Modeling Linkages among Urban Agglomeration, Construction Industry, Non-Renewable Energy, and Zero-Carbon Future
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Theoretical Modeling
2.2. Empirical Modeling
2.3. Analytical Strategies
3. Results
3.1. Basic Analysis
3.2. Main Analysis
3.2.1. Model of Economic Output
3.2.2. Model of Non-Renewable Energy Utilization
3.2.3. Model of Urban Agglomeration
3.2.4. Model of Construction Industry
3.2.5. Model of CO2e
3.2.6. Diagnostic Checks
3.3. Heterogeneous Causality Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Whole Country | ||||||
---|---|---|---|---|---|---|
ECO→EUT | EUT→ECO | ECO→UBA | UBA→ECO | ECO→CNI | CNI→ECO | |
Z-stat. | 7.684 *** | 5.736 ** | 6.280 *** | 8.114 *** | 5.617 ** | 6.146 *** |
Prob. | 0.000 | 0.036 | 0.002 | 0.000 | 0.028 | 0.005 |
ECO→CO2e | CO2e→ECO | ECO→PC | PC→ECO | EUT→UBA | UBA→EUT | |
Z-stat. | 6.148 *** | 8.319 *** | 5.728 ** | 4.612 * | 3.105 | 5.782 ** |
Prob. | 0.007 | 0.000 | 0.026 | 0.079 | 0.261 | 0.028 |
EUT→CNI | CNI→EUT | EUT→CO2e | CO2e→EUT | UBA→CNI | CNI→UBA | |
Z-stat. | 2.461 | 8.015 *** | 6.972 *** | 1.463 | 5.128 ** | 5.691 ** |
Prob. | 0.197 | 0.000 | 0.003 | 0.158 | 0.042 | 0.029 |
UBA→CO2e | CO2e→UBA | CNI→CO2e | CO2e→CNI | |||
Z-stat. | 4.764 * | 2.189 | 5.693 ** | 1.962 | ||
Prob. | 0.071 | 0.126 | 0.046 | 0.402 | ||
China’s eastern part | ||||||
ECO→EUT | EUT→ECO | ECO→UBA | UBA→ECO | ECO→CNI | CNI→ECO | |
Z-stat. | 8.130 *** | 4.965 ** | 7.336 *** | 5.479 ** | 7.352 *** | 4.181 * |
Prob. | 0.000 | 0.045 | 0.001 | 0.048 | 0.000 | 0.075 |
ECO→CO2e | CO2e→ECO | ECO→PC | PC→ECO | EUT→UBA | UBA→EUT | |
Z-stat. | 5.957 ** | 4.361 * | 4.173 * | 5.668 ** | 2.917 | 7.115 *** |
Prob. | 0.044 | 0.079 | 0.076 | 0.035 | 0.165 | 0.002 |
EUT→CNI | CNI→EUT | EUT→CO2e | CO2e→EUT | UBA→CNI | CNI→UBA | |
Z-stat. | 1.850 | 6.377 *** | 8.164 *** | 2.378 | 6.722 *** | 5.137 ** |
Prob. | 0.215 | 0.004 | 0.000 | 0.225 | 0.009 | 0.034 |
UBA→CO2e | CO2e→UBA | CNI→CO2e | CO2e→CNI | |||
Z-stat. | 5.289 ** | 1.335 | 6.922 *** | 2.401 | ||
Prob. | 0.034 | 0.158 | 0.006 | 0.269 | ||
China’s central part | ||||||
ECO→EUT | EUT→ECO | ECO→UBA | UBA→ECO | ECO→CNI | CNI→ECO | |
Z-stat. | 3.952 * | 6.739 *** | 8.723 *** | 2.472 | 5.691 ** | 6.722 *** |
Prob. | 0.081 | 0.002 | 0.000 | 0.197 | 0.018 | 0.004 |
ECO→CO2e | CO2e→ECO | ECO→PC | PC→ECO | EUT→UBA | UBA→EUT | |
Z-stat. | 7.226 *** | 5.835 ** | 8.349 *** | 6.815 *** | 2.583 | 6.990 *** |
Prob. | 0.000 | 0.031 | 0.000 | 0.001 | 0.207 | 0.001 |
EUT→CNI | CNI→EUT | EUT→CO2e | CO2e→EUT | UBA→CNI | CNI→UBA | |
Z-stat. | 3.001 | 4.960 * | 5.627 ** | 1.390 | 4.874 * | 9.226 *** |
Prob. | 0.256 | 0.058 | 0.002 | 0.156 | 0.093 | 0.000 |
UBA→CO2e | CO2e→UBA | CNI→CO2e | CO2e→CNI | |||
Z-stat. | 6.581 *** | 2.794 | 7.152 *** | 2.580 | ||
Prob. | 0.000 | 0.185 | 0.002 | 0.311 | ||
China’s western part | ||||||
ECO→EUT | EUT→ECO | ECO→UBA | UBA→ECO | ECO→CNI | CNI→ECO | |
Z-stat. | 5.880 ** | 3.974 * | 5.916 ** | 7.112 *** | 4.569 * | 5.338 ** |
Prob. | 0.027 | 0.068 | 0.049 | 0.003 | 0.065 | 0.032 |
ECO→CO2e | CO2e→ECO | ECO→PC | PC→ECO | EUT→UBA | UBA→EUT | |
Z-stat. | 4.971 * | 7.335 *** | 6.993 *** | 4.528 * | 1.947 | 5.781 ** |
Prob. | 0.049 | 0.001 | 0.008 | 0.091 | 0.136 | 0.015 |
EUT→CNI | CNI→EUT | EUT→CO2e | CO2e→EUT | UBA→CNI | CNI→UBA | |
Z-stat. | 2.164 | 6.882 *** | 9.356 *** | 2.728 | 7.160 *** | 5.238 ** |
Prob. | 0.135 | 0.000 | 0.000 | 0.189 | 0.000 | 0.029 |
UBA→CO2e | CO2e→UBA | CNI→CO2e | CO2e→CNI | |||
Z-stat. | 8.369 *** | 2.157 | 8.107 *** | 1.332 | ||
Prob. | 0.000 | 0.208 | 0.005 | 0.249 |
References
- Rahman, M.M.; Vu, X.B. The nexus between renewable energy, economic growth, trade, urbanisation and environmental quality: A comparative study for Australia and Canada. Renew. Energy 2020, 155, 617–627. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I. Towards the reduction of CO2 emissions. Paths of pro-ecological transformation of energy mixes in European countries with an above-average share of coal in energy consumption. Resour. Policy 2022, 77, 102701. [Google Scholar] [CrossRef]
- Dröge, S.; Feist, M. The G7 Summit: Advancing International Climate Cooperation? German Institute for International and Security Affairs: Berlin, Germany, 2022. [Google Scholar]
- Zhang, M.; Yang, Z.; Liu, L.; Zhou, D. Impact of renewable energy investment on carbon emissions in China—An empirical study using a nonparametric additive regression model. Sci. Total Environ. 2021, 785, 147109. [Google Scholar] [CrossRef]
- Jayasooriya, S.P. Urban Agglomeration and Regional Economic Growth in China Urban Agglomeration and Regional Economic Growth in China. Empir. Econ. Rev. 2019, 8, 281–295. [Google Scholar]
- Tripathi, S. Large Agglomerations and Economic Growth in Urban India: An Application of Panel Data Model. Working Papers 2012, No. 303. Institute for Social and Economic Change, Bangalore.
- Ahrend, R.; Lembcke, A.C.; Schumann, A. The Role of Urban Agglomerations for Economic and Productivity Growth. Int. Product. Monit. 1995, 32, 161–179. [Google Scholar]
- Aftab, S.; Ahmed, A.; Chandio, A.A.; Korankye, B.A.; Ali, A.; Fang, W. Modeling the nexus between carbon emissions, energy consumption, and economic progress in Pakistan: Evidence from cointegration and causality analysis. Energy Rep. 2021, 7, 4642–4658. [Google Scholar] [CrossRef]
- Khobai, H.; Roux, P. Le The effect of rural urban-development transformation on electricity consumption: An econometric analysis in South Africa. Int. J. Energy Econ. Policy 2017, 7, 156–164. [Google Scholar]
- Faisal, F.; Tursoy, T.; Resatoglu, N.G.; Berk, N. Electricity consumption, economic growth, urbanisation and trade nexus: Empirical evidence from Iceland. Econ. Res. Istraživanja 2018, 31, 664–680. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, L. The effects of population aging, life expectancy, unemployment rate, population density, per capita GDP, urbanization on per capita carbon emissions. Sustain. Prod. Consum. 2021, 28, 760–774. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, Y.; Wang, J.; Wang, C.; Streets, D.G. How does urbanization affect CO2 emissions of central heating systems in China? An assessment of natural gas transition policy based on nighttime light data. J. Clean. Prod. 2020, 276, 123188. [Google Scholar] [CrossRef]
- Du, W.C.; Xia, X.H. How does urbanization a ff ect GHG emissions ? A cross-country panel threshold data analysis. Appl. Energy 2018, 229, 872–883. [Google Scholar] [CrossRef]
- Liu, F.; Liu, C. Regional disparity, spatial spillover effects of urbanisation and carbon emissions in China. J. Clean. Prod. 2019, 241, 118226. [Google Scholar] [CrossRef]
- Dong, Q.; Lin, Y.; Huang, J.; Chen, Z. Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data. China Econ. Rev. 2020, 59, 101381. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, X.; Chen, W.; Zhao, M.; Wang, B. Exploring the spatial effect of urbanization on multi-sectoral CO2 emissions in China. Atmos. Pollut. Res. 2019, 10, 1610–1620. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, H.; Wang, Z.; Shan, Y.; Meng, J.; Liang, X.; Feng, K.; Guan, D. Kazakhstan’s CO2 emissions in the post-Kyoto Protocol era: Production- and consumption-based analysis. J. Environ. Manag. 2019, 249, 109393. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Sun, H.; Tariq, G.; Ali, H.; Baz, K.; Mahmood, H.; Khan, I.; Yao, J. Asymmetric impact of coal and gas on carbon dioxide emission in six Asian countries: Using asymmetric and non-linear approach. J. Clean. Prod. 2022, 367, 132934. [Google Scholar] [CrossRef]
- Li, G.; Wei, W. Financial development, openness, innovation, carbon emissions, and economic growth in China. Energy Econ. 2021, 97, 105194. [Google Scholar] [CrossRef]
- Sun, P.-C.; Wang, H.-M.; Huang, H.-L.; Ho, C.-W. Consumer attitude and purchase intention toward rooftop photovoltaic installation: The roles of personal trait, psychological benefit, and government incentives. Energy Environ. 2018, 31, 21–39. [Google Scholar] [CrossRef]
- Salman, M.; Long, X.; Dauda, L.; Mensah, C.N. The impact of institutional quality on economic growth and carbon emissions: Evidence from Indonesia, South Korea and Thailand. J. Clean. Prod. 2019, 241, 118331. [Google Scholar] [CrossRef]
- Yaşar, N. The Relationship between Energy Consumption and Economic Growth: Evidence from Different Income Country Groups. Int. J. Energy Econ. Policy 2017, 7, 86–97. [Google Scholar]
- Saint, S.; Adewale, A.; Olasehinde-williams, G.; Udom, M. Science of the Total Environment The role of electricity consumption, globalization and economic growth in carbon dioxide emissions and its implications for environmental sustainability targets. Sci. Total Environ. 2019, 708, 134653. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, X.T.; Ge, S.; Jiang, R. Is economic growth compatible with a reduction in CO2 emissions? Empirical analysis of the United States. Resour. Conserv. Recycl. 2019, 151, 104443. [Google Scholar] [CrossRef]
- Han, J.; Du, T.; Zhang, C.; Qian, X. Correlation analysis of CO2 emissions, material stocks and economic growth nexus: Evidence from Chinese provinces. J. Clean. Prod. 2018, 180, 395–406. [Google Scholar] [CrossRef]
- Rahman, M.M. Environmental degradation: The role of electricity consumption, economic growth and globalisation. J. Environ. Manag. 2020, 253, 109742. [Google Scholar] [CrossRef]
- Kahouli, B. The causality link between energy electricity consumption, CO2 emissions, R&D stocks and economic growth in Mediterranean countries (MCs). Energy 2018, 145, 388–399. [Google Scholar] [CrossRef]
- Ardakani, M.K.; Akbar, A.S.; Mohsen, S. Impact of energy consumption and economic growth on CO2 emission using multivariate regression. Energy Strat. Rev. 2019, 26, 100428. [Google Scholar] [CrossRef]
- Zhao, W.; Cao, Y.; Miao, B.; Wang, K.; Wei, Y.M. Impacts of shifting China’s final energy consumption to electricity on CO2 emission reduction. Energy Econ. 2018, 71, 359–369. [Google Scholar] [CrossRef]
- Ahmad, M.; Jabeen, G. Dynamic causality among urban agglomeration, electricity consumption, construction industry, and economic performance: Generalized method of moments approach. Environ. Sci. Pollut. Res. 2020, 27, 2374–2385. [Google Scholar] [CrossRef]
- Cheng, M.; Lu, Y.; Zhu, H.; Xiao, J. Measuring CO2 emissions performance of China’s construction industry: A global Malmquist index analysis. Environ. Impact Assess. Rev. 2022, 92, 106673. [Google Scholar] [CrossRef]
- Zhao, Q.; Gao, W.; Su, Y.; Wang, T. Carbon emissions trajectory and driving force from the construction industry with a city-scale: A case study of Hangzhou, China. Sustain. Cities Soc. 2023, 88, 104283. [Google Scholar] [CrossRef]
- Yao, H.; Xu, P.; Wang, Y.; Chen, R. Exploring the low-carbon transition pathway of China’s construction industry under carbon-neutral target: A socio-technical system transition theory perspective. J. Environ. Manag. 2023, 327, 116879. [Google Scholar] [CrossRef] [PubMed]
- Pedroni, P. Fully modified OLS for heterogeneous cointegrated panels. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels; Advances in Econometrics; Baltagi, B.H., Fomby, T.B., Carter Hill, R., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2001; Volume 15, pp. 93–130. ISBN 978-1-84950-065-4. [Google Scholar]
- Zheng, S.; Wang, R.; Mak, T.M.W.; Hsu, S.C.; Tsang, D.C.W. How energy service companies moderate the impact of industrialization and urbanization on carbon emissions in China? Sci. Total Environ. 2021, 751, 141610. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Yin, H.; Varis, O. Impacts of urbanization on water use and energy-related CO2 emissions of residential consumption in China: A spatio-temporal analysis during 2003–2012. J. Clean. Prod. 2018, 194, 23–33. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2022; Volume 9781107025. [Google Scholar]
- Luo, H.; Zhao, F.; Chen, W.Q.; Cai, H. Optimizing bike sharing systems from the life cycle greenhouse gas emissions perspective. Transp. Res. Part C Emerg. Technol. 2020, 117, 102705. [Google Scholar] [CrossRef]
- Ahmad, M.; Wu, Y. Combined role of green productivity growth, economic globalization, and eco-innovation in achieving ecological sustainability for OECD economies. J. Environ. Manag. 2022, 302, 113980. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, R.E.A. Does Demographic Transition with Human Capital Dynamics Matter for Economic Growth? A Dynamic Panel Data Approach to GMM. Soc. Indic. Res. 2019, 142, 753–772. [Google Scholar] [CrossRef]
- Phillips, P.C.B. Fully Modified Least Squares and Vector Autoregression. Econometrica 1995, 63, 1023–1078. [Google Scholar] [CrossRef]
- Pesaran, H.M.; Yamagata, T. Testing slope homogeneity in large panels. J. Econ. 2008, 142, 50–93. [Google Scholar] [CrossRef] [Green Version]
- Swamy, P.A.V.B. Swamy Efficient Inference in a Random Coefficient Regression Model. Econometrica 1970, 38, 311–323. [Google Scholar] [CrossRef]
- Westerlund, J. Testing for Error Correction in Panel Data. Oxf. Bull. Econ. Stat. 2007, 69, 709–748. [Google Scholar] [CrossRef] [Green Version]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econ. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Dumitrescu, E.I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H. Testing Weak Cross-Sectional Dependence in Large Panels. Econ. Rev. 2015, 34, 1089–1117. [Google Scholar] [CrossRef] [Green Version]
- Im, S.K.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econ. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, R. Revisiting the environmental kuznets curve hypothesis in 208 counties: The roles of trade openness, human capital, renewable energy and natural resource rent. Environ. Res. 2023, 216, 114637. [Google Scholar] [CrossRef]
- Ahmad, M.; Satrovic, E. How do transportation-based environmental taxation and globalization contribute to ecological sustainability? Ecol. Inform. 2023, 74, 102009. [Google Scholar] [CrossRef]
- Liu, Y.; Sadiq, F.; Ali, W.; Kumail, T. Does tourism development, energy consumption, trade openness and economic growth matters for ecological footprint: Testing the Environmental Kuznets Curve and pollution haven hypothesis for Pakistan. Energy 2022, 245, 123208. [Google Scholar] [CrossRef]
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef] [Green Version]
- Akan, M.Ö.A.; Dhavale, D.G.; Sarkis, J. Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain. J. Clean. Prod. 2018, 167, 1195–1207. [Google Scholar] [CrossRef]
- Ahmad, M.; Satrovic, E. Relating fiscal decentralization and financial inclusion to environmental sustainability: Criticality of natural resources. J. Environ. Manag. 2023, 325, 116633. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Makhdum, M.S.A.; Kousar, R. Does financial inclusion, renewable and non-renewable energy utilization accelerate ecological footprints and economic growth? Fresh evidence from 15 highest emitting countries. Sustain. Cities Soc. 2021, 65, 102590. [Google Scholar] [CrossRef]
- Khan, M.T.I.; Yaseen, M.R.; Ali, Q. Nexus between financial development, tourism, renewable energy, and greenhouse gas emission in high-income countries: A continent-wise analysis. Energy Econ. 2019, 83, 293–310. [Google Scholar] [CrossRef]
- Apergis, N.; Gupta, R.; Lau, C.K.M.; Mukherjee, Z.U.S. state-level carbon dioxide emissions: Does it affect health care expenditure? Renew. Sustain. Energy Rev. 2018, 91, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Nasir, M.A.; Hille, E.; Mahalik, M.K. UK’s net-zero carbon emissions target: Investigating the potential role of economic growth, financial development, and R&D expenditures based on historical data (1870–2017). Technol. Forecast. Soc. Change 2020, 161, 120255. [Google Scholar] [CrossRef]
- Salari, M.; Kelly, I.; Doytch, N.; Javid, R.J. Economic growth and renewable and non-renewable energy consumption: Evidence from the U.S. states. Renew. Energy 2021, 178, 50–65. [Google Scholar] [CrossRef]
- Deng, F.; Li, H.; Yang, M.; Zhao, W.; Gai, Z.; Guo, Y.; Huang, J.; Hao, Y.; Wu, H. On the nonlinear relationship between energy consumption and economic and social development: Evidence from Henan Province, China. Environ. Sci. Pollut. Res. 2021, 28, 33192–33207. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, Z.; Khalid, M.; Jabeen, G. Do rural-urban migration and industrial agglomeration mitigate the environmental degradation across China’s regional development levels? Sustain. Prod. Consum. 2021, 27, 679–697. [Google Scholar] [CrossRef]
- Atchike, D.W.; Zhenyu, Z.; Ali, T.; Weishang, G.; Jabeen, G. Towards sustainable energy: Factors affecting solar power system adoption by small and medium-sized businesses. Front. Environ. Sci. 2022, 10, 1–12. [Google Scholar] [CrossRef]
Data | Explanations | Variable and Symbols |
---|---|---|
Gross domestic product | Transformed into per-capital format | Economic output (ECO) |
Urban population | Population in urban settings percent of the aggregated population | Urban agglomeration (UBA) |
Total non-renewable energy utilization | Transformed into per-capital format | Non-renewable energy utilization (EUT) |
Physical capital | Calculated from the perpetual inventory method | Physical capital (PCP) |
Carbon dioxide emissions | CO2e is calculated following [32] | CO2e |
Value-addition by the construction industry | Transformed using the economic output and used in percent format | Construction industry (CNI) |
Samples | Regressors | CSD | CSIPS (@level) | CSIPS (1st Differenced) |
---|---|---|---|---|
Whole country | ECO | 42.71 *** | −2.372 ** | −2.957 *** |
EUT | 23.48 *** | −1.375 | −3.183 *** | |
UBA | 48.28 *** | −1.183 | −3.673 *** | |
CNI | 17.28 *** | −1.203 | −2.758 *** | |
CO2e | 45.10 *** | −1.048 | −3.102 *** | |
PCP | 33.08 *** | −1.684 | −3.463 *** | |
China’s eastern part | ECO | 42.00 *** | −2.528 *** | 2.775 *** |
EUT | 19.77 *** | −1.291 | −3.164 *** | |
UBA | 29.04 *** | −1.068 | −3.274 *** | |
CNI | 57.39 *** | −1.003 | −3.684 *** | |
CO2e | 11.74 *** | −1.281 | −3.293 *** | |
PCP | 18.92 *** | −1.773 | −2.995 *** | |
China’s central part | ECO | 24.27 *** | −2.625 *** | −4.001 *** |
EUT | 18.02 *** | −1.056 | −2.972 *** | |
UBA | 35.62 *** | −1.689 | −3.294 *** | |
CNI | 57.38 *** | −1.572 | −3.683 *** | |
CO2e | 27.40 *** | −1.583 | −4.192 *** | |
PCP | 12.58 *** | −1.009 | −4.394 *** | |
China’s western part | ECO | 10.37 *** | −2.119 * | −3.694 *** |
EUT | 34.69 *** | −1.184 | −2.996 *** | |
UBA | 15.47 *** | −1.927 | −3.2945 *** | |
CNI | 35.11 *** | −1.483 | −2.845 *** | |
CO2e | 12.65 *** | −1.524 | −2.365 *** | |
PCP | 55.48 *** | −1.293 | −3.078 *** |
Sample | Test | Stat. | Prob. | Sample | Test | Stat. | Prob. |
---|---|---|---|---|---|---|---|
Whole country | 5.10 | 0.000 *** | China’s eastern part | 5.99 | 0.000 *** | ||
4.92 | 0.000 *** | 4.81 | 0.000 *** | ||||
China’s central part | 6.03 | 0.000 *** | China’s western part | 5.72 | 0.000 *** | ||
4.76 | 0.000 *** | 6.25 | 0.000 *** |
Test | Stat. | Whole Country | China’s Eastern Part | China’s Central Part | China’s Western Part |
---|---|---|---|---|---|
Westerlund | −7.538 *** [0.000] | −5.379 *** [0.000] | −4.027 *** [0.004] | −6.384 *** [0.005] | |
−5.375 *** [0.000] | −5.886 *** [0.001] | −4.274 *** [0.003] | −7.336 *** [0.000] | ||
−6.059 *** [0.000] | −7.291 *** [0.000] | −7.572 *** [0.000] | −6.803 *** [0.001] | ||
−5.483 *** [0.000] | −6.118 *** [0.000] | −6.894 *** [0.000] | −8.075 *** [0.000] | ||
Kao | t-ratio | −3.978 *** [0.000] | −3.486 *** [0.000] | −3.931 *** [0.000] | −3.299 *** [0.004] |
Regressors | Whole Country | China’s Eastern Part | China’s Central Part | China’s Western Part |
---|---|---|---|---|
Model 1: Regressand: Economic output | ||||
Non-renewable energy utilization | 0.193 ** | 0.199 *** | 0.191 *** | 0.179 ** |
Urban agglomeration | 0.198 ** | 0.205 *** | 0.180 | −0.156 *** |
Construction industry | 0.201 *** | 0.211* | 0.200 ** | 0.175 *** |
CO2e | −0.267 *** | −0.232 *** | −0.213 *** | −0.136 *** |
Physical capital | 0.510 *** | 0.534 *** | 0.479 * | 0.361 ** |
Model 2: Regressand: Non-renewable energy utilization | ||||
Economic output | 0.476 *** | 0.487 *** | 0.463 * | 0.396 ** |
Urban agglomeration | 0.243 *** | 0.255 ** | 0.231 *** | 0.147 ** |
Construction industry | 0.290 ** | 0.302 ** | 0.268 ** | 0.204 *** |
CO2e | 0.301 | 0.325 | 0.243 | 0.191 |
Model 3: Regressand: Urban agglomeration | ||||
Economic output | 1.102 *** | 1.391 ** | 1.218 *** | 1.012 *** |
Construction industry | 0.172 *** | 0.158 *** | 0.174 *** | 0.186 ** |
Non-renewable energy utilization | 0.258 | 0.299 | 0.214 | 0.142 |
CO2e | 0.287 | 0.281 | 0.229 | 0.118 |
Model 4: Regressand: Construction industry | ||||
Urban agglomeration | 0.128 *** | 0.134 ** | 0.117 ** | 0.095 *** |
Economic output | 0.164 ** | 0.175 *** | 0.162 *** | 0.140 ** |
Non-renewable energy utilization | 0.224 | 0.235 | 0.176 | 0.089 |
CO2e | 0.197 | 0.206 | 0.155 | 0.117 |
Model 5: Regressand: CO2e | ||||
Non-renewable energy utilization | 0.401 *** | 0.415 ** | 0.396 ** | 0.325 *** |
Urban agglomeration | 0.137 *** | 0.144 * | 0.131 ** | 0.101 * |
Construction industry | 0.284 *** | 0.291 *** | 0.272 *** | 0.245 ** |
Economic output | −1.568 *** | −1.681 *** | −1.492 ** | 1.107 *** |
Items | Whole Country | China’s Eastern Part | China’s Central Part | China’s Western Part |
---|---|---|---|---|
Model 1: Regressand: Economic output | ||||
R2 | 0.923 | 0.851 | 0.874 | 0.909 |
χ2 [prob.] | 11.1 [0.02] | 12.3 [0.04] | 11.1 [0.02] | 10.0 [0.05] |
CSD (AACC) | 0.399 | 0.478 | 0.512 | 0.598 |
CSD [prob.] | −0.6 [0.49] | −1.1 [0.12] | −1.0 [0.11] | −0.8 [0.34] |
CSIPS | −2.947 ** | −2.995 ** | −3.694 *** | −2.827 ** |
RMSER | 0.010 | 0.002 | 0.006 | 0.001 |
Model 2: Regressand: Non-renewable energy utilization | ||||
R2 | 0.910 | 0.946 | 0.835 | 0.807 |
χ2 [prob.] | 8.1 [0.06] | 11.2 [0.01] | 8.9 [0.04] | 7.4 [0.05] |
CSD (AACC) | 0.475 | 0.501 | 0.418 | 0.490 |
CSD [prob.] | −0.8 [0.38] | −1.1 [0.22] | −1.6 [0.10] | −1.03 [0.25] |
CSIPS | −3.185 ** | −2.996 *** | −3.471 * | −3.152 *** |
RMSER | 0.020 | 0.014 | 0.000 | 0.000 |
Model 3: Regressand: Urban agglomeration | ||||
R2 | 0.886 | 0.928 | 0.916 | 0.793 |
χ2 [prob.] | 11.7 [0.04] | 13.3 [0.01] | 12.8 [0.01] | 15.4 [0.00] |
CSD (AACC) | 0.536 | 0.485 | 0.493 | 0.557 |
CSD [prob.] | −0.6 [0.20] | −0.9 [0.17] | 0.8 [0.39] | −1.2 [0.19] |
CSIPS | −2.851 *** | −2.692 *** | −2.951 *** | −3.844 ** |
RMSER | 0.050 | 0.000 | 0.002 | 0.018 |
Model 4: Regressand: Construction industry | ||||
R2 | 0.922 | 0.959 | 0.908 | 0.813 |
χ2 [prob.] | 14.6 [0.00] | 13.1 [0.01] | 14.4 [0.00] | 11.5 [0.01] |
CSD (AACC) | 0.492 | 0.523 | 0.578 | 0.511 |
CSD [prob.] | −0.8 [0.38] | −0.7 [0.41] | 0.5 [0.52] | −1.0 [0.29] |
CSIPS | −3.250 * | −3.481 * | −2.697 *** | −3.602 ** |
RMSER | 0.001 | 0.038 | 0.003 | 0.005 |
Model 5: Regressand: CO2e | ||||
R2 | 0.935 | 0.927 | 0.862 | 0.807 |
χ2 [prob.] | 11.1 [0.03] | 9.5 [0.05] | 10.1 [0.04] | 8.9 [0.03] |
CSD (AACC) | 0.569 | 0.601 | 0.618 | 0.503 |
CSD [prob.] | −0.7 [0.41] | −1.0 [0.29] | 1.5 [0.18] | 0.6 [0.44] |
CSIPS | −2.780 *** | −2.997 *** | −3.471 ** | −5.002 *** |
RMSER | 0.021 | 0.000 | 0.019 | 0.003 |
T | 17 | 17 | 17 | 17 |
N | 30 | 11 | 8 | 11 |
n | 510 | 187 | 136 | 187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Atchike, D.W.; Ahmad, M.; Chen, Y.; Gu, S. Modeling Linkages among Urban Agglomeration, Construction Industry, Non-Renewable Energy, and Zero-Carbon Future. Processes 2023, 11, 1040. https://doi.org/10.3390/pr11041040
Guo W, Atchike DW, Ahmad M, Chen Y, Gu S. Modeling Linkages among Urban Agglomeration, Construction Industry, Non-Renewable Energy, and Zero-Carbon Future. Processes. 2023; 11(4):1040. https://doi.org/10.3390/pr11041040
Chicago/Turabian StyleGuo, Weishang, Desire Wade Atchike, Munir Ahmad, Yaxiao Chen, and Shili Gu. 2023. "Modeling Linkages among Urban Agglomeration, Construction Industry, Non-Renewable Energy, and Zero-Carbon Future" Processes 11, no. 4: 1040. https://doi.org/10.3390/pr11041040
APA StyleGuo, W., Atchike, D. W., Ahmad, M., Chen, Y., & Gu, S. (2023). Modeling Linkages among Urban Agglomeration, Construction Industry, Non-Renewable Energy, and Zero-Carbon Future. Processes, 11(4), 1040. https://doi.org/10.3390/pr11041040