Study on Spatiotemporal Features and Factors Influencing the Urban Green Total Factor Productivity in the Yellow River Basin under the Constraint of Pollution Reduction and Carbon Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Research Methods
2.3. Variables Selection
2.3.1. Input and Output Variables
2.3.2. Influencing Mechanism and Explanatory Variable Selection
2.4. Data Collection
3. Results and Analysis
3.1. Features of Spatiotemporal Evolution of the Urban GTFP in the YRB
3.2. Analysis of Factors Affecting the Urban GTFP in the YRB
3.2.1. Descriptive Statistics and Stability Test
3.2.2. The Overall Sample Regression of the Basin
3.2.3. The Respective Sample Regression of Influencing Factors in Downstream, Midstream and Upstream Cities
4. Discussion
4.1. Summary
4.2. Recommendations
4.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, W.; Xu, Y. Public Expenditure and Green Total Factor Productivity: Evidence from Chinese Prefecture-Level Cities. Int. J. Environ. Res Public Health 2022, 19, 5755. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, B.; Zhao, P.; Peng, L.; Luo, Z. Can China’s ecological civilization strike a balance between economic benefits and green efficiency? A preliminary province-based quasi-natural experiment. Front. Psychol. 2022, 13, 1027725. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Chen, X.; Sun, Y. Technology or Institutions: Which Is the Source of Green Economic Growth in Chinese Cities? Sustainability 2021, 13, 10934. [Google Scholar] [CrossRef]
- Jiang, P.; Khishgee, S.; Alimujiang, A.; Dong, H. Cost-effective approaches for reducing carbon and air pollution emissions in the power industry in China. J. Environ. Manag. 2020, 264, 110452. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, L.; Zheng, M.; Xing, Y.; Liu, X.; Wang, Y.; Xiao, Z. One Fee, Two Reductions: The Double Abatement Effect of Pollutant Discharge Fees on Industrial Pollution and Carbon Emissions. Front. Environ. Sci. 2022, 10, 928434. [Google Scholar] [CrossRef]
- Erdogan, S. Analyzing the environmental Kuznets curve hypothesis: The role of disaggregated transport infrastructure investments. Sustain. Cities Soc. 2020, 61, 102338. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Li, Z. Green Total Factor Productivity Growth: Policy-Guided or Market-Driven? Int. J. Environ. Res. Public Health 2022, 19, 10471. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, G.; Skitmore, M.; Ballesteros-Perez, P. A critical review of the current research mainstreams and the influencing factors of green total factor productivity. Environ. Sci. Pollut. Res. Int. 2021, 28, 35392–35405. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Natural resource abundance, resource industry dependence and economic green growth in China. Resources Policy 2020, 68, 101734. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Z.; Liu, Z. Regional differences and threshold effect of clean technology innovation on industrial green total factor productivity. Front. Environ. Sci. 2022, 10, 985591. [Google Scholar] [CrossRef]
- Coomes, O.T.; Barham, B.L.; MacDonald, G.K.; Ramankutty, N.; Chavas, J.-P. Leveraging total factor productivity growth for sustainable and resilient farming. Nat. Sustain. 2019, 2, 22–28. [Google Scholar] [CrossRef]
- Rahman, S.; Salim, R. Six Decades of Total Factor Productivity Change and Sources of Growth in Bangladesh Agriculture (1948–2008). J. Agric. Econ. 2013, 64, 275–294. [Google Scholar] [CrossRef]
- Hasan, A.; Baroudi, B.; Elmualim, A.; Rameezdeen, R. Factors affecting construction productivity: A 30 year systematic review. Eng. Constr. Archit. Manag. 2018, 25, 916–937. [Google Scholar] [CrossRef]
- He, L.; Zha, J.; Loo, H.A. How to improve tourism energy efficiency to achieve sustainable tourism: Evidence from China. Curr. Issues Tour. 2019, 23, 1–16. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Wang, F.; Li, R.; Yu, C.; Xiong, L.; Chang, Y. Temporal-Spatial Evolution and Driving Factors of the Green Total Factor Productivity of China’s Central Plains Urban Agglomeration. Front. Environ. Sci. 2021, 9, 686725. [Google Scholar] [CrossRef]
- Zhan, X.; Li, R.Y.M.; Liu, X.; He, F.; Wang, M.; Qin, Y.; Xia, J.; Liao, W. Fiscal decentralisation and green total factor productivity in China: SBM-GML and IV model approaches. Front. Environ. Sci. 2022, 10, 989194. [Google Scholar] [CrossRef]
- Ahmed, N.; Hamid, Z.; Mahboob, F.; Rehman, K.U.; Ali, M.S.E.; Senkus, P.; Wysokińska-Senkus, A.; Siemiński, P.; Skrzypek, A. Causal Linkage among Agricultural Insurance, Air Pollution, and Agricultural Green Total Factor Productivity in United States: Pairwise Granger Causality Approach. Agriculture 2022, 12, 1320. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, B.; Wang, J.; Kwek, K. The impact of climate change on China’s agricultural green total factor productivity. Technol. Forecast. Soc. Chang. 2022, 185, 122054. [Google Scholar] [CrossRef]
- Loganathan, N.; Mursitama, T.N.; Pillai, L.L.K.; Khan, A.; Taha, R. The effects of total factor of productivity, natural resources and green taxation on CO2 emissions in Malaysia. Environ. Sci. Pollut. Res. Int. 2020, 27, 45121–45132. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y. Total Factor Productivity, Pollution and ‘Green’ Economic Growth in China. J. Int. Dev. 2015, 27, 504–515. [Google Scholar] [CrossRef]
- Tian, P.; Lin, B. Promoting green productivity growth for China’s industrial exports: Evidence from a hybrid input-output model. Energy Policy 2017, 111, 394–402. [Google Scholar] [CrossRef]
- Du, K.; Li, J. Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy 2019, 131, 240–250. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, B.; Liu, M.; Hou, J. Haze pollution, new-type urbanization and regional total factor productivity growth: Based on a panel dataset involving all 31 provinces within the territory of China. Kybernetes 2020, 50, 1357–1378. [Google Scholar] [CrossRef]
- Yu, D.; Li, X.; Yu, J.; Li, H. The impact of the spatial agglomeration of foreign direct investment on green total factor productivity of Chinese cities. J. Environ. Manag. 2021, 290, 112666. [Google Scholar] [CrossRef]
- Yan, G.; Jiang, L.; Xu, C. How Environmental Regulation Affects Industrial Green Total Factor Productivity in China: The Role of Internal and External Channels. Sustainability 2022, 14, 13500. [Google Scholar] [CrossRef]
- Caro, T.; Koneru, M. Towards an ecology of protective coloration. Biol. Rev. Camb Philos. Soc. 2021, 96, 611–641. [Google Scholar] [CrossRef]
- Lan, F.; Hui, Z.; Bian, J.; Wang, Y.; Shen, W. Ecological Well-Being Performance Evaluation and Spatio-Temporal Evolution Characteristics of Urban Agglomerations in the Yellow River Basin. Land 2022, 11, 2044. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, D.; Li, W.; Mei, D.; Zhong, J. Drag Effect of Economic Growth and Its Spatial Differences under the Constraints of Resources and Environment: Empirical Findings from China’s Yellow River Basin. Int. J. Environ. Res. Public Health 2022, 19, 3027. [Google Scholar] [CrossRef]
- Liu, K.; Qiao, Y.; Shi, T.; Zhou, Q. Study on coupling coordination and spatiotemporal heterogeneity between economic development and ecological environment of cities along the Yellow River Basin. Environ Sci Pollut Res Int 2021, 28, 6898–6912. [Google Scholar] [CrossRef] [PubMed]
- Guo, H. Sustainable development and ecological environment protection in high-quality development of the Yellow River basin. J. Humanit. 2020, 1, 17–21. (In Chinese) [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. A Comment on Weak Disposability in Nonparametric Production Analysis. Am. J. Agric. Econ. 2009, 91, 535–538. [Google Scholar] [CrossRef]
- He, R.; Baležentis, T.; Štreimikienė, D.; Shen, Z. Sustainable Green Growth in Developing Economies. J. Glob. Inf. Manag. 2021, 30, 1–15. [Google Scholar] [CrossRef]
- Li, T.; Liao, G. The Heterogeneous Impact of Financial Development on Green Total Factor Productivity. Front. Energy Res. 2020, 8, 29. [Google Scholar] [CrossRef]
- Kan, D.; Ye, X.; Lyu, L.; Huang, W. Study on the Coupling Coordination between New-Type Urbanization and Water Ecological Environment and Its Driving Factors: Evidence from Jiangxi Province, China. Int. J. Environ. Res. Public Health 2022, 19, 9998. [Google Scholar] [CrossRef]
- Dong, B.; Ma, X.; Zhang, Z.; Zhang, H.; Chen, R.; Song, Y.; Xiang, R. Carbon emissions, the industrial structure and economic growth: Evidence from heterogeneous industries in China. Environ. Pollut. 2020, 262, 114322. [Google Scholar] [CrossRef]
- Lean, B.; Zou, H.; Chen, S.; Huang, J. The effect of industrial structure adjustment on China’s energy intensity: Evidence from linear and nonlinear analysis. Energy 2021, 218, 119517. [Google Scholar] [CrossRef]
- Yu, Y.; Iu, H.R. Economic growth, industrial structure and nitrogen oxide emissions reduction and prediction in China. Atmos. Pollut. Res. 2020, 11, 1042–1050. [Google Scholar] [CrossRef]
- You, J.; Xiao, H. Can FDI facilitate green total factor productivity in China? Evidence from regional diversity. Environ. Sci. Pollut. Res. Int. 2022, 29, 49309–49321. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, Y.; Liu, Q.; Sun, W. The Impact of Foreign Direct Investment on Urban Green Total Factor Productivity and the Mechanism Test. Int. J. Environ. Res. Public Health 2022, 19, 12183. [Google Scholar] [CrossRef] [PubMed]
- Solarin, S.A.; Al-Mulali, U.; Musah, I.; Ozturk, I. Investigating the pollution haven hypothesis in Ghana: An empirical investigation. Energy 2017, 124, 706–719. [Google Scholar] [CrossRef]
- Collaborator, P.; Chatterjee, C. Does environmental regulation indirectly induce upstream innovation? New evidence from India. Res. Policy 2017, 46, 939–955. [Google Scholar] [CrossRef]
- Mulaessa, N.; Lin, L. How do proactive environmental strategies affect green innovation? The moderating role of environmental regulations and firm performance. Int. J. Environ. Res. Public Health 2021, 18, 9083. [Google Scholar] [CrossRef]
- Otsuka, A.; Goto, M.; Sueyoshi, T. Energy efficiency and agglomeration economies: The case of Japanese manufacturing industries. Reg. Sci. Policy Pract. 2014, 6, 195–212. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü.; Kuloğlu, A. The impact of urbanization on energy intensity: Panel data evidence considering cross-sectional dependence and heterogeneity. Energy 2017, 133, 242–256. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.; He, M. The Spatial Interaction Effect of Green Spaces on Urban Economic Growth: Empirical Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 10360. [Google Scholar] [CrossRef]
- Li, X.M.; Zhou, W.Q. Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: Extending understanding from local to the city scale. Urban For. Urban Green. 2019, 41, 255–263. [Google Scholar] [CrossRef]
- Lean, H.H.; Smyth, R. Long memory in US disaggregated petroleum consumption: Evidence from univariate and multivariate LM tests for fractional integration. Energy Pol. 2009, 37, 3205.e11. [Google Scholar] [CrossRef]
- Pesaran, M.H. Testing Weak Cross-sectional Dependence in Large Panels. Econom. Rev. 2015, 34, 1089–1117. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Breuer, J.B.; McNown, R.; Wallace, M.S. Series-specific unit root tests with paneldata. Oxf. Bull. Econ. Stat. 2002, 64, 527e46. [Google Scholar] [CrossRef]
- Erdogan, S.; Akalin, G.; Oypan, O. Are shocks to disaggregated energy consumption transitory or permanent in Turkey? New evidence from fourier panel KPSS test. Energy 2020, 197, 117174. [Google Scholar] [CrossRef]
Indicators | Scales | Unit | Number of Observed Values | Mean | Std. dev. | Min. | Max. |
---|---|---|---|---|---|---|---|
Input | Capital input | CNY 1 billion | 870 | 122.71 | 118.58 | 2.93 | 703.51 |
Energy input | 10 thousand tons of standard coal | 870 | 135.99 | 78.08 | 7.97 | 435.13 | |
Labor input | 10 thousand individuals | 870 | 47.08 | 36.45 | 4.84 | 213.99 | |
Desired output | Real GDP | CNY 1 billion | 870 | 922.02 | 772.24 | 75.01 | 4237.12 |
Undesired output | PM2.5 concentration | μg/m3 | 870 | 51.77 | 20.31 | 14.47 | 103.90 |
CO2 emissions | Million tonnes | 870 | 33.88 | 19.50 | 1.99 | 108.48 |
Indicator Attribute | Indicator Name | Indicator Interpretation |
---|---|---|
The explained variable | GTFP | GTFP value |
Explanatory variables | ED | GDP per capita |
IS | Percentage of secondary industry added value to GDP | |
UP | Proportion of non-agricultural population in the total population | |
OU | Ratio of the foreign capital utilized in the current year in GDP | |
ER | Proportion of environmental governance investment to GDP | |
EI | Ratio of energy consumption to GDP | |
EB | Percentage of green coverage of the built-up area |
Variables | Min | Max | Mean | Std. Dev |
---|---|---|---|---|
GTFP | 0.108 | 1.127 | 0.396 | 0.198 |
ED | 0.276 | 10.328 | 2.154 | 1.433 |
IS | 0.158 | 0.806 | 0.505 | 0.106 |
UP | 0.023 | 1.612 | 0.243 | 0.182 |
OU | 0.000 | 0.413 | 0.032 | 0.049 |
ER | 0.007 | 0.107 | 0.035 | 0.024 |
EI | 0.168 | 4.609 | 1.040 | 0.672 |
EB | 0.000 | 0.718 | 0.380 | 0.074 |
Test | Statistics | p Value |
---|---|---|
Breusch–Pagan LM | 5273.176 | 0.000 |
Pesaran scaled LM | 62.962 | 0.000 |
Bias-corrected scaled LM | 60.891 | 0.000 |
Pesaran CD | 2.797 | 0.005 |
Variables | CADF Statistics | p Value | SURADF Statistics | p Value | Results |
---|---|---|---|---|---|
GTFP | −6.112 | 0.000 | −6.052 | 0.000 | stationary |
ED | −5.136 | 0.000 | −4.177 | 0.026 | stationary |
IS | −4.375 | 0.023 | −5.008 | 0.000 | stationary |
UR | −4.068 | 0.028 | −3.702 | 0.038 | stationary |
FDI | −4.827 | 0.015 | −3.691 | 0.039 | stationary |
ER | −6.116 | 0.000 | −3.332 | 0.045 | stationary |
EI | −7.483 | 0.000 | −8.105 | 0.000 | stationary |
EB | −4.233 | 0.025 | −6.436 | 0.000 | stationary |
Variables | RE | FE | ME | CCE |
---|---|---|---|---|
ED | 0.095 *** | 0.094 *** | 0.073 *** | 0.086 *** |
(14.006) | (13.251) | (24.258) | (12.193) | |
IS | −0.312 *** | −0.233 *** | −0.225 *** | −0.207 *** |
(−4.991) | (−5.519) | (−6.185) | (−5.426) | |
UR | 0.021 * | 0.028 ** | 0.023 ** | 0.026 ** |
(1.726) | (2.201) | (2.095) | (2.192) | |
FDI | −0.493 *** | −0.117 * | −0.123 ** | −0.113 ** |
(−4.733) | (−1.692) | (−1.993) | (−2.187) | |
ER | 0.866 ** | 0.750 *** | 0.863 ** | 0.806 ** |
(2.213) | (5.164) | (2.137) | (2.172) | |
EI | −0.111 *** | −0.154 ** | −0.142 *** | −0.163 * |
(−4.051) | (−2.105) | (−10.357) | (−1.705) | |
EB | 0.103 * | 0.181 * | 0.208 ** | 0.176 ** |
(1.713) | (1.695) | (2.168) | (2.099) | |
cons | 0.178 | 0.307 | 0.364 | 0.312 |
(0.517) | (1.019) | (0.962) | (1.125) | |
RMSE | 0.225 | 0.142 | 0.187 | 0.063 |
CIPS (p value) | 0.265 | 0.126 | 0.263 | 0.000 |
Variables | Upstream Cities | Midstream Cities | Downstream Cities |
---|---|---|---|
ED | 0.076 *** (12.108) | 0.112 *** (8.735) | 0.058 *** (4.163) |
IS | −0.085 *** (−7.015) | −0.078 *** (−6.193) | 0.026 *** (7.432) |
UR | −0.015 ** (−2.206) | 0.016 * (1.895) | 0.195 *** (4.432) |
FDI | −0.116 * (−1.707) | −0.158 ** (−2.268) | 0.628 ** (2.109) |
ER | 0.458 ** (2.127) | 1.272 *** (4.506) | 0.693 *** (5.736) |
EI | −0.065 ** (−2.182) | −0.086 * (−1.872) | −0.287 ** (−2.283) |
EB | −0.069 * (−1.813) | 0.079 ** (2.272) | 0.086 ** (2.246) |
cons | 0.258 (0.726) | −0.383 * (−1.873) | −0.802 (−0.863) |
RMSE | 0.082 | 0.075 | 0.063 |
CIPS (p value) | 0.000 | 0.000 | 0.000 |
Variables | Upstream Cities | Midstream Cities | Downstream Cities |
---|---|---|---|
ED | 0.081 *** (13.732) | 0.107 *** (8.846) | 0.061 *** (4.863) |
IS | −0.079 *** (−8.126) | −0.069 *** (−6.792) | 0.031 *** (7.684) |
UR | −0.012 *** (−8.473) | 0.012 * (1.936) | 0.206 ** (2.279) |
FDI | −0.109 * (−1.726) | −0.147 ** (−2.208) | 0.583 ** (2.194) |
ER | 0.503 ** (2.158) | 1.136 *** (5.701) | 0.713 *** (5.007) |
EI | −0.058 ** (−2.195) | −0.076 * (−1.887) | −0.316 ** (−2.247) |
EB | −0.071 ** (−2.116) | 0.082 ** (2.209) | 0.079 ** (2.185) |
cons | 0.302 * (1.872) | −0.327 (0.982) | −0.787 (−1.006) |
RMSE | 0.072 | 0.063 | 0.049 |
CIPS (p value) | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, L.; Su, Z.; Wang, W.; Wang, Y.; Luo, X. Study on Spatiotemporal Features and Factors Influencing the Urban Green Total Factor Productivity in the Yellow River Basin under the Constraint of Pollution Reduction and Carbon Reduction. Processes 2023, 11, 730. https://doi.org/10.3390/pr11030730
Yang Y, Chen L, Su Z, Wang W, Wang Y, Luo X. Study on Spatiotemporal Features and Factors Influencing the Urban Green Total Factor Productivity in the Yellow River Basin under the Constraint of Pollution Reduction and Carbon Reduction. Processes. 2023; 11(3):730. https://doi.org/10.3390/pr11030730
Chicago/Turabian StyleYang, Yang, Lin Chen, Zhaoxian Su, Wenbin Wang, Yun Wang, and Xin Luo. 2023. "Study on Spatiotemporal Features and Factors Influencing the Urban Green Total Factor Productivity in the Yellow River Basin under the Constraint of Pollution Reduction and Carbon Reduction" Processes 11, no. 3: 730. https://doi.org/10.3390/pr11030730
APA StyleYang, Y., Chen, L., Su, Z., Wang, W., Wang, Y., & Luo, X. (2023). Study on Spatiotemporal Features and Factors Influencing the Urban Green Total Factor Productivity in the Yellow River Basin under the Constraint of Pollution Reduction and Carbon Reduction. Processes, 11(3), 730. https://doi.org/10.3390/pr11030730