Thermal Stability, Kinetic Analysis, and Safe Temperature Assessment of Ionic Liquids 1-Benzyl-3-Methylimidazolium Bis (Trifluoromethylsulfonyl) Imide for Emerging Building and Energy Related Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Thermogravimetric Analyzer (TGA)
3. The Modified Reaction Mechanism and the Subsequent Kinetic Calculation Mode
3.1. Kinetic Model of Different Reaction Stage
3.2. Extending from the Analysis of Material Dynamics to the Thermal Balance of the System
3.3. Safety Operation and Related Evaluation Parameters of Actual Manufacturing Process
3.4. Thermal Stability on Storage Condition
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liaw, H.J.; Liou, Y.R.; Liu, P.H.; Chen, H.Y.; Shu, C.M. Increased flammability hazard when ionic liquid [C6mim][Cl] is exposed to high temperatures. J. Hazard. Mater. 2019, 367, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Pan, L.; Wang, L.; Zou, J.J. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids. Chem. Eng. Sci. 2018, 180, 95–125. [Google Scholar] [CrossRef]
- Ogunlaja, A.S.; Alade, O.S. Catalysed oxidation of quinoline in model fuel and the selective extraction of quinoline-N-oxide with imidazoline-based ionic liquids. Egypt. J. Pet. 2018, 27, 159–168. [Google Scholar] [CrossRef]
- Durak, O.; Zeeshan, M.; Habib, N.; Gulbalkan, H.C.; Alsuhile, A.A.A.M.; Caglayan, H.P.; Kurtoğlu-Öztulum, S.F.; Zhao, Y.; Haslak, Z.P.; Uzun, A.; et al. Composites of porous materials with ionic liquids: Synthesis, characterization, applications, and beyond. Microporous Mesoporous Mater. 2022, 332, 111703. [Google Scholar] [CrossRef]
- Barrulas, R.V.; Zanatta, M.; Casimiro, T.; Corvo, M.C. Advanced porous materials from poly(ionic liquid)s: Challenges, applications and opportunities. Chem. Eng. J. 2021, 411, 128528. [Google Scholar] [CrossRef]
- He, D.; Liang, R.; Zhao, J.; Liu, Z.; Lu, Z.; Sun, G. Effect of ionic liquids in compatibility with PCE and cement paste containing clay. Constr. Build. Mater. 2020, 264, 120265. [Google Scholar] [CrossRef]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq. 2017, 227, 44–60. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, J.; Shah, K.; Atkin, R.; Moghtaderi, B. Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction. Fuel 2015, 143, 244–252. [Google Scholar] [CrossRef]
- Maton, C.; De Vos, N.; Stevens, C.V. Ionic liquid thermal stabilities: Decomposition mechanisms and analysis tools. Chem. Soc. Rev. 2013, 42, 5963–5977. [Google Scholar] [CrossRef]
- Schneider, S.; Hawkins, T.; Ahmed, Y.; Deplazes, S.; Mills, J. Ionic Liquid Fuels for Chemical Propulsion. In Ionic Liquids: Science and Applications; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2012; Volume 1117, pp. 1–25. [Google Scholar]
- Domańska, U.; Karpińska, M.; Wlazło, M. Bis(trifluoromethylsulfonyl)imide, or dicyanamide-based ionic liquids in the liquid–liquid extraction of hex-1-ene from hexane and cyclohexene from cyclohexane. J. Chem. Thermodyn. 2017, 105, 375–384. [Google Scholar] [CrossRef]
- Jalili, A.H.; Mehdizadeh, A.; Ahmadi, A.N.; Zoghi, A.T.; Shokouhi, M. Solubility behavior of CO2 and H2S in 1-benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. J. Chem. Thermodyn. 2022, 167, 106721. [Google Scholar] [CrossRef]
- Liu, S.H.; Lin, W.C.; Xia, H.; Hou, H.Y.; Shu, C.M. Combustion of 1-butylimidazolium nitrate via DSC, TG, VSP2, FTIR, and GC/MS: An approach for thermal hazard, property and prediction assessment. Process Saf. Environ. Prot. 2018, 116, 603–614. [Google Scholar] [CrossRef]
- Lin, W.C.; Yu, W.L.; Liu, S.H.; Huang, S.Y.; Hou, H.Y.; Shu, C.M. Thermal hazard analysis and combustion characteristics of four imidazolium nitrate ionic liquids. J. Therm. Anal. Calorim. 2018, 133, 683–693. [Google Scholar] [CrossRef]
- Liu, S.H.; Shu, C.M. Advanced technology of thermal decomposition for AMBN and ABVN by DSC and VSP2. J. Therm. Anal. Calorim. 2015, 121, 533–540. [Google Scholar] [CrossRef]
- Liu, S.H.; Hou, H.Y.; Shu, C.M. Thermal hazard evaluation of the autocatalytic reaction of benzoyl peroxide using DSC and TAM III. Thermochim. Acta 2015, 605, 68–76. [Google Scholar] [CrossRef]
- Kossoy, A.A.; Sheinman, I.Y. Evaluating Thermal Explosion Hazard by Using Kinetics-Based Simulation Approach. Process Saf. Environ. Prot. 2004, 82, 421–430. [Google Scholar] [CrossRef]
- Kossoy, A.A.; Benin, A.I.; Akhmetshin, Y.G. An advanced approach to reactivity rating. J. Hazard. Mater. 2005, 118, 9–17. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Somma, I.D.; Sanchirico, R. Kinetic and safety assessment for salicylic acid nitration by nitric acid/acetic acid system. J. Hazard. Mater. 2006, 134, 1–7. [Google Scholar] [CrossRef]
- Gonzales, N.O.; Levin, M.E.; Zimmerman, L.W. The reactivity of sodium borohydride with various species as characterized by adiabatic calorimetry. J. Hazard. Mater. 2007, 142, 639–646. [Google Scholar] [CrossRef]
- Kossoy, A.A.; Akhmetshin, Y.G. Identification of kinetic models for the assessment of reaction hazards. Process Saf. Prog. 2007, 26, 209–220. [Google Scholar] [CrossRef]
- Wang, S.Y.; Kossoy, A.A.; Yao, Y.D.; Chen, L.P.; Chen, W.H. Kinetics-based simulation approach to evaluate thermal hazards of benzaldehyde oxime by DSC tests. Thermochim. Acta 2017, 655, 319–325. [Google Scholar] [CrossRef]
- ChemInform Saint Petersburg (CISP) Ltd. Thermal Safety Software. 2022. Available online: http://www.cisp.spb.ru (accessed on 5 May 2022).
- Opfermann, J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J. Therm. Anal. Calorim. 2000, 60, 641–658. [Google Scholar] [CrossRef]
- United Nations. Recommendations on the Transport of Dangerous Goods: Manual of Tests and Criteria, 6th ed.; United Nations Publications: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Kossoy, A.A.; Sheinman, I.Y. Comparative analysis of the methods for SADT determination. J. Hazard. Mater. 2007, 142, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Li, X.R.; Koseki, H. SADT prediction of autocatalytic material using isothermal calorimetry analysis. Thermochim. Acta 2005, 431, 113–116. [Google Scholar] [CrossRef]
- Malow, M.; Wehrstedt, K.D. Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements. J. Hazard. Mater. 2005, 120, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Steensma, M.; Schuurman, P.; Malow, M.; Krause, U.; Wehrstedt, K.D. Evaluation of the validity of the UN SADT H.4 test for solid organic peroxides and self-reactive substances. J. Hazard. Mater. 2005, 117, 89–102. [Google Scholar] [CrossRef]
- Lv, J.; Chen, L.; Chen, W.; Gao, H.; Peng, M. Kinetic analysis and self-accelerating decomposition temperature (SADT) of dicumyl peroxide. Thermochim. Acta 2013, 571, 60–63. [Google Scholar] [CrossRef]
- Kossoy, A.A.; Belokhvostov, V.M.; Koludarova, E.Y. Thermal decomposition of AIBN: Part D: Verification of simulation method for SADT determination based on AIBN benchmark. Thermochim. Acta 2015, 621, 36–43. [Google Scholar] [CrossRef]
Substance: [BZMIM][TF2N]; Reaction Form: Autocatalytic | |||
---|---|---|---|
Parameter | Units | First Stage | Second Stage |
ln (k0) | dimensionless | 32 | 9 |
Ea | (kJ mol−1) | 134 | 57 |
n1 | dimensionless | 0.89 | 3.10 |
n2 | 0.30 | 0.17 | |
TG | (%) | 66.8 | 33.2 |
Material | [BZMIM][TF2N] | ||
---|---|---|---|
Mass | (g) | Box: 25.0 | Drum: 50.0 |
Density | (g cm–3) | 0.91 | |
Specific heat capacity | (J (g·K)−1) | 1.74 | |
Thermal conductivity coefficient | (W (m·K)−1) | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, L.-C.; Pan, N.-H. Thermal Stability, Kinetic Analysis, and Safe Temperature Assessment of Ionic Liquids 1-Benzyl-3-Methylimidazolium Bis (Trifluoromethylsulfonyl) Imide for Emerging Building and Energy Related Field. Processes 2023, 11, 1121. https://doi.org/10.3390/pr11041121
Hung L-C, Pan N-H. Thermal Stability, Kinetic Analysis, and Safe Temperature Assessment of Ionic Liquids 1-Benzyl-3-Methylimidazolium Bis (Trifluoromethylsulfonyl) Imide for Emerging Building and Energy Related Field. Processes. 2023; 11(4):1121. https://doi.org/10.3390/pr11041121
Chicago/Turabian StyleHung, Li-Chi, and Nai-Hsin Pan. 2023. "Thermal Stability, Kinetic Analysis, and Safe Temperature Assessment of Ionic Liquids 1-Benzyl-3-Methylimidazolium Bis (Trifluoromethylsulfonyl) Imide for Emerging Building and Energy Related Field" Processes 11, no. 4: 1121. https://doi.org/10.3390/pr11041121
APA StyleHung, L.-C., & Pan, N.-H. (2023). Thermal Stability, Kinetic Analysis, and Safe Temperature Assessment of Ionic Liquids 1-Benzyl-3-Methylimidazolium Bis (Trifluoromethylsulfonyl) Imide for Emerging Building and Energy Related Field. Processes, 11(4), 1121. https://doi.org/10.3390/pr11041121