Properties of Selected Alternative Petroleum Fractions and Sustainable Aviation Fuels
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
| ASTM | American Society for Testing and Materials, West Conshohocken, PA, USA |
| CAPEX | Capital Expenditures |
| EN | Euro Norm, Office for Official Publications of the European Communities, Luxembourg, Luxembourg |
| FBP | Final Boiling Point |
| FCC | Fluid Catalytic Cracking |
| HEFA | Hydrogenated Esters and Fatty Acids |
| HN | Heavy Naphtha |
| HVO | Hydrogenated Vegetable Oil |
| IATA | International Air Transport Association |
| IBP | Initial Boiling Point |
| IEA | International Energy Agency |
| ISO | International Organization for Standardization, Geneva, Switzerland |
| JIG | Joint Inspection Group, Cambourne, Great Britain |
| NSE | Net Specific Energy |
| SAF | Sustainable Aviation Fuels |
| UCT | University of Chemistry and Technology Prague |
References
- Hanson, S. EIA Projects Energy Consumption in Air Transportation to Increase through 2050. Available online: https://www.eia.gov/todayinenergy/detail.php?id=41913 (accessed on 15 November 2022).
- ATAG. ATAG Facts & Figures. Available online: https://www.atag.org/facts-figures.html (accessed on 4 May 2022).
- Warren, K.A. World Jet Fuel Specifications with Avgas Supplement; ExxonMobil Aviation: Brussels, Belgium, 2008. [Google Scholar]
- Kittel, H.; Kadleček, D.; Šimáček, P. Factors influencing production of JET fuel by hydrocracking. Pet. Sci. Technol. 2021, 40, 73–91. [Google Scholar] [CrossRef]
- JIG. The Aviation Fuel Quality Requirements for Jointly Operated Systems (AFQRJOS) Product Specification Bulletin; Joint Inspection Group: Cambourne, UK, 2022; pp. 1–10. [Google Scholar]
- Kolhe, N.S.; Syed, F.; Yadav, S.; Yele, K. Desulphurization of Jet Fuel using Merox Process: A Review. Int. J. Res. 2022, 6, 3910–3922. [Google Scholar] [CrossRef]
- Edwards, J.T. Reference jet fuels for combustion testing. In Proceedings of the 55th AIAA aerospace sciences meeting, Grapevine, TX, USA, 9–13 January 2017; pp. 1–58. [Google Scholar]
- Adekitan, A.I.; Shomefun, T.; John, T.M.; Adetokun, B.; Aligbe, A. Dataset on statistical analysis of jet A-1 fuel laboratory properties for on-spec into-plane operations. Data Brief 2018, 19, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, T.; Pan, L.; Liu, Q.; Fang, Y.; Zou, J.-J.; Zhang, X. Review on the relationship between liquid aerospace fuel composition and their physicochemical properties. Trans. Tianjin Univ. 2021, 27, 87–109. [Google Scholar] [CrossRef]
- IATA. Net Zero 2050: Sustainable Aviation Fuels. Available online: https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---alternative-fuels/ (accessed on 14 January 2023).
- Liu, G.; Yan, B.; Chen, G. Technical review on jet fuel production. Renew. Sustain. Energy Rev. 2013, 25, 59–70. [Google Scholar] [CrossRef]
- Kandaramath, H.T.; Yaakob, Z.; Binitha, N.N. Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 42, 1234–1244. [Google Scholar] [CrossRef]
- Ail, S.S.; Dasappa, S. Biomass to liquid transportation fuel via Fischer Tropsch synthesis—Technology review and current scenario. Renew. Sustain. Energy Rev. 2016, 58, 267–286. [Google Scholar] [CrossRef]
- Chuck, C. Biofuels for Aviation: Feedstocks, Technology and Implementation; Academic Press: Kidlington, UK, 2016; p. 374. [Google Scholar]
- Mawhood, R.; Gazis, E.; de Jong, S.; Hoefnagels, R.; Slade, R. Production pathways for renewable jet fuel: A review of commercialization status and future prospects. Biofuels Bioprod. Biorefining 2016, 10, 462–484. [Google Scholar] [CrossRef]
- Gutiérrez-Antonio, C.; Gómez-Castro, F.; de Lira-Flores, J.; Hernández, S. A review on the production processes of renewable jet fuel. Renew. Sustain. Energy Rev. 2017, 79, 709–729. [Google Scholar] [CrossRef]
- Kaltschmitt, M.; Neuling, U. Biokerosene: Status and Prospects; Springer: Berlin/Heidelberg, Germany, 2017; p. 758. [Google Scholar]
- Vásquez, M.C.; Silva, E.E.; Castillo, E.F. Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production. Biomass Bioenergy 2017, 105, 197–206. [Google Scholar] [CrossRef]
- de Souza, L.M.; Mendes, P.A.; Aranda, D.A. Assessing the current scenario of the Brazilian biojet market. Renew. Sustain. Energy Rev. 2018, 98, 426–438. [Google Scholar] [CrossRef]
- Khan, S.; Kay Lup, A.N.; Qureshi, K.M.; Abnisa, F.; Wan Daud, W.M.A.; Patah, M.F.A. A review on deoxygenation of triglycerides for jet fuel range hydrocarbons. J. Anal. Appl. Pyrolysis 2019, 140, 1–24. [Google Scholar] [CrossRef]
- Bauen, A.; Bitossi, N.; German, L.; Harris, A.; Leow, K. Sustainable Aviation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation. Johns. Matthey Technol. Rev. 2020, 64, 263–278. [Google Scholar] [CrossRef]
- Doliente, S.S.; Narayan, A.; Tapia, J.F.D.; Samsatli, N.J.; Zhao, Y.; Samsatli, S. Bio-aviation Fuel: A Comprehensive Review and Analysis of the Supply Chain Components. Front. Energy Res. 2020, 8, 1–38. [Google Scholar] [CrossRef]
- Holladay, J.; Abdullah, Z.; Heyne, J. Sustainable Aviation Fuel: Review of Technical Pathways; U.S. Department of Energy: Washington, DC, USA, 2020; p. 67.
- Dodd, T.; Yengin, D. Deadlock in sustainable aviation fuels: A multi-case analysis of agency. Transp. Res. Part D Transp. Environ. 2021, 94, 1–14. [Google Scholar] [CrossRef]
- Gibbs, A.; Soubly, K.; Calderwood, L.U.; Agnes, C.E.; Delasalle, F.; Moroz, D.; Mugabo, A. Clean Skies for Tomorrow—Sustainable Aviation. In Clean Skies for Tomorrow: Sustainable Aviation Fuel Policy Toolkit; World Economic Forum: Geneva, Switzerland, 2021; p. 41. [Google Scholar]
- Martinez-Valencia, L.; Garcia-Perez, M.; Wolcott, M.P. Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits. Renew. Sustain. Energy Rev. 2021, 152, 1–21. [Google Scholar] [CrossRef]
- Ng, K.S.; Farooq, D.; Yang, A. Global biorenewable development strategies for sustainable aviation fuel production. Renew. Sustain. Energy Rev. 2021, 150, 1–14. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Martínez-Klimov, M.; Murzin, D.Y. Hydroconversion of fatty acids and vegetable oils for production of jet fuels. Fuel 2021, 306, 1–17. [Google Scholar] [CrossRef]
- Kittel, H.; Horský, J. The future of Jet fuel as an important refinery product. In Proceedings of the 9th ICCT Conference 2022, Nanjing, China, 11–14 November 2022; Veselý, M., Hrdlička, Z., Hanika, J., Lubojacký, J., Eds.; AMCA Prague: Mikulov, Czech Republic, 2022; pp. 29–36. [Google Scholar]
- IEA. The IEA Bioenergy Conference 2021. Available online: https://www.ieabioenergyconference2021.org/ (accessed on 9 December 2022).
- The IEA Bioenergy Webinar—Sustainable Aviation Fuel/Biojet Technologies—Commercialization Status, Oportunities and Challenges. Available online: https://www.ieabioenergy.com/blog/publications/iea-bioenergy-webinar-sustainable-aviation-fuel-biojet-technologies-commercialisation-status-opportunities-and-challenges/ (accessed on 17 April 2022).
- IEA. The IEA Bioenergy Task 39—Biofuels to Decarbonize Transport. Available online: https://task39.ieabioenergy.com/ (accessed on 12 April 2022).
- Seber, G.; Malina, R.; Pearlson, M.N.; Olcay, H.; Hileman, J.I.; Barrett, S.R. Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass Bioenergy 2014, 67, 108–118. [Google Scholar] [CrossRef]
- Diederichs, G.W.; Ali Mandegari, M.; Farzad, S.; Gorgens, J.F. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresour. Technol. 2016, 216, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Geleynse, S.; Brandt, K.; Garcia-Perez, M.; Wolcott, M.; Zhang, X. The Alcohol-to-Jet Conversion Pathway for Drop-In Biofuels: Techno-Economic Evaluation. ChemSusChem 2018, 11, 3728–3741. [Google Scholar] [CrossRef] [PubMed]
- Dahal, K.; Brynolf, S.; Xisto, C.; Hansson, J.; Grahn, M.; Grönstedt, T.; Lehtveer, M. Techno-economic review of alternative fuels and propulsion systems for the aviation sector. Renew. Sustain. Energy Rev. 2021, 151, 1–15. [Google Scholar] [CrossRef]
- Shahriar, M.F.; Khanal, A. The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF). Fuel 2022, 325, 1–26. [Google Scholar] [CrossRef]
- Rumizen, M.A. Qualification of Alternative Jet Fuels. Front. Energy Res. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- ASTM D7566-22; Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- Vozka, P.; Šimáček, P.; Kilaz, G. Impact of HEFA Feedstocks on Fuel Composition and Properties in Blends with Jet A. Energy Fuels 2018, 32, 11595–11606. [Google Scholar] [CrossRef]
- Vozka, P.; Vrtiška, D.; Šimáček, P.; Kilaz, G. Impact of Alternative Fuel Blending Components on Fuel Composition and Properties in Blends with Jet A. Energy Fuels 2019, 33, 3275–3289. [Google Scholar] [CrossRef]
- Manigandan, S.; Atabani, A.E.; Ponnusamy, V.K.; Gunasekar, P. Impact of additives in Jet-A fuel blends on combustion, emission and exergetic analysis using a micro-gas turbine engine. Fuel 2020, 276, 1–9. [Google Scholar] [CrossRef]
- Srinivas, D.; Satyarthi, J.K. Challenges and opportunities in biofuels production. Indian J. Chem. 2012, 51, 174–185. [Google Scholar]
- NESTE. Renewable NEXBTL Diesel—Fuel with Many Applications. Available online: https://www.neste.com/renewable-nexbtl-diesel-fuel-many-applications (accessed on 4 May 2022).
- NESTE. NEXBTL Technology. Available online: https://www.neste.com/about-neste/innovation/nexbtl-technology (accessed on 7 January 2023).
- HONEYWELL-UOP. Honeywell Introduces Simplified Technology to Produce Renewable Diesel. Available online: https://uop.honeywell.com/en/news-events/2021/january/honeywell-uop-ecofining-single-stage-process (accessed on 12 May 2022).
- Rytter, E. Status and Developments in Fischer-Tropsch Synthesis. Issues of Importance to Biomass Conversion and Jetfuel Production; Norwegian University of Science and Technology: Trondheim, Norway, 2016. [Google Scholar]
- Sun, J.; Yang, G.; Peng, X.; Kang, J.; Wu, J.; Liu, G.; Tsubaki, N. Beyond Cars: Fischer-Tropsch Synthesis for Non-Automotive Applications. ChemCatChem 2019, 11, 1412–1424. [Google Scholar] [CrossRef]
- van Dyk, S.; Saddler, J. Progress in Commercialisation of Biojet fuels/SAF: Technologies, potencial and challenges. In Proceedings of the IEA Bioenergy Conference, Online, 29 November–1 December 2021. [Google Scholar]
- Chui, S. Flying the Rolls Royce B747 Test Bed—An Experimental Flight with 100% SAF. Available online: https://www.youtube.com/watch?v=4gSKbmODNxI (accessed on 23 March 2022).
- AIRBUS. First A380 Powered by 100% Sustainable Aviation Fuel Takes to the Skies. Available online: https://www.airbus.com/en/newsroom/press-releases/2022-03-first-a380-powered-by-100-sustainable-aviation-fuel-takes-to-the (accessed on 5 April 2022).
- AIRBUS. This A380 Is the Latest to Test 100% SAF. Available online: https://www.airbus.com/en/newsroom/news/2022-03-this-a380-is-the-latest-to-test-100-saf (accessed on 24 April 2022).
- ROLLS ROYCE. Alternative Fuels—Fuelling a Sustainable Future. Available online: https://www.rolls-royce.com/innovation/net-zero/decarbonising-complex-critical-systems/alternative-fuels.aspx (accessed on 9 January 2023).
- Sieppi, S. Brussels Airlines Starts New Year with a First Delivery of Neste MY Sustainable Aviation Fuel to Brussels Airport via CEPS Pipeline. Available online: https://www.neste.com/releases-and-news/renewable-solutions/brussels-airlines-starts-new-year-first-delivery-neste-my-sustainable-aviation-fuel-brussels-airport (accessed on 7 January 2023).
- Zhang, X.; Lei, H.; Zhu, L.; Qian, M.; Zhu, X.; Wu, J.; Chen, S. Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions. Energy 2016, 173, 418–430. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Tomasek, S.; Varga, Z.; Holló, A.; Miskolczi, N.; Hancsók, J. Production of JET fuel containing molecules of high hydrogen content. Catal. Sustain. Energy 2017, 4, 52–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, D.; Lei, H.; Villota, E.; Ruan, R. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Appl. Energy 2019, 251, 1–17. [Google Scholar] [CrossRef]
- Tomasek, S.; Varga, Z.; Hancsók, J. Production of jet fuel from cracked fractions of waste polypropylene and polyethylene. Fuel Process. Technol. 2020, 197, 1–7. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijokid, J. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrolysis 2020, 152, 1–11. [Google Scholar] [CrossRef]
- Suchocki, T.; Witanowski, Ł.; Lampart, P.; Kazimierski, P.; Januszewicz, K.; Gawron, B. Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil. Energy 2021, 215, 1–10. [Google Scholar] [CrossRef]
- van Dyk, S.; Si, J.; McMillan, J.D.; Saddler, J. Drop-in: The Key Role that co-Processing Will Play in Its Production; IEA Bioenergy: Paris, France, 2019. [Google Scholar]
- EIA. Hydrocracking Is an Important Source of Diesel and Jet Fuel. Available online: https://www.eia.gov/todayinenergy/detail.php?id=9650 (accessed on 9 February 2023).
- Peng, C.; Cao, Z.; Du, Y.; Zeng, R.; Guo, R.; Duan, X.; Fang, X. Optimization of a Pilot Hydrocracking Unit to Improve the Yield and Quality of Jet Fuel Together with Heavy Naphtha and Tail Oil. Ind. Eng. Chem. Res. 2018, 57, 2068–2074. [Google Scholar] [CrossRef]
- Larsen, J.L. Upgrading of FCC Heavy Gasoline to Jet Fuel in a Two-Stage Hydrogenation Process; American Institute of Chemical Engineers: New York, NY, USA, 1997; p. 21. [Google Scholar]
- Kim, H.; Kim, D.; Park, Y.-K.; Jeon, J.-K. Synthesis of jet fuel through the oligomerization of butenes on zeolite catalysts. Res. Chem. Intermed. 2018, 44, 3823–3833. [Google Scholar] [CrossRef]
- Nicholas, C.P. Applications of light olefin oligomerization to the production of fuels and chemicals. Appl. Catal. A Gen. 2017, 543, 82–97. [Google Scholar] [CrossRef]
- Kittel, H.; Straka, P.; Šimáček, P.; Kadleček, D. Kerosene from hydrocracking for JET fuel with reduced aromatic content. Pet. Sci. Technol. 2022, 41, 507–523. [Google Scholar] [CrossRef]
- Straka, P.; Auersvald, M.; Vrtiška, D.; Kittel, H.; Šimáček, P.; Vozka, P. Production of transportation fuels via hydrotreating of scrap tires pyrolysis oil. Chem. Eng. J. 2023, 460, 141764. [Google Scholar] [CrossRef]
- Horský, J. Study of Synergies in the Production of JET Fuel by Blending Fractions of Different Technological Origin; UCT Prague: Prague, Czech Republic, 2022. [Google Scholar]











| Component | JIG Jet A-1 Requirements | Jet A-1 | Jet HC | FCC HN | HEFA Cam | HEFA 215 | PyrTIR | PyrPO |
|---|---|---|---|---|---|---|---|---|
| Density at 15 °C (kg·m−3) | 775–840 | 802.3 | 817.3 | 858.8 | 759.5 | 760.7 | 850.9 | 794.8 |
| Distillation (°C) | ||||||||
| 10% distilled (°C) | max 205 | 178.5 | 181.0 | 178.2 | 164.4 | 180.1 | 175.8 | 180.5 1 |
| End of distillation (°C) | max 300 | 234.9 | 228.6 | 232.3 | 279.0 | 271.0 | 238.9 | 240.5 1 |
| Distillation residue (vol%) | max 1.5 | 1.1 | 1.1 | 1 | 1.1 | 1.4 | 1.2 | 1 |
| Distillation loss (vol%) | max 1.5 | 0.3 | 1 | 0.3 | 0.1 | 0.2 | 0.8 | 1 |
| (H/C)at | - | 1.928 | 1.882 | 1.550 | 2.177 | 2.172 | 1.708 | 1.972 |
| Aromatics content (vol%) | max 26.5 | 19.7 | 22.7 | 59.7 | 0.3 | 0.0 | 44.2 | 15.9 |
| Monoaromatics | 18.5 | 22.6 | 54.2 | 0.3 | 0.0 | 43.8 | 15.7 | |
| Diaromatics | 1.2 | 0.1 | 5.5 | 0.0 | 0.0 | 0.4 | 0.2 | |
| Smoke point (mm) | min 18 | 22.2 | 18.9 | - | >50 2 | >50 2 | 12.2 | 26.6 |
| For naphtalenes > 3 vol% | min. 25 | - | - | 9.3 3 | - | - | - | - |
| Freezing point (°C) | max −47 | −55.4 | <−80 | <−80 | −57.2 | −49.1 | −80 | −50.1 |
| Flash point (°C) | min 38 | 50 | 53 | 54.5 | 43.5 | 43 | 1 | 1 |
| Net specific energy (MJ·kg−1) | min 42.8 | |||||||
| measured (ASTM D4809) | 42.8 | 42.7 | 41.2 | 43.3 | 43.7 | 42.2 | 43.0 | |
| calculated (ASTM D3338) | 43.2 | 43.0 | 42.0 | 44.1 | 44.1 | 42.3 | 43.4 |
| Sample | Jet A-1 | Jet HC | FCC HN | HEFA Cam | HEFA 215 | PyrTIR |
|---|---|---|---|---|---|---|
| IBP | 8.8 | −4.3 | −11.0 | −0.9 | −10.9 | −6.3 |
| 5 vol% | 1.4 | 2.2 | −1.2 | 3.1 | −3.7 | −2.3 |
| 10 vol% | 2.1 | 5.3 | 2.9 | 3.8 | −0.6 | 0.8 |
| 30 vol% | 3.3 | 4.8 | 5.0 | −1.6 | −1.3 | 4.1 |
| 50 vol% | 2.5 | 3.1 | 2.9 | −2.8 | −1.2 | 1.8 |
| 70 vol% | 3.5 | 5.1 | 3.3 | −1.9 | −1.1 | 1.7 |
| 90 vol% | 4.4 | 5.4 | 6.4 | 2.4 | 1.5 | 5.0 |
| 95 vol% | 4.3 | 6.6 | 8.9 | 2.8 | 1.4 | 5.3 |
| FBP | 0.8 | 3.4 | 7.4 | −1.2 | −3.0 | −0.4 |
| Average absolute deviation (°C) | 3.3 | 4.2 | 5.1 | 2.3 | 2.7 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kittel, H.; Horský, J.; Šimáček, P. Properties of Selected Alternative Petroleum Fractions and Sustainable Aviation Fuels. Processes 2023, 11, 935. https://doi.org/10.3390/pr11030935
Kittel H, Horský J, Šimáček P. Properties of Selected Alternative Petroleum Fractions and Sustainable Aviation Fuels. Processes. 2023; 11(3):935. https://doi.org/10.3390/pr11030935
Chicago/Turabian StyleKittel, Hugo, Jiří Horský, and Pavel Šimáček. 2023. "Properties of Selected Alternative Petroleum Fractions and Sustainable Aviation Fuels" Processes 11, no. 3: 935. https://doi.org/10.3390/pr11030935
APA StyleKittel, H., Horský, J., & Šimáček, P. (2023). Properties of Selected Alternative Petroleum Fractions and Sustainable Aviation Fuels. Processes, 11(3), 935. https://doi.org/10.3390/pr11030935

