699 | 699 | 699 | 699 | 699 |
H1 | 386,993 | 386,993 | 386,993 | 386,993 | 386,993 |
H2 | 15,424,402 | 15,424,402 | 15,424,402 | 15,424,402 | 15,424,402 |
H3 | 5,688,832 | 5,688,832 | 5,688,832 | 5,688,832 | 5,688,832 |
H4 | 0 | 0 | 10,280,000 | 10,280,000 | 10,280,000 |
Power Plant | 2020 | 2025 | 2030 | 2035 | 2040 |
---|---|---|---|---|---|
C1 | 100–75% | 90–60% | 80–50% | 70–40% | 60–30% |
C2 | |||||
C3 | |||||
C4 | |||||
NG1 | 100–75% | 90–60% | 80–50% | 70–40% | 60–30% |
NG2 | 100–75% | 100–75% | 90–60% | 80–50% | 70–40% |
NG3 | 100–75% | 90–60% | 80–50% | 70–40% | 60–30% |
D1 | 100–75% | 90–60% | 80–50% | 70–40% | 60–30% |
D2 | |||||
D3 | |||||
D4 | |||||
D5 | |||||
D6 | |||||
D7 | |||||
D8 | |||||
D9 | |||||
D10 | |||||
D11 | |||||
D12 | |||||
D13 | |||||
D14 | |||||
H1 | 100–75% | 90–60% | 80–50% | 70–40% | 60–30% |
H2 | |||||
H3 | |||||
H4 | - | - | 100–75% | 90–60% | 80–50% |
Power Plant | Efficiency | O&M Cost |
---|---|---|
C1 | 30.7%/30% * | 5.375/2.406 * |
C2 | 27.3%/30% * | 5.375/2.406 * |
C3 | 35.6%/30% * | 5.000/2.406 * |
C4 | 31.9%/30% * | 5.375/2.406 * |
NG1 | 40.3% | 3.125 |
NG2 | 21.2%/28.1% # | 6.106 |
NG3 | 21.3% | 6.106 |
D1 | 22.1% | 7.000 |
D2 | 34.7% | 7.000 |
D3 | 34.4% | 6.106 |
D4 | 22.1% | 7.000 |
D5 | 22.1% | 7.000 |
D6 | 22.1% | 7.000 |
D7 | 22.1% | 7.000 |
D8 | 22.1% | 7.000 |
D9 | 22.1% | 7.000 |
D10 | 22.1% | 7.000 |
D11 | 22.1% | 7.000 |
D12 | 22.1% | 7.000 |
D13 | 22.1% | 7.000 |
D14 | 22.1% | 7.000 |
H1 | 1.36 × 104 ^ | 6.625 |
H2 | 3.97 × 104 ^ | 3.733 |
H3 | 7.55 × 104 ^ | 3.733 |
H4 | 4.40 × 104 ^ | 3.733 |
Fuel Type | 2020 | 2025 | 2030 | 2035 | 2040 |
---|---|---|---|---|---|
Coal | 21.164 | 6.655 | 6.600 | 6.655 | 6.794 |
Biomass | 16.961 | 13.569 | 11.533 | 10.380 | 9.861 |
Natural Gas | 7.257 | 11.002 | 11.806 | 11.980 | 12.059 |
Diesel | 1.930 | 1.384 | 1.528 | 1.006 | 0.887 |
Hydro | 0 | 0 | 0 | 0 | 0 |
Power Plant | 2020 | 2025 | 2030 | 2035 | 2040 |
---|---|---|---|---|---|
C1 | 1.093 | 1.093 | 1.093 | 1.093 | 1.093 |
C2 | 1.227 | 1.227 | 1.227 | 1.227 | 1.227 |
C3 | 0.910 | 0.910 | 0.910 | 0.910 | 0.910 |
C4 | 1.045 | 1.045 | 1.045 | 1.045 | 1.045 |
NG1 | 0.443 | 0.443 | 0.443 | 0.443 | 0.443 |
NG2 | 0.832 | 0.832 | 0.832 | 0.832 | 0.832 |
NG3 | 1.001 | 1.001 | 1.001 | 1.001 | 1.001 |
D1 | 1.212 | 1.212 | 1.212 | 1.212 | 1.212 |
D2 | 0.740 | 0.740 | 0.740 | 0.740 | 0.740 |
D3 | 0.745 | 0.745 | 0.745 | 0.745 | 0.745 |
D4 | 0 | 0.744 | 0.744 | 0 | 0 |
D5 | 0.914 | 0.914 | 0.914 | 0.914 | 0.914 |
D6 | 0.801 | 0.801 | 0.801 | 0.801 | 0.801 |
D7 | 0.933 | 0.933 | 0.933 | 0.933 | 0.933 |
D8 | 0 | 0.713 | 0.713 | 0.713 | 0.713 |
D9 | 1.138 | 1.138 | 1.138 | 1.138 | 1.138 |
D10 | 0.896 | 0.896 | 0.896 | 0.896 | 0.896 |
D11 | 0.977 | 0.977 | 0.977 | 0.977 | 0.977 |
D12 | 0.848 | 0.848 | 0.848 | 0.848 | 0.848 |
D13 | 0.917 | 0.917 | 0.917 | 0.917 | 0.917 |
D14 | 0.882 | 0.882 | 0.882 | 0.882 | 0.882 |
H1 | 0 | 0 | 0 | 0 | 0 |
H2 | 0 | 0 | 0 | 0 | 0 |
H3 | 0 | 0 | 0 | 0 | 0 |
H4 | 0 | 0 | 0 | 0 | 0 |
2020 | 2025 | 2030 | 2035 | 2040 | |
---|---|---|---|---|---|
Energy demand (MWh) | 29,249,321 | 38,215,356 | 40,945,024 | 43,869,669 | 47,003,217 |
Emission cap (tCO2/MWh) | 0.23 | 0.25 | 0.18 | 0.15 | 0.10 |
Time Period | Scenario 1 (Non-Co-Firing) | Scenario 2 (Co-Firing) |
---|---|---|
2020 | 0 | 0 |
2025 | 5,024,006 | 3,921,060 |
2030 | 89,388 | 0 |
2035 | 3,954,278 | 3,153,127 |
2040 | 9,312,140 | 8,716,507 |
Total | 18,379,814 | 15,790,695 |
Time Period | Scenario 1 (No Co-Firing) | Scenario 2 (Co-Firing) |
---|---|---|
2020 | 478.57 | 463.55 |
2025 | 1274.63 | 1168.06 |
2030 | 482.25 | 471.80 |
2035 | 1033.11 | 943.82 |
2040 | 1750.23 | 1681.48 |
Total | 5018.83 | 4728.73 |
Power Plant | 2020 | 2025 | 2030 | 2035 | 2040 |
---|---|---|---|---|---|
C1 | 637,197 | 382,318 | 318,598 | 254,878 | 191,159 |
C2 | 553,290 | 331,973 | 276,644 | 221,315 | 165,986 |
C3 | 1,562,640 | 1,406,375 | 1,250,111 | 1,093,847 | 655,059 |
C4 | 1,515,106 | 909,063 | 757,553 | 606,042 | 454,531 |
NG1 | 2,145,919 | 1,931,327 | 1,716,735 | 1,502,143 | 1,287,551 |
NG2 | 625,274 | 6,253,682 | 4,350,171 | 4,122,908 | 2,893,309 |
NG3 | 541,988 | 325,192 | 270,994 | 216,795 | 162,596 |
D1 | 2127 | 1276 | 1063 | 850 | 638 |
D2 | 90,569 | 81,512 | 72,455 | 63,398 | 54,341 |
D3 | 57,466 | 51,719 | 45,973 | 40,226 | 34,479 |
D4 | 0 | 81 | 80 | 0 | 0 |
D5 | 4256 | 3830 | 3404 | 2979 | 2553 |
D6 | 6222 | 5600 | 4978 | 4356 | 3733 |
D7 | 177 | 159 | 142 | 124 | 106 |
D8 | 0 | 900 | 1080 | 560 | 750 |
D9 | 218 | 130 | 109 | 87 | 65 |
D10 | 328 | 295 | 262 | 230 | 197 |
D11 | 1641 | 1476 | 1312 | 1148 | 984 |
D12 | 3628 | 3266 | 2903 | 2540 | 2177 |
D13 | 342 | 308 | 273 | 239 | 205 |
D14 | 699 | 629 | 559 | 489 | 419 |
H1 | 386,993 | 386,993 | 386,993 | 386,993 | 386,993 |
H2 | 15,424,402 | 15,424,402 | 15,424,402 | 15,424,402 | 15,424,402 |
H3 | 5,688,832 | 5,688,832 | 5,688,832 | 5,688,832 | 5,688,832 |
H4 | 0 | 0 | 10,280,000 | 10,280,000 | 10,280,000 |
Power Plant | 2020 | 2025 | 2030 | 2035 | 2040 |
---|---|---|---|---|---|
C1 | 637,197 | 573,477 | 318,598 | 446,037 | 191,159 |
C2 | 553,290 | 497,960 | 276,644 | 387,302 | 165,986 |
C3 | 1,562,640 | 1,406,375 | 1,250,111 | 1,093,847 | 937,583 |
C4 | 1,515,106 | 1,363,595 | 878,234 | 1,060,574 | 769,874 |
NG1 | 2,145,919 | 1,931,327 | 1,694,945 | 1,502,143 | 1,287,551 |
NG2 | 625,274 | 6,544,950 | 4,339,964 | 4,112,380 | 2,893,309 |
NG3 | 541,988 | 325,192 | 270,994 | 216,795 | 162,596 |
D1 | 2127 | 1276 | 1701 | 850 | 638 |
D2 | 90,569 | 81,512 | 72,455 | 63,398 | 54,341 |
D3 | 57,466 | 51,719 | 45,973 | 40,226 | 34,479 |
D4 | 0 | 81 | 80 | 0 | 0 |
D5 | 4256 | 3830 | 3404 | 2979 | 1276 |
D6 | 6222 | 5600 | 4978 | 4356 | 3733 |
D7 | 177 | 159 | 142 | 124 | 53 |
D8 | 0 | 900 | 1080 | 560 | 750 |
D9 | 218 | 130 | 174 | 87 | 65 |
D10 | 328 | 295 | 262 | 230 | 98 |
D11 | 1641 | 1476 | 1312 | 1148 | 492 |
D12 | 3628 | 3266 | 2903 | 2540 | 2177 |
D13 | 342 | 308 | 273 | 239 | 102 |
D14 | 699 | 629 | 559 | 489 | 209 |
H1 | 386,993 | 386,993 | 386,993 | 386,993 | 386,993 |
H2 | 15,424,402 | 15,424,402 | 15,424,402 | 15,424,402 | 15,424,402 |
H3 | 5,688,832 | 5,688,832 | 5,688,832 | 5,688,832 | 5,688,832 |
H4 | 0 | 0 | 10,280,000 | 10,280,000 | 10,280,000 |
Power Plant | 2020 | 2025 | 2030 | 2035 | 2040 |
---|---|---|---|---|---|
C1 | 2,074,208 | 1,244,525 | 1,037,104 | 829,683 | 622,262 |
C2 | 2,030,421 | 1,218,252 | 1,015,210 | 812,168 | 609,126 |
C3 | 4,393,139 | 3,953,825 | 3,514,511 | 3,075,197 | 1,841,606 |
C4 | 4,749,549 | 2,849,729 | 2,374,774 | 1,899,819 | 1,424,864 |
NG1 | 5,331,475 | 4,798,328 | 4,265,180 | 3,732,033 | 3,198,885 |
NG2 | 2,946,626 | 22,247,179 | 15,475,528 | 14,667,051 | 10,292,812 |
NG3 | 2,546,937 | 1,528,162 | 1,273,468 | 1,018,775 | 764,081 |
D1 | 9607 | 5764 | 4803 | 3843 | 2882 |
D2 | 261,083 | 234,975 | 208,866 | 182,758 | 156,650 |
D3 | 167,054 | 150,348 | 133,643 | 116,937 | 100,232 |
D4 | 0 | 365 | 361 | 0 | 0 |
D5 | 19,223 | 17,301 | 15,378 | 13,456 | 11,534 |
D6 | 28,107 | 25,296 | 22,485 | 19,675 | 16,864 |
D7 | 802 | 722 | 641 | 561 | 481 |
D8 | 0 | 4065 | 4878 | 2529 | 3387 |
D9 | 985 | 591 | 492 | 394 | 295 |
D10 | 1484 | 1335 | 1187 | 1039 | 890 |
D11 | 7411 | 6670 | 5929 | 5188 | 4447 |
D12 | 16,391 | 14,751 | 13,112 | 11,473 | 9834 |
D13 | 1546 | 1392 | 1237 | 1082 | 928 |
D14 | 3157 | 2841 | 2525 | 2210 | 1894 |
H1 | 2.84 × 109 | 2.84 × 109 | 2.84 × 109 | 2.84 × 109 | 2.84 × 109 |
H2 | 3.88 × 1010 | 3.88 × 1010 | 3.88 × 1010 | 3.88 × 1010 | 3.88 × 1010 |
H3 | 7.53 × 109 | 7.53 × 109 | 7.53 × 109 | 7.53 × 109 | 7.53 × 109 |
H4 | 0 | 0 | 2.33 × 1010 | 2.33 × 1010 | 2.33 × 1010 |
Power Plant | 2020 | 2025 | 2030 | 2035 | 2040 | |
---|---|---|---|---|---|---|
C1 | Coal | 1,462,227 626,668 | 1,316,004 564,001 | 1,037,104 0 | 1,023,559 438,668 | 438,668 188,000 |
Biomass | ||||||
C2 | Coal | 1,379,529 591,226 | 1,241,576 532,104 | 689,764 295,613 | 965,670 413,858 | 413,858 177,368 |
Biomass | ||||||
C3 | Coal | 3,226,784 1,382,907 | 2,904,106 1,244,616 | 3,514,511 0 | 2,258,749 968,035 | 1,936,070 829,744 |
Biomass | ||||||
C4 | Coal | 3,385,172 1,382,907 | 3,046,654 1,305,709 | 2,753,086 0 | 2,369,620 1,015,551 | 1,720,114 737,191 |
Biomass | ||||||
NG1 | 5,331,475 | 4,798,328 | 4,211,044 | 3,732,033 | 3,198,885 | |
NG2 | 2,946,626 | 23,283,353 | 15,439,219 | 14,667,051 | 10,292,812 | |
NG3 | 2,546,937 | 1,528,162 | 1,273,468 | 1,018,775 | 764,081 | |
D1 | 9607 | 5764 | 7686 | 3843 | 2882 | |
D2 | 261,083 | 234,975 | 208,866 | 182,758 | 156,650 | |
D3 | 167,054 | 150,348 | 133,643 | 116,937 | 100,232 | |
D4 | 0 | 365 | 361 | 0 | 0 | |
D5 | 19,223 | 17,301 | 15,378 | 13,456 | 5767 | |
D6 | 28,107 | 25,296 | 22,485 | 19,675 | 16,864 | |
D7 | 802 | 722 | 641 | 561 | 240 | |
D8 | 0 | 4065 | 4878 | 2529 | 3387 | |
D9 | 985 | 591 | 788 | 394 | 295 | |
D10 | 1484 | 1335 | 1187 | 1039 | 445 | |
D11 | 7411 | 6670 | 5929 | 5188 | 2223 | |
D12 | 16,391 | 14,751 | 13,112 | 11,473 | 9834 | |
D13 | 1546 | 1392 | 1237 | 1082 | 464 | |
D14 | 3157 | 2841 | 2525 | 2210 | 947 | |
H1 | 2.84 × 109 | 2.84 × 109 | 2.84 × 109 | 2.84 × 109 | 2.84 × 109 | |
H2 | 3.88 × 1010 | 3.88 × 1010 | 3.88 × 1010 | 3.88 × 1010 | 3.88 × 1010 | |
H3 | 7.53 × 109 | 7.53 × 109 | 7.53 × 109 | 7.53 × 109 | 7.53 × 109 | |
H4 | 0 | 0 | 2.33 × 1010 | 2.33 × 1010 | 2.33 × 1010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajakal, J.P.; Saleem, N.N.; Wan, Y.K.; Ng, D.K.S.; Andiappan, V. Low-Carbon Energy Transition for the Sarawak Region via Multi-Period Carbon Emission Pinch Analysis. Processes 2023, 11, 1441. https://doi.org/10.3390/pr11051441
Rajakal JP, Saleem NN, Wan YK, Ng DKS, Andiappan V. Low-Carbon Energy Transition for the Sarawak Region via Multi-Period Carbon Emission Pinch Analysis. Processes. 2023; 11(5):1441. https://doi.org/10.3390/pr11051441
Chicago/Turabian StyleRajakal, Jaya Prasanth, Nor Nazeelah Saleem, Yoke Kin Wan, Denny K. S. Ng, and Viknesh Andiappan. 2023. "Low-Carbon Energy Transition for the Sarawak Region via Multi-Period Carbon Emission Pinch Analysis" Processes 11, no. 5: 1441. https://doi.org/10.3390/pr11051441
APA StyleRajakal, J. P., Saleem, N. N., Wan, Y. K., Ng, D. K. S., & Andiappan, V. (2023). Low-Carbon Energy Transition for the Sarawak Region via Multi-Period Carbon Emission Pinch Analysis. Processes, 11(5), 1441. https://doi.org/10.3390/pr11051441