Inhibition of Cholinesterases by Benzothiazolone Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure for Synthesis
2.2. Inhibition Studies of ChE and MAO
2.3. Enzyme Inhibition and Kinetic Studies
2.4. Reversibility Analysis of M13
2.5. Docking Studies
3. Results and Discussion
3.1. Chemistry
3.2. Inhibition Studies of ChE and MAO
3.3. Kinetic Study
3.4. Reversibility Studies
3.5. Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brookmeyer, R.; Abdalla, N.; Kawas, C.H.; Corrada, M.M. Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimers Dement 2018, 14, 121–129. [Google Scholar] [PubMed]
- Ozdemir, Z.; Ozcelik, A.B.; Uysal, M. Approaches based on cholinergic hypothesis and cholinesterase inhibitors in the treatment of alzheimer’s disease. Front. Clin. Drug Res.-Alzheimer Disord. 2019, 8, 154–190. [Google Scholar]
- Shekari, A.; Fahnestock, M. Cholinergic neurodegeneration in Alzheimer disease mouse models. Handb. Clin. Neurol. 2021, 182, 191–209. [Google Scholar]
- Mendiola-Precoma, J.; Berumen, L.C.; Padilla, K.; Garcia-Alcocer, G. Therapies for prevention and treatment of Alzheimer’s disease. Bio. Med. Res. Int. 2016, 2016, 2589276. [Google Scholar]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar]
- Chen, Z.R.; Huang, J.B.; Yang, S.L.; Hong, F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022, 27, 1816. [Google Scholar]
- Bekdash, R. The cholinergic system, the adrenergic system and the neuropathology of Alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 1273. [Google Scholar] [CrossRef] [PubMed]
- Bozbey, I.; Ozdemir, Z.; Uslu, H.; Ozcelik, A.B.; Senol, F.S.; Orhan, I.E.; Uysal, M. A series of new hydrazone derivatives: Synthesis, molecular docking and anticholinesterase activity studies. Mini Rev. Med. Chem. 2020, 20, 1042–1060. [Google Scholar] [PubMed]
- Dos Santos, G.A.A.; Schmidt, C.W.P.; Forlenza, K.P. The use of esterase inhibitors. In Pharmacological Treatment of Alzheimer’s Disease; Santos, G.A.A.D., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Gabr, M.T.; Abdel-Raziqc, M.S. Structure-based design, synthesis, and evaluation of structurally rigid donepezil analogues as dual AChE and BACE-1 inhibitors. Bioorg. Med. Chem. Lett. 2018, 28, 2910–2913. [Google Scholar] [CrossRef]
- Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussmana, J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 2010, 187, 10–22. [Google Scholar]
- Costanzo, P.; Cariati, L.; Desiderio, D.; Sgammato, R.; Lamberti, A.; Arcone, R.; Salerno, R.; Nardi, M.; Masullo, M.; Oliverio, M. Design, synthesis, and evaluation of donepezil-like compounds as AChE and BACE-1 inhibitors. Med. Chem. Lett. 2016, 7, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Nachon, F.; Carletti, E.; Ronco, C.; Trovaslet, M.; Nicolet, Y.; Jean, L. Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyrylcholinesterase. Biochem. J. 2013, 453, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Leon, J.; Marco-Contelles, J. A step further towards multitarget drugs for Alzheimer and neuronal vascular diseases: Targeting the cholinergic system, amyloid-β aggregation and Ca2+ dyshomeostatis. J. Curr. Med. Chem. 2011, 18, 552. [Google Scholar] [CrossRef]
- Simoni, E.; Daniele, S.; Bottegoni, G.; Pizzirani, D.; Trincavelli, M.L.; Goldoni, L.; Tarozzo, G.; Reggiani, A.; Martini, C.; Piomelli, D.; et al. Combining galantamine and memantine in multitargeted, new chemical entities potentially useful in Alzheimer’s disease. J. Med. Chem. 2012, 55, 9708–9721. [Google Scholar] [CrossRef] [PubMed]
- Nepovimova, E.; Uliassi, E.; Korabecny, J.; Peña-Altamira, L.E.; Samez, S.; Pesaresi, A.; Garcia, G.E.; Bartolini, M.; Andrisano, V.; Bergamini, C.; et al. Multitarget drug design strategy: Quinone–tacrine hybrids designedtTo block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem. 2014, 57, 8576–8589. [Google Scholar] [CrossRef]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef]
- Camps, P.; Formosa, X.; Galdeano, C.; Gomez, T.; Munoz-Torrero, D.; Scarpellini, M. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase induced β-amyloid aggregation. J. Med. Chem. 2009, 51, 3588–3598. [Google Scholar] [CrossRef]
- Bourne, Y.; Taylor, P.; Radić, Z.; Marchot, P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J. 2003, 22, 1–12. [Google Scholar] [CrossRef]
- Tougu, V. Acetylcholinesterase: Mechanism of catalysis and inhibition. Curr. Med. Chem. Cent. Nerv. Syst. Agents 2001, 1, 155–170. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Zhang, Y. Catalytic reaction mechanism of acetylcholinesterase determined by born-oppenheimer AB initio QM/MM molecular dynamics simulations. J. Phys. Chem. B 2010, 114, 8817–8825. [Google Scholar] [CrossRef]
- Brus, B.; Kosak, U.; Turk, S.; Pislar, A.; Coquelle, N.; Kos, J.; Stojan, J.; Colletier, J.P.; Gobec, S. Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. J. Med. Chem. 2014, 57, 8167–8179. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, M.; Kilic, B.; Ilıkcı Sagkan, R.; Aksakal, F.; Ercetin, T.; Gulcan, H.O.; Dogruer, D.S. Design, synthesis and biological evaluation of new benzoxazolone/benzothiazolone derivatives as multi-target agents against Alzheimer’s disease. Eur. J. Med. Chem. 2021, 212, 113124. [Google Scholar] [CrossRef] [PubMed]
- Doğruer, D.S.; Ünlü, S.; Yeşilada, E.; Şahin, M.F. N-(2-pyridinyl)-2-[2(3H)-benzazolone-3-yl]acetamides: Synthesis, antinociceptive and anti-inflammatory activity. Farmaco 1997, 52, 745–750. [Google Scholar] [PubMed]
- Abdelazeem, A.H.; Khan, S.I.; White, S.W.; Sufka, K.J.; McCurdy, C.R. Design, synthesis and biological evaluation of bivalent benzoxazolone and benzothiazolone ligands as potential anti-inflammatory/analgesic agents. Bioorg. Med. Chem. 2015, 23, 3248–3259. [Google Scholar] [CrossRef]
- Jacques, P.; Pascal, C.; Evelina, C. 2(3H)-Benzoxazolone and bioisosters as “privileged scaffold” in the design of pharmacological probes. Curr. Med. Chem. 2005, 12, 877–885. [Google Scholar]
- Akrami, H.; Mirjalili, B.H.; Khoobi, M.; Nadri, H.; Moradi, A.; Sakhteman, A.; Emami, S.; Foroumadi, A.; Shafiee, A. Indolinone-based acetylcholinesterase inhibitors: Synthesis, biological activity and molecular modeling. Eur. J. Med. Chem. 2014, 84, 375–381. [Google Scholar] [CrossRef]
- Tripathi, P.N.; Srivastava, P.; Sharma, P.; Kumar Tripathi, M.; Seth, A.; Tripathi, A. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg. Chem. 2019, 85, 82–96. [Google Scholar] [CrossRef]
- Raza, R.; Saeed, A.; Arif, M.; Mahmood, S.; Muddassar, M.; Raza, A.; Iqbal, J. Synthesis and Biological Evaluation of 3-Thiazolocoumarinyl Schiff-Base Derivatives as Cholinesterase Inhibitors. Chem. Biol. Drug Des. 2012, 80, 605–615. [Google Scholar] [CrossRef]
- Özil, M.; Balaydın, H.T.; Şentürk, M. Synthesis of 5-Methyl-2,4-Dihydro-3H-1,2,4-Triazole-3-One’s Aryl Schiff Base Derivatives and Investigation of Carbonic Anhydrase and Cholinesterase (AChE, BuChE) Inhibitory Properties. Bioorganic Chem. 2019, 86, 705–713. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Mahmood, K.; Wajid, A.; Maah, M.J.; Yusoff, I. Synthesis, characterization and biological activity of Schiff bases. IPCBEE 2011, 10, 185. [Google Scholar]
- Önkol, T.; Çakir, B.; Ito, S.; Özçlik, B.; Şahin, M.F. Synthesis of some (5-chloro-2 (3H)-benzothiazolinone-3-yl) aceto/propanohydrazides towards antimicrobial and antiviral activity. Turk. J. Pharm. Sci. 2009, 6, 195–206. [Google Scholar]
- Önkol, T.; Yildirim, E.; Erol, K.; Ito, S.; Şahin, M.F. Synthesis and antinociceptive activity of (5-chloro-2 (3H)-benzothiazolon-3-yl) propanamide derivatives. Arch. Pharm. 2004, 337, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Mathew, B.; Oh, J.M.; Khames, A.; Abdelgawad, M.A.; Rangarajan, T.M.; Nath, L.R.; Agoni, C.; Soliman, M.E.S.; Mathew, G.E.; Kim, H. Replacement of chalcone-ethers with chalcone-thioethers as potent and highly selective monoamine oxidase-B inhibitors and their protein-ligand interactions. Pharmaceuticals 2021, 14, 1148. [Google Scholar] [CrossRef]
- Alagöz, M.A.; Oh, J.M.; Zenni, Y.N.; Özdemir, Z.; Abdelgawad, M.A.; Naguib, I.A.; Ghoneim, M.M.; Gambacorta, N.; Nicolotti, O.; Kim, H.; et al. Development of a novel class of pyridazinone derivatives as selective MAO-B inhibitors. Molecules 2022, 27, 3801. [Google Scholar] [CrossRef]
- Oh, J.M.; Jang, H.J.; Kim, W.J.; Kang, M.G.; Baek, S.C.; Lee, J.P.; Park, D.; Oh, S.R.; Kim, H. Calycosin and 8-O-methylretusin isolated from Maackia amurensis as potent and selective reversible inhibitors of human monoamine oxidase-B. Int. J. Biol. Macromol. 2020, 151, 441–448. [Google Scholar] [CrossRef]
- Lee, J.P.; Kang, M.G.; Lee, J.Y.; Oh, J.M.; Baek, S.C.; Leem, H.H.; Park, D.; Cho, M.L.; Kim, H. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorg. Chem. 2019, 89, 1030. [Google Scholar] [CrossRef]
- Mathew, B.; Oh, J.M.; Abdelgawad, M.A.; Khames, A.; Ghoneim, M.M.; Kumar, S.; Nath, L.R.; Sudevan, S.T.; Parambi, D.G.T.; Agoni, C.; et al. Conjugated dienones from differently substituted cinnamaldehyde as highly potent monoamine oxidase-B inhibitors: Synthesis, biochemistry, and computational chemistry. ACS Omega 2022, 7, 8184–8197. [Google Scholar] [CrossRef]
- Lee, H.W.; Ryu, H.W.; Kang, M.G.; Park, D.; Oh, S.R.; Kim, H. Potent selective monoamine oxidase B inhibition by maackiain, a pterocarpan from the roots of Sophora favescens. Bioorg. Med. Chem. Lett. 2016, 26, 4714–4719. [Google Scholar] [CrossRef]
- Mathew, B.; Oh, J.M.; Baty, R.S.; Batiha, G.E.; Parambi, D.; Gambacorta, N.; Nicolotti, O.; Kim, H. Piperazine-substituted chalcones: A new class of MAO-B, AChE, and BACE-1 inhibitors for the treatment of neurological disorders. Environ. Sci. Pollut. Res. Int. 2021, 28, 38855–38866. [Google Scholar] [CrossRef]
- Pajk, S.; Knez, D.; Košak, U.; Zorović, M.; Brazzolotto, X.; Coquelle, N.; Nachon, F.; Colletier, J.P.; Živin, M.; Stojan, J.; et al. Development of potent reversible selective inhibitors of butyrylcholinesterase as fluorescent probes. J. Enzym. Inhib. Med. Chem. 2020, 35, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Release 2021-4: Protein Preparation Wizard; Epik, Schrödinger, LLC: New York, NY, USA; Impact, Schrödinger, LLC: New York, NY, USA; Prime, Schrödinger, LLC: New York, NY, USA, 2021.
- Schrödinger Release 2021-4: LigPrep; Schrödinger, LLC: New York, NY, USA, 2021.
- Schrödinger Release 2021-4: Glide; Schrödinger, LLC: New York, NY, USA, 2021.
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.S.; Kang, M.G.; Lee, J.Y.; Lee, S.R.; Park, D.; Cho, M.; Kim, H. Inhibition of butyrylcholinesterase and human monoamine oxidase-B by the coumarin glycyrol and liquiritigenin isolated from Glycyrrhiza uralensis. Molecules 2020, 25, 3896. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.H.; Eom, B.H.; Ryu, H.W.; Kang, M.G.; Park, J.E.; Kim, D.Y.; Kim, J.H.; Park, D.; Oh, S.R.; Kim, H. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of khellactone coumarin derivatives isolated from Peucedanum japonicum Thurnberg. Sci. Rep. 2020, 10, 21695. [Google Scholar] [CrossRef]
- Oh, J.M.; Kang, Y.; Hwang, J.H.; Park, J.H.; Shin, W.H.; Mun, S.K.; Lee, J.U.; Yee, S.T.; Kim, H. Synthesis of 4-substituted benzyl-2-triazole-linked-tryptamine-paeonol derivatives and evaluation of their selective inhibitions against butyrylcholinesterase and monoamine oxidase-B. Int. J. Biol. Macromol. 2022, 217, 910–921. [Google Scholar] [CrossRef]
| ||||
Compound | R | Yield (%) | M.P. (°C) | Molecular Formula |
---|---|---|---|---|
M1 | thiophen-2-yl | 91 | 250-2 | C14H11N3O2S2 |
M2 | 5-methylthiophen-2-yl | 93 | 284-6 | C15H13N3O2S2 |
M3 | 1H-pyrrol-2-yl | 70 | 238-4 | C14H12N4O2S |
M4 | 1-methyl-1H-pyrrol-2-yl | 91 | 264-6 | C15H14N4O2S |
M5 | pyridin-2-yl | 68 | 228-30 | C15H12N4O2S |
M6 | pyridin-4-yl | 71 | 162-4 | C15H12N4O2S |
M7 | furan-2-yl | 71 | 216-7 | C14H11N3O3S |
M8 | 5-methylfuran-2-yl | 80 | 238-40 | C15H13N3O3S |
M9 | 5-bromo-1H-indol-3-yl | 67 | 268-9 | C18H13BrN4O2S |
M10 | quinolin-2-yl | 59 | 271-2 | C19H14N4O2S |
M11 | 6-chloropyridin-3-yl | 75 | 237-8 | C15H11ClN4O2S |
M12 | 6-methoxypyridin-3-yl | 55 | 226-7 | C16H14N4O3S |
M13 | 6-methoxy-1H-indol-3-yl | 62 | 262-3 | C19H16N4O3S |
Compound | Residual Activity at 10 µM (%) | IC50 (µM) | SI b | ||
---|---|---|---|---|---|
AChE | BChE | AChE | BChE | ||
M1 | 61.85 ± 6.48 | 44.45 ± 0.72 | >40 | 11.55 ± 2.22 | >3.46 |
M2 | 53.33 ± 0.73 | 18.08 ± 0.80 | >40 | 1.38 ± 0.17 | >28.99 |
M3 | 70.22 ± 3.00 | 67.20 ± 3.63 | >40 | >40 | >1.33 |
M4 | 43.17 ± 5.68 | 41.66 ± 0.28 | 5.52 ± 0.06 | 4.55 ± 0.25 | 1.21 |
M5 | 73.61 ± 0.05 | 70.43 ± 5.13 | >40 | >40 | >1.33 |
M6 | 72.15 ± 1.02 | 80.22 ± 3.82 | >40 | >40 | >1.33 |
M7 | 72.89 ± 1.06 | 76.62 ± 2.89 | >40 | >40 | >1.33 |
M8 | 62.34 ± 2.93 | 62.20 ± 3.12 | >40 | >40 | >1.33 |
M9 | 39.05 ± 1.35 | 33.42 ± 2.39 | 8.17 ± 0.28 | 3.30 ± 0.74 | 2.48 |
M10 | 60.06 ± 1.26 | 59.30 ± 4.76 | 32.27 ± 121 | 17.16 ± 2.92 | 1.88 |
M11 | 68.93 ± 0.84 | 61.42 ± 1.77 | 37.25 ± 1.16 | 11.39 ± 3.09 | 3.27 |
M12 | 60.22 ± 3.22 | 84.93 ± 0.58 | 36.22 ± 0.37 | >40 | <1.21 |
M13 | 37.73 ± 1.93 | 15.82 ± 2.40 | 5.03 ± 0.93 | 1.21 ± 0.05 | 4.16 |
Donepezil | 0.010 ± 0.002 | 0.180 ± 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alagöz, M.A.; Kim, S.-M.; Oh, J.M.; Arslan, G.; Özdemir, Z.; Sari, S.; Özçelik, A.B.; Önkol, T.; Trisciuzzi, D.; Nicolotti, O.; et al. Inhibition of Cholinesterases by Benzothiazolone Derivatives. Processes 2022, 10, 1872. https://doi.org/10.3390/pr10091872
Alagöz MA, Kim S-M, Oh JM, Arslan G, Özdemir Z, Sari S, Özçelik AB, Önkol T, Trisciuzzi D, Nicolotti O, et al. Inhibition of Cholinesterases by Benzothiazolone Derivatives. Processes. 2022; 10(9):1872. https://doi.org/10.3390/pr10091872
Chicago/Turabian StyleAlagöz, Mehmet Abdullah, Seong-Min Kim, Jong Min Oh, Gülnur Arslan, Zeynep Özdemir, Suat Sari, Azime Berna Özçelik, Tijen Önkol, Daniela Trisciuzzi, Orazio Nicolotti, and et al. 2022. "Inhibition of Cholinesterases by Benzothiazolone Derivatives" Processes 10, no. 9: 1872. https://doi.org/10.3390/pr10091872
APA StyleAlagöz, M. A., Kim, S.-M., Oh, J. M., Arslan, G., Özdemir, Z., Sari, S., Özçelik, A. B., Önkol, T., Trisciuzzi, D., Nicolotti, O., Kim, H., & Mathew, B. (2022). Inhibition of Cholinesterases by Benzothiazolone Derivatives. Processes, 10(9), 1872. https://doi.org/10.3390/pr10091872