Experimental Study of Model Refuse-Derived Fuel Pellets Swelling during Heating and Combustion
Abstract
1. Introduction
2. Raw Materials and Experimental Setup
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sustainable Development Goals (un.org). Available online: https://www.un.org/ru/sustainable-development-goals (accessed on 13 March 2023).
- Tugov, A.N. Municipal Solid Wastes-to-Energy Conversion: Global and Domestic Experience (Review). Therm. Eng. 2022, 69, 909–924. [Google Scholar] [CrossRef]
- Jafri, Y.; Waldheim, L.; Lundgren, J. Emerging Gasification Technologies for Waste & Biomass (IEA Bioenergy Task 33); IEA Bioenergy: Paris, France, 2020. [Google Scholar]
- Kolapkar, S.S.; Zinchik, S.; Burli, P.; Lin, Y.; Hartley, D.S.; Klinger, J.; Handler, R.; Bar-Ziv, E. Integrated torrefaction-extrusion system for solid fuel pellet production from mixed fiber-plastic wastes: Techno-economic analysis and life cycle assessment. Fuel Process. Technol. 2022, 226, 107094. [Google Scholar] [CrossRef]
- Van Caneghem, J.; van Acker, K.; de Greef, J.; Wauters, G.; Vandecasteele, C. Waste-to-energy is compatible and complementary with recycling in the circular economy. Clean Technol. Environ. Policy 2019, 21, 925–939. [Google Scholar] [CrossRef]
- Van Blijderveen, M.; Bramer, E.A.; Brem, G. Modelling spontaneous ignition of wood, char and RDF in a lab-scale packed bed. Fuel 2013, 108, 190–196. [Google Scholar] [CrossRef]
- Hao, Z.; Sun, M.; Ducoste, J.J.; Benson, C.H.; Luettich, S.; Castaldi, M.J.; Barlaz, M.A. Heat Generation and Accumulation in Municipal Solid Waste Landfills. Environ. Sci. Technol. 2017, 51, 12434–12442. [Google Scholar] [CrossRef]
- Li, D.; Feng, Y.; Chen, Z.; Chen, Z.; Li, M.; Bin, Y.; Yu, Z. Co-combustion of aged refuse and municipal solid waste under increased N2/O2 atmospheres: Kinetics analysis, thermodynamic characteristics. Energy Sources A 2022, 15, 1788–1797. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Czajczynska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Thorne, R.J.; Colon, J.; Ponsa, S.; Al-Mansour, F.; et al. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Quina, M.J.; Bordado, J.C.M.; Quinta-Ferreira, R.M. Air pollution control in municipal solid waste incinerators. In The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources; Khallaf, M., Ed.; InTech: Rijeka, Croatia, 2011; pp. 331–358. [Google Scholar]
- Dong, J.; Tang, Y.; Nzihoum, A.; Chi, Y.; Weiss-Hortala, E.; Ni, M. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Sci. Total Environ. 2018, 626, 744–753. [Google Scholar] [CrossRef]
- Roman, J.; Wroblewski, R.; Klojzy-Karczmarczyk, B.; Ceran, B. Energetic, Economic and Environmental (3E) Analysis of a RES-Waste Gasification Plant with Syngas Storage Cooperation. Energies 2023, 16, 2062. [Google Scholar] [CrossRef]
- Alves, O.; Calado, L.; Panizio, R.M.; Goncalves, M.; Monteiro, E.; Brito, P. Techno-economic study for a gasification plant processing residues of sewage sludge and solid recovered fuels. Waste Manag. 2021, 131, 148–162. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Nyashina, G.S.; Vershinina, K.Y.; Romanov, D.S.; Strizhak, P.A. Multicriteria Analysis to Substantiate the Promising Nature of Using Waste as Components of Fuels. J. Eng. Phys. Thermophys. 2023, 96, 120–129. [Google Scholar] [CrossRef]
- Cudjoe, D.; Wang, H. Plasma gasification versus incineration of plastic waste: Energy, economic and environmental analysis. Fuel Proces. Technol. 2022, 237, 107470. [Google Scholar] [CrossRef]
- Kobayashi, H.; Yoshikawa, K.; Shioda, S. Analysis of power generation system on gasification of coal and solid wastes using high temperature air. In International Conference on MHD Power Generation and High Temperature Technologies; PRC: Beijing, China, 1999; pp. 12–15. [Google Scholar]
- Glushkov, D.; Paushkina, K.; Shabardin, D.; Strizhak, P.; Gutareva, N. Municipal solid waste recycling by burning it as part of composite fuel with energy generation. J. Environ. Eng. 2019, 231, 896–904. [Google Scholar] [CrossRef]
- Glushkov, D.; Kuznetsov, G.; Paushkina, K. Switching Coal-Fired Thermal Power Plant to Composite Fuel for Recovering Industrial and Municipal Waste: Combustion Characteristics, Emissions, and Economic Effect. Energies 2020, 13, 259. [Google Scholar] [CrossRef]
- Vershinina, K.Y.; Shlegel, N.E.; Strizhak, P.A. Impact of environmentally attractive additives on the ignition delay times of slurry fuels: Experimental study. Fuel 2019, 238, 275–288. [Google Scholar] [CrossRef]
- AlNouss, A.; McKay, G.; Al-Ansari, T. Production of syngas via gasification using optimum blends of biomass. J. Clean. Prod. 2020, 242, 118499. [Google Scholar] [CrossRef]
- Hu, Y.; Pang, K.; Cai, L.; Liu, Z. A multi-stage co-gasification system of biomass and municipal solid waste (MSW) for high quality syngas production. Energy 2021, 221, 119639. [Google Scholar] [CrossRef]
- Molino, A.; Migliori, M.; Blasi, A.; Davoli, M.; Marino, T.; Chianese, S.; Catizzone, E.; Giordano, G. Municipal waste leachate conversion via catalytic supercritical water gasification process. Fuel 2017, 206, 155–161. [Google Scholar] [CrossRef]
- Paradela, F.; Pinto, F.; Ramos, A.M.; Gulyurtlu, I.; Cabrita, I. Study of the slow batch pyrolysis of mixtures of plastics, tyres and forestry biomass wastes. J. Anal. Appl. Pyrolysis 2009, 85, 392–398. [Google Scholar] [CrossRef]
- Tanigaki, N.; Manako, K.; Osada, M. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system. Waste Manag. 2012, 32, 667–675. [Google Scholar] [CrossRef]
- Piatkowski, N.; Steinfeld, A. Solar gasification of carbonaceous waste feedstocks in a packed-bed reactor—Dynamic modeling and experimental validation. AIChEJ 2011, 57, 3522–3533. [Google Scholar] [CrossRef]
- Ponzio, A. Thermally homogeneous gasification of biomass/coal/waste for medium or high calorific value syngas production. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2008. [Google Scholar]
- Sikarwar, V.S.; Hrabovsky, M.; Oost, G.V.; Pohorely, M.; Jeremias, M. Progress in waste utilization via thermal plasma. Prog. Energy Combust. Sci. 2020, 81, 100873. [Google Scholar] [CrossRef]
- Tosti, S.; Sousa, M.A.; Buceti, G.; Madeira, L.M.; Pozio, A. Process analysis of refuse derived fuel hydrogasification for producing SNG. Int. J. Hydrog. Energy 2019, 44, 21470–21480. [Google Scholar] [CrossRef]
- Manelis, G.B.; Glazov, S.V.; Salgansky, E.A.; Lempert, D.B. Autowave processes in the filtration combustion in counterflow systems. Russ. Chem. Rev. 2012, 81, 855–873. [Google Scholar] [CrossRef]
- Ivanov, P.P.; Kovbasyuk, V.I.; Medvedev, Y.V. The thermochemical analysis of the effectiveness of various gasification technologies. Therm. Eng. 2013, 60, 367–373. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Recent advances in the gasification of waste plastics. A critical overview . Renew. Sustain. Energy Rev. 2018, 82, 576–596. [Google Scholar] [CrossRef]
- Cao, J.; Zhong, W.; Jin, B.; Wang, Z.; Wang, K. Treatment of Hydrochloric Acid in Flue Gas from Municipal Solid Waste Incineration with Ca–Mg–Al Mixed Oxides at Medium–High Temperatures. Energy Fuels 2014, 28, 4112–4117. [Google Scholar] [CrossRef]
- Chan, W.P.; Veksha, A.; Lei, J.; Oh, W.-D.; Dou, X.; Giannis, A.; Lisak, G.; Lim, T.-T. A hot syngas purification system integrated with downdraft gasification of municipal solid waste. Appl. Energy 2019, 237, 227–240. [Google Scholar] [CrossRef]
- Materazzi, M. Clean energy from waste. Fundamental investigations on ashes and tar behaviour in a two-stage fluid bed-plasma process for waste gasification. Ph.D. Thesis, University College, London, UK, 2017. [Google Scholar] [CrossRef]
- Jiang, X.; Li, Y.; Yang, J. Hazardous waste incineration in a rotary kiln: A review. Waste Dispos. Sustain. Energy 2019, 1, 3–37. [Google Scholar] [CrossRef]
- Campuzano, F.; Brown, R.C.; Martinez, J.D. Auger reactors for pyrolysis of biomass and wastes. Renew. Sustain. Energy Rev. 2019, 102, 372–409. [Google Scholar] [CrossRef]
- Yang, Y.B.; Swithenbank, J. Mathematical modelling of particle mixing effect on the combustion of municipal solid wastes in a packed-bed furnace. Waste Manag. 2008, 28, 1290–1300. [Google Scholar] [CrossRef]
- Rademakers, P.; Hesseling, W.; van de Wetering, J. Review on Corrosion in Waste Incinerators, and Posssible Effect of Bromine; TNO Report I02/01333/RAD; TNO: The Hague, The Netherlands, 2002. [Google Scholar]
- Ma, W.; Wenga, T.; Zhang, N.; Chen, G.; Yan, B.; Zhou, Z.; Wu, X. Full-scale experimental investigation of deposition and corrosion of pre-protector and 3rd superheater in a waste incineration plant. Sci. Rep. 2017, 7, 17549. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Z.; Lin, X.; Wang, F.; Yan, J. Kinetics and fusion characteristics of municipal solid waste incineration fly ash during thermal treatment. Fuel 2020, 279, 118410. [Google Scholar] [CrossRef]
- Lopes, E.J.; Queiros, N.; Yamamoto, C.I.; da Consta Neto, P.R. Evaluating the emissions from the gasification processing of municipal solid waste followed by combustion. Waste Manag. 2018, 73, 504–510. [Google Scholar] [CrossRef]
- Quina, M.J.; Bontempi, E.; Bogush, A.; Schlumberger, S.; Weibel, G.; Braga, R.; Funari, V.; Hyks, J.; Rasmussen, E.; Lederer, J. Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. Sci. Total Environ. 2018, 635, 526–542. [Google Scholar] [CrossRef]
- Madadian, E. Experimental Observation on Downdraft Gasification for Different Biomass Feedstocks. In Gasification for Low-Grade Feedstock; InTech: London, UK, 2018; pp. 79–93. [Google Scholar]
- Meng, Q.; Chen, X.; Bu, C.; Ma, J. Controlled air oxidation of plastic and biomass in a packed bed reactor. Chem. Eng. Technol. 2014, 37, 43–48. [Google Scholar] [CrossRef]
- Ramos, A.; Monteiro, E.; Silva, V.; Rouboa, A. Co-gasification and recent development on waste-to-energy conversion: A review. Renew. Sustain. Energy Rev. 2018, 81, 380–398. [Google Scholar] [CrossRef]
- Madadian, E.; Crowe, C.; Lefsrud, M. Evaluation of composite fiber-plastics biomass clinkering under the gasification conditions. J. Clean. Prod. 2017, 164, 137–145. [Google Scholar] [CrossRef]
- Salganskaya, M.V.; Glazov, S.V.; Salganskii, E.A.; Zholudev, A.F. Filtration combustion of charcoal-polyethylene systems. Russ. J. Phys. Chem. B 2010, 4, 928–933. [Google Scholar] [CrossRef]
- Esmaeili, V.; Ajalli, J.; Faramarzi, A.; Abdi, M.; Gholizadeh, M. Gasification of wastes: The impact of the feedstock type and co-gasification on the formation of volatiles and char. Int. J. Energy Res. 2020, 44, 3587–3606. [Google Scholar] [CrossRef]
- Saravanakumar, A.; Reed, T.B.; Sudha, M.R. Experimental Analysis of Municipal Solid Waste Blended with Wood in a Downdraft Gasifier. J. Environ. Eng. Sci. 2020, 15, 180–188. [Google Scholar] [CrossRef]
- Bhoi, P.R.; Huhnke, R.L.; Kumar, A.; Indrawan, N.; Thapa, S. Co-gasification of Municipal Solid Waste and Biomass in a Commercial Scale Downdraft Gasifier. Energy 2018, 163, 513–518. [Google Scholar] [CrossRef]
- Indrawan, N.; Thapa, S.; Bhoi, P.R.; Huhnke, R.L.; Kumar, A. Electricity power generation from co-gasification of municipal solid wastes and biomass: Generation and emission performance. Energy 2018, 162, 764–775. [Google Scholar] [CrossRef]
- Na, J.I.; Park, S.J.; Kim, Y.K.; Lee, J.G.; Kim, J.H. Characteristics of oxygen-blown gasification for combustible waste in a fixed-bed gasifier. Appl. Energy 2003, 75, 275–285. [Google Scholar] [CrossRef]
- Chan, W.P.; Yousoff, S.A.M.B.; Veksha, A.; Giannis, A.; Lim, T.-T.; Lisak, G. Analytical assessment of tar generated during gasification of municipal solid waste: Distribution of GC–MS detectable tar compounds, undetectable tar residues and inorganic impurities. Fuel 2020, 268, 117348. [Google Scholar] [CrossRef]
- Veksha, A.; Giannis, A.; Yuan, G.; Tng, J.; Chan, W.P.; Chang, V.W.-C.; Lisak, G.; Lim, T.-T. Distribution and modeling of tar compounds produced during downdraft gasification of municipal solid waste. Renew. Energy 2019, 136, 1294–1303. [Google Scholar] [CrossRef]
- Fazil, A.; Kumar, S.; Mahajani, S.M. Gasification and Co-gasification of paper-rich, high-ash refuse-derived fuel in downdraft gasifier. Energy 2023, 263, 125659. [Google Scholar] [CrossRef]
- Gu, Q.; Wu, W.; Jin, B.; Zhou, Z. Analyses for Synthesis Gas from Municipal Solid Waste Gasification under Medium Temperatures. Processes 2020, 8, 84. [Google Scholar] [CrossRef]
- Weiland, F.; Lundin, L.; Celebi, M.; van der Vlist, K.; Moradian, F. Aspects of chemical recycling of complex plastic waste via the gasification route. Waste Manag. 2021, 126, 65–77. [Google Scholar] [CrossRef]
- Vonk, G.; Piriou, B.; Dos Santos, P.F.; Wolbert, D.; Vaitilingom, G. Comparative analysis of wood and solid recovered fuels gasification in a downdraft fixed bed reactor. Waste Manag. 2019, 85, 106–120. [Google Scholar] [CrossRef]
- Nunes, S.M.; Paterson, N.; Dugwell, D.R.; Kandiyoti, R. Tar formation and destruction in a simulated downdraft, fixed-bed gasifier: Reactor design and initial results. Energy Fuels 2007, 21, 3028–3035. [Google Scholar] [CrossRef]
- Gupta, A.K.; Cichonski, W. Ultra-High Temperature Steam Gasification of Biomass and Solid Wastes. Environ. Eng. Sci. 2007, 24, 1179–1189. [Google Scholar] [CrossRef]
- Jing, X.; Wen, H.; Gong, X.; Xu, Z.; Kajetanowicz, A. Recycling waste plastics packaging to value-added products by two-step microwave cracking with different heating strategies. Fuel Proces. Technol. 2020, 201, 106346. [Google Scholar] [CrossRef]
- Wyn, H.K.; Konarova, M.; Beltramini, J.; Perkins, G.; Yerman, L. Self-sustaining smouldering combustion of waste: A review on applications, key parameters and potential resource recovery. Fuel Proces. Technol. 2020, 205, 106425. [Google Scholar] [CrossRef]
- Alekseenko, S.V.; Anshakov, A.S.; Domarov, P.V.; Faleev, V.A. Experimental plasma setup for gasification of organic waste with their discrete supply into gasifier. Thermophys. Aeromech. 2019, 26, 939–943. [Google Scholar] [CrossRef]
- Butterman, H.C.; Castaldi, M.J.; Gelix, F.; Borrut, D.; Nicol, F.; Lefebvre, B. Biomass and RDF Gasification Using Ballistic Heating TGA Analysis. Waste Biomass Valorization 2014, 5, 607–623. [Google Scholar] [CrossRef]
- Singh, R.K.; Ruj, B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 2016, 174, 164–171. [Google Scholar] [CrossRef]
- Hla, S.S.; Lopes, R.; Roberts, D. The CO2 gasification reactivity of chars produced from Australian municipal solid waste. Fuel 2016, 185, 847–854. [Google Scholar] [CrossRef]
- Sorum, L.; Gronli, M.G.; Hustad, J.E. Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 2001, 80, 1217–1227. [Google Scholar] [CrossRef]
- Rasam, S.; Haghighi, A.M.; Azizi, K.; Soria-Verdugo, A.; Moraveji, M.K. Thermal behavior, thermodynamics and kinetics of co-pyrolysis of binary and ternary mixtures of biomass through thermogravimetric analysis. Fuel 2020, 280, 118665. [Google Scholar] [CrossRef]
- Burra, K.G.; Gupta, A.K. Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes. Appl. Energy 2018, 220, 408–418. [Google Scholar] [CrossRef]
- Hoang, Q.N.; Vanierschot, M.; Blondeau, J.; Croymans, T.; Pittoors, R.; Van Caneghem, J. Review of numerical studies on thermal treatment of municipal solid waste in packed bed combustion. Fuel Commun. 2021, 7, 100013. [Google Scholar] [CrossRef]
- Netzer, C.; Li, T.; Lovas, T. Surrogate Reaction Mechanism for Waste Incineration and Pollutant Formation. Energy Fuels 2021, 35, 7030–7049. [Google Scholar] [CrossRef]
- Tiburcio, R.S.; Junior, M.M.; de Campos Leite, J.T.; Yamaji, F.M.; Neto, A.M.P. Physicochemical and thermophysical characterization of rejected waste and evaluation of their use as refuse-derived fuel. Fuel 2021, 293, 120359. [Google Scholar] [CrossRef]
- Xiong, S.; Zhuo, J.; Zhou, H.; Pang, R.; Yao, Q. Study on the co-pyrolysis of high density polyethylene and potato blends using thermogravimetric analyzer and tubular furnace. J. Anal. Appl. Pyrolysis 2015, 112, 66–73. [Google Scholar] [CrossRef]
- Zaini, I.N.; Wen, Y.; Mousa, E.; Jonsson, P.G.; Yang, W. Primary fragmentation behavior of refuse derived fuel pellets during rapid pyrolysis. Fuel Process. Technol. 2021, 216, 106796. [Google Scholar] [CrossRef]
- Shurtz, R.C.; Kolste, K.K.; Fletcher, T.H. Coal swelling model for high heating rate pyrolysis applications. Energy Fuels 2011, 25, 2163–2173. [Google Scholar] [CrossRef]
- Yu, J.; Lucas, J.A.; Wall, T.F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review. Prog. Energy Combust. Sci. 2007, 33, 135–170. [Google Scholar] [CrossRef]
- Snegirev, A.Y.; Handawy, M.K.; Stepanov, V.V.; Talalov, V.A. Pyrolysis and combustion of polymer mixtures: Exploring additivity of the heat release rate. Polym. Degrad. Stab. 2019, 161, 245–259. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Sroda, K.; Kosowska-Golachowska, M.; Musial, T.; Wolski, K. Combustion of pelleted sewage sludge with reference to coal and biomass. Fuel 2016, 170, 141–160. [Google Scholar] [CrossRef]
- Mohanna, H.; Commandre, J.-M.; Piriou, B.; Vaitilingom, G.; Tauoin, B.; Honore, D. Shadowgraphy investigation of the combustion of raw and pre-treated single biomass particles: Influence of particle size and volatile content. Fuel 2019, 258, 116113. [Google Scholar] [CrossRef]
- Riazza, J.; Gibbins, J.; Chalmers, H. Ignition and combustion of single particles of coal and biomass. Fuel 2017, 202, 650–655. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Salomatov, V.V.; Syrodoy, S.V. Ignition of Particles of Wet Woody Biomass under Convective Diffusion of Water Vapor in the Near-Wall Region. Combust. Explos. Shock Waves 2018, 54, 325–336. [Google Scholar] [CrossRef]
- Momeni, M.; Yin, C.; Kaer, S.K.; Hvid, S.L. Comprehensive Study of Ignition and Combustion of Single Wooden Particles. Energy Fuels 2013, 27, 1061–1072. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Syrodoy, S.V.; Gutareva, N.Y.; Kostoreva, A.A.; Kostoreva, Z.A. Ignition of the wood biomass particles under conditions of near-surface fragmentation of the fuel layer. Fuel 2019, 252, 19–36. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Syrodoy, S.V.; Gutareva, N.Y. Influence of a wet wood particle form on the characteristics of its ignition in the high-temperature medium. Renew. Energy 2020, 145, 1474–1486. [Google Scholar] [CrossRef]
- Fatehi, H.; Weng, W.; Costa, M.; Li, Z.; Rabacal, M.; Alden, M. Numerical simulation of ignition mode and ignition delay time of pulverized biomass particles. Combust. Flame 2019, 206, 400–410. [Google Scholar] [CrossRef]
- Li, H.; Chi, H.; Han, H.; Hu, S.; Song, G.; Wang, Y.; He, L.; Wang, Y.; Su, S.; Xiang, J. Comprehensive study on co-combustion behavior of pelletized coal-biomass mixtures in a concentrating photothermal reactor. Fuel Process. Technol. 2021, 211, 106596. [Google Scholar] [CrossRef]
- Lu, Z.; Li, X.; Jian, J.; Yao, S. Flame combustion of single wet-torrefied wood particle: Effects of pretreatment temperature and residence time. Fuel 2019, 250, 160–167. [Google Scholar] [CrossRef]
- Riaza, J.; Khatami, R.; Levendis, Y.A.; Alvarez, L.; Gil, M.V.; Pevida, C.; Rubiera, F.; Pis, J.J. Combustion of single biomass particle in air and in oxy-fuel conditions. Biomass Bioenergy 2014, 64, 162–174. [Google Scholar] [CrossRef]
- Mock, C.; Park, H.; Ryu, C.; Manovic, V.; Choi, S.-C. Particle temperature and flue gas emission of a burning single pellet in air and oxy-fuel combustion. Combust. Flame 2020, 213, 156–171. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Syrodoy, S.V.; Kostoreva, A.A.; Kostoreva, Z.A.; Nigay, N.A. Effect of concentration and relative position of wood and coal particles on the characteristics of the mixture ignition process. Fuel 2020, 274, 117843. [Google Scholar] [CrossRef]
- Saeed, M.A.; Niedzwiecki, L.; Arshad, M.Y.; Skrinsky, J.; Andrews, G.E.; Phylaktou, H.N. Combustion and Explosion Characteristics of Pulverised Wood, Valorized with Mild Pyrolysis in Pilot Scale Installation, Using the Modified ISO1 m3 Dust Explosion Vessel. Appl. Sci. 2022, 12, 12928. [Google Scholar] [CrossRef]
- He, J.; Li, J.; Huang, Q.; Yan, J. Release characteristics of potassium and sodium during pellet combustion of typical MSW fractions using the FES method. Combust. Flame 2022, 244, 112233. [Google Scholar] [CrossRef]
- Nyashina, G.S.; Vershinina, K.Y.; Shlegel, N.E.; Strizhak, P.A. Effective incineration of fuel-waste slurries from several related in-dustries. Environ. Res. 2019, 176, 108559. [Google Scholar] [CrossRef]
- Syrodoy, S.V.; Kuznetsov, G.V.; Gutareva, N.Y.; Purin, M.V. Ignition of bio-water-coal fuel drops. Energy 2020, 203, 117808. [Google Scholar] [CrossRef]
- Li, H.; Chi, H.; Wang, Y.; Song, G.; Abdulmajid, A.S.; He, L.; Wang, Y.; Su, S.; Xiang, J. Comprehensive study on intrinsic combustion behavior of non-premixed coal-biomass pellet at rapid heating rate. Fuel 2021, 287, 119496. [Google Scholar] [CrossRef]
- Yankovsky, S.A.; Tolokolnikov, A.A.; Cherednik, I.V.; Kuznetsov, G.V. Reasons for tangerine peel utilization in the composition of mixed fuels based on bituminous coal. J. Phys. Conf. Ser. 2019, 1359, 0120136. [Google Scholar] [CrossRef]
- Esso, S.B.E.; Xiong, Z.; Chaiwat, W.; Kamara, M.F.; Longfei, X.; Xu, J.; Ebako, J.; Jiang, L.; Su, S.; Hu, S.; et al. Review on synergistic effects during co-pyrolysis of biomass and plastic waste: Significance of operating conditions and interaction mechanism. Biomass Bioenergy 2022, 159, 106415. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Q.; Arnold, L.; Yang, W.; Blasiak, W. A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels. Appl. Energy 2013, 107, 173–182. [Google Scholar] [CrossRef]
- Riaza, J.; Mason, P.E.; Jones, J.M.; Williams, A.; Gibbins, J.; Chalmers, H. Shape and size transformations of biomass particles during combustion. Fuel 2020, 261, 116334. [Google Scholar] [CrossRef]
- Xu, Y.; Zhai, M.; Zhang, Y.; Shen, Q.; Kumar, G.; Dong, P.; Perez, A.M. Effect of the ash melting behavior of a corn straw pellet on its heat and mass transfer characteristics and combustion rate. Fuel 2021, 286, 119483. [Google Scholar] [CrossRef]
- Paulauskas, R.; Dziugys, A.; Striugas, N. Experimental investigation of wood pellet swelling and shrinking during pyrolysis. Fuel 2015, 142, 145–151. [Google Scholar] [CrossRef]
- Caposciutti, G.; Almunia-Villar, H.; Deiguez-Alonso, A.; Gruber, T.; Kelz, J.; Desideri, U.; Hochenauer, C.; Scharler, R.; Anca-Couce, A. Experimental investigation on biomass shrinking and swelling behaviour: Particles pyrolysis and wood logs combustion. Biomass Bioenergy 2019, 123, 1–13. [Google Scholar] [CrossRef]
- Klinghoffer, N.B.; Castaldi, M.J. (Eds.) Waste to Energy Conversion Technology; Woodhead Publishing: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Donskoy, I.G.; Kozlov, A.N.; Kozlova, M.A.; Penzik, M.V.; Shamanskiy, V.A. Thermochemical interaction of wood and polyethylene during co-oxidation in the conditions of thermogravimetric analysis. React. Kinet. Mech. Catal. 2020, 131, 845–857. [Google Scholar] [CrossRef]
- Donskoy, I.; Kozlov, A.; Svishchev, D.; Penzik, M. Experimental study on fixed-bed combustion and agglomeration of sawdust–polyethylene mixtures. Energy Sources A 2022. [Google Scholar] [CrossRef]
- Svishchev, D.A.; Kozlova, M.A.; Ralnikov, P.A. A method of studying thermochemical conversion of single biomass particles in an intense air flow. J. Phys. Conf. Ser. 2019, 1261, 012036. [Google Scholar] [CrossRef]
- Svishchev, D. Experimental Study to Replicate Wood Fuel Conversion in a Downdraft Gasifier: Features and Mechanism of Single Particle Combustion in an Inert Channel. Appl. Sci. 2022, 12, 1179. [Google Scholar] [CrossRef]
- Chen, Y.-C. Effects of urbanization on municipal solid waste composition. Waste Manag. 2018, 79, 828–836. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Mostafa, M.E.; Khass, T.M.; Noseir, E.H.; Ismail, M.A. Combustion and mass loss behavior and characteristics of a single biomass pellet positioning at different orientations in a fixed bed reactor. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- Chaurasia, A.S.; Kulkami, B.D. Most sensitive parameters in pyrolysis of shrinking biomass particle. Energy Convers. Manag. 2007, 48, 836–849. [Google Scholar] [CrossRef]
- Bouafif, H.; Koubaa, A.; Perre, P.; Cloutier, A.; Riedl, B. Wood particle/high-density polyethylene composites: Thermal sensitivity and nucleating ability of wood particles. Appl. Polym. Sci. 2009, 113, 593–600. [Google Scholar] [CrossRef]
- Paulauskas, R.; Struigas, N.; Zakarauskas, K.; Lina, V. Investigation of regularities of pelletized biomass thermal deformations during pyrolysis. Therm. Sci. 2018, 22, 603–612. [Google Scholar] [CrossRef]
- Tripathi, P.; Rao, L. Single particle and packed bed combustion characteristics of high ash and high plastic content refuse derived fuel. Fuel 2022, 308, 121983. [Google Scholar] [CrossRef]
- Chen, Y.; Syed-Hassan, S.S.A.; Li, Q.; Deng, Z.; Hu, X.; Xu, J.; Jiang, L.; Su, S.; Hu, S.; Wang, Y.; et al. Effects of temperature and aspect ratio on heterogeneity of the biochar from pyrolysis of biomass pellet. Fuel Process. Technol. 2022, 235, 107366. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Syrodoy, S.V.; Borisov, B.V.; Kostoreva, Z.A.; Gutareva, N.Y.; Kostoreva, A.A. Influence of homeomorphism of the surface of a wood particle on the characteristics of its ignition. Renew. Energy 2023, 203, 828–840. [Google Scholar] [CrossRef]
- Wang, L.; Li, N.; Lu, Y.; Zhang, R.; Sun, Z.; Niu, S.; Luo, Y. Product distribution from pyrolysis of large biomass particle: Effects of intraparticle secondary reactions. Fuel 2022, 325, 124851. [Google Scholar] [CrossRef]
- Preimesberger, C.; Solt-Rindler, A.; Hansmann, C.; Pfeifer, C. Influence of size and temperature on the auto-ignition characteristics of solid beech and spruce wood. Fuel 2023, 337, 127140. [Google Scholar] [CrossRef]
- Rezaei, H.; Yazdanpanah, F.; Lim, C.J.; Sokhansanj, S. Pelletization properties of refuse-derived fuel—Effects of particle size and moisture content. Fuel Process. Technol. 2020, 205, 106437. [Google Scholar] [CrossRef]
- Wiens, E.; Hallett, W.L.H.; Skiffington, R. Tracking the histories of individual fuel particles in packed bed combustion. Fuel 2023, 340, 127573. [Google Scholar] [CrossRef]
Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
PE fraction, % wt. | 0 | 20 | 20 | 40 | 20 | 20 | 40 |
d0, mm | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
L0, mm | 13.2 | 15.0 | 18.0 | 20.0 | 8.0 | 12.3 | 13.0 |
m0, g | 4.25 | 5.01 | 5.02 | 4.99 | 3.22 | 5.15 | 4.80 |
Preheating, °C | - | - | - | - | 160 | 160 | 160 |
P, atm | 10 | 10 | 10 | 10 | 5 | 5 | 5 |
ρ, g/cm3 | 1.02 | 1.06 | 0.89 | 0.79 | 1.28 | 1.33 | 1.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donskoy, I.; Svishchev, D. Experimental Study of Model Refuse-Derived Fuel Pellets Swelling during Heating and Combustion. Processes 2023, 11, 995. https://doi.org/10.3390/pr11040995
Donskoy I, Svishchev D. Experimental Study of Model Refuse-Derived Fuel Pellets Swelling during Heating and Combustion. Processes. 2023; 11(4):995. https://doi.org/10.3390/pr11040995
Chicago/Turabian StyleDonskoy, Igor, and Denis Svishchev. 2023. "Experimental Study of Model Refuse-Derived Fuel Pellets Swelling during Heating and Combustion" Processes 11, no. 4: 995. https://doi.org/10.3390/pr11040995
APA StyleDonskoy, I., & Svishchev, D. (2023). Experimental Study of Model Refuse-Derived Fuel Pellets Swelling during Heating and Combustion. Processes, 11(4), 995. https://doi.org/10.3390/pr11040995