Morula Tree: From Fruit to Wine through Spontaneous Fermentation and the Potential of Deriving Other Value-Added Products
Abstract
:1. Introduction
- (1)
- Morula o mobose is described as the tree which bears sweet, palatable fruits.
- (2)
- Morula wa go baba is the tree bearing sour and undesirable fruits.
- (3)
- Morula wa go nkga bears fruits that are disliked due to their “objectionable odour”.
2. The Extraction of Marula Fruit Juice
2.1. Marula Fruit Juice
2.2. Biochemical Properties of Marula Juice
2.3. Flavour and Aromatic Compounds of the Marula Fruit and Juice
3. Improvement of Traditional Processing of Marula Fruits to Enhance Juice Yield, and the Flavour
4. Microbiology of Marula Fruit Wine
4.1. Spontaneous Fermentation
4.2. Microbial Evolution and Population Dynamics in Marula Wine during Spontaneous Fermentation
4.3. The Microbial Influence on Quality and Safety of Marula Wine
5. The Sustainability and Economic Potential of Marula Wine
6. Challenges, Opportunities and Future Research Recommendations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molelekoa, T.B.J.; Regnier, T.; da Silva, L.S.; Augustyn, W.A. Potential of marula (sclerocarya birrea subsp. caffra) waste for the production of vinegar through surface and submerged fermentation. S. Afr. J. Sci. 2018, 114, 3874. [Google Scholar] [CrossRef]
- Shackleton, C. Growth and fruit production of Sclerocarya birrea in the South African lowveld. Agrofor. Syst. 2002, 55, 175–180. [Google Scholar] [CrossRef]
- Sinthumule, N.I.; Mzamani, L.C.M. Communities and conservation: Marula trees (Sclerocarya birrea subsp. caffra) under communal management at Matiyane village, Limpopo province, South Africa. Top. Conserv. Sci. 2019, 12. [Google Scholar] [CrossRef]
- Shackleton, S.E.; Shackleton, C.M.; Cunningham, A.B.; Lombard, C.; Sullivan, C.A.; Netshiluvhi, T.R. Knowledge on Sclerocarya birrea subsp. caffra with emphasis on its importance as non-timber forest product in South and Southern Africa: A summary. Part 1: Taxonomy, ecology and role in rural livelihoods. S. Afr. For. J. 2002, 194, 27–41. [Google Scholar] [CrossRef]
- Mariod, A.A.; Abdelwahab, S.I. Sclerocarya birrea (marula), An African tree of nutritional and medicinal uses: A review. Food Rev. Int. 2012, 28, 375–388. [Google Scholar] [CrossRef]
- Mokgolodi, N.C.; Ding, Y.-F.; Setshogo, M.P.; Ma, C.; Liu, Y.-J. The importance of an indigenous tree to Southern African communities with specific relevance to its domestication and commercialization: A case of marula tree. For. Stud. China 2011, 13, 36–44. [Google Scholar] [CrossRef]
- Leakey, R.R.B. Win: Win landuse strategies for Africa: 2. Capturing economic and environmental benefits with multistrata agroforests. Int. For. Rev. 2001, 3, 11–18. Available online: http://www.jstor.org/stable/42609341 (accessed on 13 October 2021).
- Leakey, R.; Pate, K.; Lombard, C. Domestication potential of marula (Sclerocarya birrea subsp caffra) in South Africa and Namibia: 2. Phenotypic variation in nut and kenel traits. Agrofor. Syst. 2005, 64, 37–49. [Google Scholar] [CrossRef]
- Attlogbe, F.K.; Abdul-Razak, T. Evaluation of the physicochemical properties of Northen Ghana Sclerocarya birrea seed oil and proximate analysis of the process waste. Afr. J. Food Sci. 2016, 10, 48–53. [Google Scholar] [CrossRef]
- Hiwilepo-van Hal, P.; Bille, P.G.; Verkerk, R.; Dek, M. The effect of temperature and time on the quality of naturally fermented marula (Sclerocarya birrea subsp. caffra) juice. LWT Food Sci. Technol. 2013, 53, 70–75. [Google Scholar] [CrossRef]
- Inês, A.; Falco, V. Lactic acid bacteria contribution to wine quality and safety. In Generation of Aromas and Flavours; Vilela, A., Ed.; IntechOpen: London, UK, 2018; pp. 53–71. [Google Scholar] [CrossRef] [Green Version]
- Magaia, T.; Uamusse, A.; Sjöholm, I.; Skog, K. Proximate analysis of five wild fruits of Mozambique. Sci. World J. 2013, 2013, 601435. [Google Scholar] [CrossRef] [PubMed]
- Malebana, I.M.M.; Nkosi, B.D.; Erlwanger, K.H.; Chivandi, E. A comparison of the proximate, fibre, mineral content, amino acid and fatty acid profile of marula (Sclerocarya birrea caffra) nut and soyabean (Glycine max) meals. J. Sci. Food Agric. 2018, 98, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Mdziniso, M.P.; Dlamini, A.M.; Khumalo, G.Z.; Mupangwa, J.F. Nutritional evaluation of marula (Sclerocarya birrea) seed cake as a protein supplement in dairy meal. J. Appl. Life Sci. Int. 2016, 4, 1–11. [Google Scholar] [CrossRef]
- Mthiyane, D.M.N.; Mhlanga, B.S. The nutritive value of marula (Sclerocarya birrea) seed cake for broiler chickens: Nutritional composition, performance, carcass characteristics and oxidative and mycotoxin status. Trop. Anim. Health Prod. 2017, 49, 835–842. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Stantos, A.; Moreno-Arribas, M.V. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef]
- Russel, I.; Dowhanick, T.M. Rapid detection of microbial spoilage. In Brewing Microbiology; Priest, F.G., Campbell, I., Eds.; Springer: Boston, MA, USA, 1996. [Google Scholar] [CrossRef]
- Shackleton, S. Livelihood benefits from the local commercialization of Savanna resources: A case study of the new beer in Busgbuckridge, South Africa. S. Afr. J. Sci. 2004, 100, 651–657. Available online: https://hdl.handle.net/10520/EJC96170 (accessed on 25 June 2021).
- Wynberg, R.; Cribbins, J.; Mander, M.; Laird, S.; Lombard, C.; Leaky, R.; Shackleton, S.E.; Sullivan, C. An overview of current knowledge on Sclerocarya birrea (A. Rich) Hoscht with particular reference to its importance as a non-timber forest product in Southern Africa: A summary. Part 2. Commercial use, tenure and policy, domestication, intellectual property rights and benefit-sharing. S. Afr. For. J. 2002, 196, 67–77. [Google Scholar] [CrossRef]
- Hiwilepo-van Hal, P. Processing of marula (Sclerocarya birrea subsp. caffra) fruits: A case study on health-promoting compounds. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2013. ISBN 978-94-6173-742-7. [Google Scholar]
- Dube, S.; Dlamini, N.R.; Shereni, I.; Sibanda, T. Extending the shelf life of fresh marula (Sclerocarya birrea) juice by altering its physico-chemical parameters. In Biochemical Testing; Jimenez-Lopez, J.C., Ed.; IntechOpen: London, UK, 2012; ISBN 978-953-51-0249-6. pp. 181–196. [Google Scholar] [CrossRef]
- Fundira, M. Optimization of Fermentation Processes for the Production of Indigenous Fruit Wines (Marula). Master’s Dissertation, University of Stellenbosch, Stellenbosch, South Africa, 2001. [Google Scholar]
- Hiwilepo-van Hal, P.; Bille, P.G.; Verker, K.R.; van Boekel, M.A.J.S.; Dekker, M. A review of proximate composition and nutritional value of Marula (Sclerocarya birrea subsp. caffra). Phytochem. Rev. 2014, 13, 881–892. [Google Scholar] [CrossRef]
- Suárez, C.; Beckett, K.; Adel, S.D.; Buchwald-Werner, S. Investigation of the marula fruit ripening process: Correlation between quality aspects and local knowledge of marula fruit. Agro Food Ind. Hi-Tech 2012, 23, 20–22. [Google Scholar]
- Maluleke, E. Characterization of the microorganisms and determination of the chemical constituents of marula brews during fermentation. Master′s Dissertation, University of Limpopo, Polokwane, South Africa, 2019. [Google Scholar]
- Borochov-Neori, H.; Judeinstein, S.; Greenberg, A.; Fuhrman, B.; Attias, J.; Volkova, N.; Hayek, T.; Aviram, M. Phenolic antioxidants and antiatherogenic effects of marula (sclerocarrya birrea subsp. caffra) fruit juice in healthy humans. J. Agric. Food Chem. 2008, 56, 9884–9891. [Google Scholar] [CrossRef]
- Phiri, A. Microbial and chemical dynamics during marula fermentation. Master′s Dissertation, University of Limpopo, Polokwane, South Africa, 2018. [Google Scholar]
- Moganedi, K.; Sibara, M.; Grobler, P.; Goyvaerts, E. An assessment of genetic diversity among marula populations using amplified fragment length polymorphism (AFLP) technique. Afr. J. Agric. Res. 2011, 6, 790–797. [Google Scholar] [CrossRef]
- Hassan, L.G.; Dangoggo, S.M.; Hassan, S.W.; Muhammad, S.; Umar, K.J. Nutritional and antinutritional composition of Sclerocarya birrea fruit juice. Niger. J. Basic Appl. Sci. 2010, 18, 222–228. [Google Scholar] [CrossRef]
- Sijaro, M.; Hassan, L.G.; Dangoggo, S.M.; Sadiq, I.S. Proximate analysis and mineral composition of Sclerocarya bireea fruits. Dutse J. Pure Appl. Sci. 2017, 3, 471–480. [Google Scholar]
- Martí, N.; Mena, P.; Cánovas, J.A.; Micol, V.; Saura, D. Vitamin C and the role of citrus juices as functional food. Natl. Prod. Commun. 2009, 4, 677–700. [Google Scholar] [CrossRef]
- Anebi, O.P.; Ugbe, F.A.; Igwe, C.P.; Odumu, O.F. Determination of variation of vitamin C content of some fruits and vegetables consumed in Ugbokolo after prolonged storage. IOSR J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 17–19. [Google Scholar] [CrossRef]
- Nweze, C.C.; Abdulganiyu, M.G.; Erhabor, O.G. Comparative analysis of vitamin C in fresh fruits juice of Malus domestica, Citrus sinensi, Ananas comosus and Citrullus lanatus by iodometric titration. Int. J. Sci. Environ. Technol. 2015, 4, 17–22. Available online: http:www.ijset.netjournal/502 (accessed on 25 January 2022).
- Okokon, E.J.; Okokon, E.O. Proximate analysis and sensory evaluation of freshly produced apple fruit juice stored at different temperatures and treated with natural and artificial preservatives. Glob. J. Pure Apllied Sci. 2018, 25, 31–37. [Google Scholar] [CrossRef]
- Wall, M.M. Ascorbic acid, vitamin A, and minerals composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. J. Food Compos. Anal. 2006, 19, 434–445. [Google Scholar] [CrossRef]
- Czaplicka, M.; Parypa, K.; Szewczuk, A.; Gudarowska, E.; Rowińska, M.; Zubaidi, M.A.; Nawirska-Olszańska, A. Assessment of selected parameters for determining the internal quality of white grape cultivars grown in cold climates. Appl. Sci. 2022, 12, 5534. [Google Scholar] [CrossRef]
- Isci, B.; Gokbayrak, Z.; Keskin, N. Effects of cultural practices on total phenolics and vitamin C content of organic table grapes. S. Afr. J. Enol. Vitic. 2015, 36, 191–194. [Google Scholar] [CrossRef]
- Omotayo, A.O.; Aremu, A.O. Underutilised African indigenous fruit trees and food-nutrition security: Opportunities, challenges and prospects. Food Energy Secur. 2020, 9, e220. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Henschke, P.A. The ‘buttery’ attribute of wine-diacetyl-desirability, spoilage and beyond. Int. J. Food Microbiol. 2004, 96, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Technical Info—Fruit Pulp. Available online: http://www.marula.org.za/techfruit.htm (accessed on 31 May 2022).
- Pretorius, V.; Rohwer, E.; Rapp, A.; Holtzhausen, L.C.; Mandery, H. Volatile flavour components of marula juice. Z. Lebensm. Unters. 1985, 181, 458–461. [Google Scholar] [CrossRef]
- Viljoen, A.M.; Kamatou, G.P.P.; Baser, K.H.C. Head-space volatiles of marula (Sclerocarya birrea subsp. caffra). S. Afr. J. Bot. 2008, 74, 325–326. [Google Scholar] [CrossRef]
- Ngadze, R.T.; Verkerk, R.; Nyanga, L.K.; Fogliano, V. Improvement of traditional processing of local mokey orange (Strychnos spp.) fruits to enhance nutrition security in Zimbabwe. Food Secur. 2017, 9, 621–633. [Google Scholar] [CrossRef]
- Holzapfel, W.H. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 2002, 75, 197–212. [Google Scholar] [CrossRef]
- Gadaga, T.H.; Mutukumira, A.N.; Narvhus, J.A.; Feresu, S.B. A review of traditional fermented foods and beverages of Zimbabwe. Int. J. Food Microbiol. 1999, 53, 1–11. [Google Scholar] [CrossRef]
- Dlamini, N.R.; Dube, S. Studies on the physic-chemical, nutritional and microbiological changes during the traditional preparation of marula wine in Gwanda, Zimbabwe. Nutr. Food Sci. 2008, 38, 61–69. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Okagbue, R.N.; Siwela, M. Yeast and related microorganisms isolated from ripe marula fruits (Sclerocarya caffra) in Zimbabwe. S. Afr. J. Sci. 2002, 98, 551–552. Available online: https://hdl.hndle.net/10520/EJC97428 (accessed on 10 August 2021).
- Zhao, y.; Sun, Q.; Zhu, S.; Du, F.; Mao, R.; Liu, L.; Tian, B.; Zhu, Y. Biodiversity of non-Saccharomyces yeasts associated with spontaneous fermentation of Carbernet Sauvignon wines from Shangri-La wine region, China. Sci. Rep. 2021, 11, 5150. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, B.; Bauer, F.F.; Cardinali, G.; Setati, M.E. Ecological interactions are a primary driver of population dynamic in wine yeast microbiota during fermentation. Sci. Rep. 2020, 10, 4911. [Google Scholar] [CrossRef]
- Fleet, G.H. Wine yeasts for the future. FEMS Yeast Res. 2008, 8, 979–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motlhanka, K.; Zhou, N.; Lebani, K. Microbial and chemical diversity of traditional non-cereal based alcoholic beverages of Sub-Saharan Africa. Beverages 2018, 4, 36. [Google Scholar] [CrossRef]
- Fundira, M.; Blom, M.; Pretorius, I.S.; van Rensburg, P. Selection of yeast starter culture strain for the production of marula fruit wines and distillates. J. Agric. Food Chem. 2002, 50, 1535–1542. [Google Scholar] [CrossRef]
- Hazelwood, L.A.; Daran, J.-M.; van Maris, A.J.A.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef]
- Shale, K.; Mukamugema, J.; Lues, R.J.; Venter, P. Possible microbial and biochemical contaminants of an indigenous banana beer ‘Urwagwa’: A mini review. Afr. J. Food Sci. 2014, 8, 376–389. [Google Scholar] [CrossRef]
- Vilanova, M.; Cortés, S.; Santiago, J.L.; Martínez, C.; Fernández, E. Aromatic compounds in wines produced during fermentation: Effect of the red cultivars. Int. J. Food Prop. 2007, 10, 867–875. [Google Scholar] [CrossRef]
- Faria-Oliveira, F.; Díniz, H.H.S.; Godoy-Santos, F.; Piló, F.B.; Mezadri, H.; Castro, L.M.; Brandão, R.L. The role of yeast and lactic acid bacteria in the production of fermented beverages in South America. In Food Production and Industry; Eissa, A., Ed.; IntechOpen: London, UK, 2015; Volume 4, pp. 107–135. [Google Scholar] [CrossRef]
- Condina, M.R.; Dilmetz, B.A.; Bazaz, S.R.; Meneses, J.; Warkiani, M.E.; Hoffmann, P. Rapid separation and identification of beer spoilage bacteria by enertial microfluidics and MALDI-TOF Mass Spectrometry. Lab A Chip R. Soc. Chem. 2019, 19, 1961–1970. [Google Scholar] [CrossRef]
- Saerens, S.M.G.; Delvaux, F.R.; Verstrepen, K.J.; Thevelein, J.M. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef]
- Contreras, A.; Hidalgo, C.; Henschke, P.A.; Chambers, P.J.; Curtin, C.; Varela, C. Evaluation of non-Saccharomyces yeasts for reduction of alcohol content in wine. J. Appl. Environ. Microbiol. 2014, 80, 1670–1678. [Google Scholar] [CrossRef]
- Virdis, C.; Sumby, K.; Bartowsky, E.; Jiranek, V. Lactic acid bacteria in wine: Technological advances and evaluation of their functional role. Front. Microbiol. 2021, 11, 612118. [Google Scholar] [CrossRef] [PubMed]
- Murye, A.F.; Pelser, A.J. Commercial harvesting of marula (Sclerocarya birrea) in Swaziland: A quest for sustainability. In Selected Studies in Biodiversity; Şen, B., Grillo, O., Eds.; IntechOpen: London, UK, 2018; pp. 303–317. [Google Scholar] [CrossRef]
- Shale, K.; Mukamugema, J.; Lues, R.J.; Venter, P.; Mokoena, K.K. Characterization of selected volatile organic compounds in Rwandan indigenous beer ‘Urwagwa’ by dynamic headspace gas chromatography-mass spectrometry. Afr. J. Biotechnol. 2013, 12, 2990–2996. [Google Scholar] [CrossRef]
- OIV (Organisation Internationale de la Vigne et du Vin). International Code of Oenological Practices; OIV: Paris, France, 2021; ISBN 978-2-85038-030-3.
- Du Toit, M.; Pretorius, I.S. Microbial spoilage and preservation of wine: Using weapons from nature’s own arsenal—A review. S. Afr. J. Enol. Vitic. 2000, 21, 74–96. [Google Scholar] [CrossRef]
- Coetzee, C. Basic wine: Esters 101— Part 1. 2020, pp. 1–5. Available online: https://sauvignonblanc.com/esters-101-part-1/ (accessed on 31 May 2022).
- Volschenk, H.; van Vuuren, H.J.J.; Jiljoen-Bloom, M. Malic acid in wine. Origin, function and metabolism during vinification. S. Afr. J. Enol. Vitic. 2006, 27, 123–136. [Google Scholar] [CrossRef]
- Cordente, A.G.; Nandorfy, D.E.; Solomon, M.; Schulkin, A.; Kolouchova, R.; Francis, I.L.; Schmidt, S.A. Aromatic higher alcohols in wine: Implication on aroma and palate attributes during Chardonnay aging. Molecules 2021, 26, 4979. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Chen, J.; Philipp, C.; Zhao, X.; Wang, J.; Liu, Y.; Suo, R. Effect of commercial yeast starter cultures on Cabernet Sauvignon wine aroma compounds and microbiota. Foods 2022, 11, 1725. [Google Scholar] [CrossRef] [PubMed]
- Baert, J.J.; Clippel-eer, J.; Hughes, P.S.; De Cooman, L.; Aerts, G. On the origin of free and bound staling aldehydes in beer. J. Agric. Food Chem. 2012, 60, 11449–11472. [Google Scholar]
- Daenen, L.; Saison, D.; Sterckx, F.; Delvaux, F.R.; Verachtert, H.; Derdelinckx, G. Screening and evaluation of the glucoside hydrolysate activity in Saccharomyces and Brettanomyces brewing yeasts. J. Appl. Microbiol. 2008, 104, 478–488. [Google Scholar] [CrossRef]
- Pereira, A.G.; Fraga, M.; Barcia-Oliveira, P.; Carpena, M.; Jimenez-Lopez, C.; Lourenço-Lopez, C.; Barros, L.; Ferreira, I.C.F.R.; Prieto, M.A.; Simal-Gandara, J. Management of wine aroma compounds: Principal basis and future perspectives. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; Cosme, F., Nenes, F.M., Filipe-Ribeiro, L., Eds.; IntechOpen: London, UK, 2020; pp. 1–25. [Google Scholar] [CrossRef]
- Azevedo, S.; Battaglene, T.; Hodson, G. Microbiologically, wine is a low food safety risk consumer product. 39th World Congress of Vine and Wine. Bio. Web Conf. 2016, 7, 04003. [Google Scholar] [CrossRef]
- Bartle, L.; Sumby, K.; Sunstrom, J.; Jiranek, V. The microbial challenge of winemaking: Yeast-bacteria compatibilty. FEMS Yeast Res. 2019, 19, foz040. [Google Scholar] [CrossRef]
- Shackleton, C.; Shackleton, S. The importance of non-timber forest products in rural livelihood security and as safety nets: A review of evidence from South Africa. S. Afr. J. Sci. 2004, 100, 658–664. Available online: https://hdl.handle.net/10520/EJC96169 (accessed on 20 June 2021).
- Nduvheni, S. Marula Beer Empowers Limpopo Women. 2012. Available online: https://www.sanews.gov.za/south-africa/marula-beer-empowers-limpopo-women (accessed on 11 September 2021).
- Ciana, M.; Comitini, F. Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Ann. Microbiol. 2011, 61, 25–32. [Google Scholar] [CrossRef]
- Bae, S.; Fleet, G.H.; Heard, G.M. Lactic acid bacteria associated with wine grapes from several Australian vineyards. J. Appl. Microbiol. 2006, 100, 712–727. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Fragasso, M.; Romaniello, R.; Berbegal, C.; Russo, P.; Spano, G. Spontaneous food fermentations and potential risks for human health. Fermentation 2017, 3, 49. [Google Scholar] [CrossRef]
- Van Hijum, S.A.; Vaughan, E.E.; Vogel, R.F. Application of the state-of-art sequencing technologies to indigenous food fermentations. Curr. Opin. Biotechnol. 2013, 24, 178–186. [Google Scholar] [CrossRef]
Components | Marula Fruit [30] | Marula Juice [26] | Marula Juice [29] |
---|---|---|---|
Macronutrients | Percentage (%) | g/100 mL | g/100 mL |
Moisture | 81–91.7 | * ND | * ND |
Ash | 10.4–15.4 | 1.01 ± 0.03 | 5.05 ± 0.61 |
Protein | 9.08–9.93 | 0.31 ± 0.04 | 3.31 ± 0.10 |
Crude lipid | 0.9–1.2 | * ND | 1.30 ± 0.15 |
Crude fibre | 6.46–7.03 | 0.70 ± 0.12 | * ND |
Total soluble solid (TSS) | * ND | * ND | 12.32 ± 1.02 |
Carbohydrates | 55.97–61.28 | * ND | 90.35 ± 0.77 |
Sucrose | * ND | 6.2 ± 0.8 | 0.76 ± 0.21 |
Glucose | * ND | 0.5 ± 0.3 | 0.21 ± 0.01 |
Fructose | * ND | 0.6 ± 0.4 | * ND |
Micronutrients | mg/100 g | mg/100 mL | mg/100 mL |
Sodium | 36.64–41.01 | 10 ± 2.00 | 14.88 ± 6.00 |
Potassium | 69.54–250 | 328 ± 11 | 44.54 ± 0.41 |
Calcium | 317.33–842 | 40 ± 6.00 | 51.73 ± 6.00 |
Phosphorus | 0.23–0.37 | * ND | 0.18 ± 0.02 |
Magnesium | 9.27–12.93 | 44 ± 4.00 | 24.53 ± 2.06 |
Nickel | 0.43–5.8 | * ND | 0.21 ± 0.10 |
Manganese | 0.67–1.43 | 0.05 ± 0.01 | 6.60 ± 4.10 |
Copper | 0.31–1.2 | * ND | 1.07 ± 0.10 |
Zinc | 0.41–1.22 | 0.19 ± 0.02 | 2.96 ± 1.0 |
Iron | * ND | 0.071 | 0.883 ± 0.15 |
Citrus Fruits and Other Fruits | Vitamin C Content in Juices (mg/100 g) | References |
---|---|---|
Orange (Citrus sinensis (L.) Osbeck) | 36–74 | [31] |
Mandarin varieties | [31] | |
Clementines (Citrus reticulata, Blanco) | 24.2–53.1 | |
Satsuma (Citrus unshiu Mark) | 21.8–47 | |
Tangerine (Citrus deliciosa Ten) | 19–54 | |
Lemon (Citrus limon Burm) | 22–61 | [31] |
Grapefruit (Citrus paradise Macf.) | 22.2–78 | [31] |
Pineapple (Ananas comosus) | 68 | [31] |
Pummelo (Citrus grandis Osbeck) | 31.4–47.2 | [31] |
Marula (Sclerocarya birrea) | 62–400 | [20] |
Apple (Malcus domestica) | 7.94–27.3 | [32,33,34] |
Papaya (Carica papaya) | 45–55.6 | [35] |
Grape (Vitis vinifera. L.) | 0.86–1.36 | [36] |
Table grape (V. vinifera. L.) | 12.76–16.34 | [37] |
Marula Skin [22] | Intact Fruit [41] | Juice [42] | ||||
---|---|---|---|---|---|---|
n-pentane | Ethyl caproate | Ethyl isovalerate | Benzyl 4-methylpentanoate | Ethyl acetate | ϒ-amorphene | Tetrahydro-2-H-pyran-2-one |
n-hexane | Benzyl acetate | Ethyl hexanoate | Benzyl tiglate | Ethyl-3-methylbutanoate | a sesquiterpene hydrocarbon | α-humulene |
Benzene | Ethyl octanoate | Hexadecanal | 3-methyl-1-butanol | ϒ-muurolene | Aromadendrene | |
2-octene | Glycolic acid | Isoamyl hexanoate | Pentan-1-ol | three sesquiterpene hydrocarbon | ϒ-elemene | |
1,5-hexadiene | Oxalic acid | Ethyl cis-4-octaenoate | 11-hexadecanal | Styrene | α-muurolene | (Z)-β-farnesene |
Diethylbenzene | 2-methylpropanoic acid | Pentadecane | Ethyl 9-hexadecanoate | 3-hydroxybutan-2-one | (Z,Z)-α-farnesene | 3-methylbutanoic acid |
Methanol | 2-methylbutanoic acid | Cyclo-pentadecane | Benzyl octanoate | 3-methylbutyl-3-methylbutanoate | a α-farnesene isomer; two | (E)-β-farnesene |
n-pentanol | β-Caryophyllene | (Z)-13-octadecenal | Hexan-1-ol | Sesquiterpene hydrocarbons | Aromadendrene | |
3-methoxy-s-butanol | Ethyl-2-propenylether | Hexadecane | Cyclodecene | (E + Z)-3hexen-1-ol | (E,E)-α-farnesene | β-caryophyllene |
2-methyl-1-pentanol | Ethylisopropenylether | Isoamyl octanoate | Benzyl metacrylate | An ethylester | δ-cadinene | A sesquiterpene hydrocarbon |
2-ethoxypropanol | Ethylamine | α-humulene | 6-dodecen-1-ol | Trans-linalool oxide furanoid | ϒ-cadinene | heptadecan-2-one |
2-ethyl-3hexen-1-ol | Acetamide | Ethyl trans-4-decenoate | Furfural; alkylbenzene | A sesquiterpene hydrocarbon | nonadecan-one | |
Acetone | Ethyl isobutyrate | Heptadecane | α-cubebene | Ethylnicotinoate | α-bergamotene | |
Acetaldehyde | Ethyl valerate | (Z)-3-decenyl acetate | δ-elemene | Geraninol | pentadecan-2-one | |
Glycoladehyde | Ethyl butanoate | Heptadecene | α-ylangene | A sesquiterpene hydrocarbon | ||
Crotonaldehyde | Ethyl isovalerate | Germacrene D | α-copaene | Benzenemethanol | ||
n-pentanal | Benzyl acetate | β-bourbonene | benzene-ethanol | |||
3-methylbutanal | Ethyl propanoate | (Z)-3-decen-1-ol | An ethyl ester | Calcorene | ||
2-hexenal | 2-ethylbutanal | 1-octen-3-yl butyrate | β-cubebene | 2,5-furandialdehyde | ||
n-hexenal | Ethyl formate | Benzyl butrate | Benzaldehyde | A sesquiterpene hydrocarbon | ||
n-heptanal | n-octanal | Nonadecane | Linalool | dodecan-1-ol |
Compounds | SPONTFERM | VIN7 | VIN13 | Concentration in Wines | Sensory Threshold |
---|---|---|---|---|---|
Higher alcohols (mg/L) | |||||
Propanol | 88.82 | 69.27 | 72.89 | 500 | 10–70 |
Isobutanol | 36.43 | 35.28 | 42.18 | 10–150 | 40–50 |
n-butanol | 1.58 | 1.15 | 2.01 | 0.5–10 | 150–200 |
Isoamyl alcohol | 250.39 | 242.26 | 266.77 | 5–500 | 30 |
2-phenethylethanol | 76.72 | 84.41 | 81.26 | 5–200 | 10–15 |
Esters (μg/L) | |||||
Ethyl acetate | 28,120 | 20,220 | 19,560 | >150 | 10 |
Isoamyl acetate | 460 | 220 | 260 | 100–3500 | 30 |
Ethyl lactate | 3740 | 3260 | 3860 | - | - |
2-phenel acetate | 260 | 1410 | 200 | 18500 | 250 |
Hexyl acetate | 0 | 130 | 0 | >5000 | 700 |
Fatty acids (mg/L) | |||||
Acetic acid | 646.80 | 348.05 | 430.69 | >1000 | 200–2100 |
Isobutyric acid | 1.22 | 1.27 | 1.43 | Trace | 2.5–8 |
Hexanoic acid | 1.43 | 1.41 | 1.95 | 0–40 | 2–8 |
Octanoic acid | 1.90 | 2.02 | 1.97 | 0.4 | 0.5–10 |
Decanoic acid | 1.51 | 2.34 | 1.20 | 0.5 | 1–10 |
Acetaldehyde (mg/L) | 0 | 13.63 | 0 | 10–500 | 100–120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Legodi, L.M.; Lekganyane, M.A.; Moganedi, K.L.M. Morula Tree: From Fruit to Wine through Spontaneous Fermentation and the Potential of Deriving Other Value-Added Products. Processes 2022, 10, 1706. https://doi.org/10.3390/pr10091706
Legodi LM, Lekganyane MA, Moganedi KLM. Morula Tree: From Fruit to Wine through Spontaneous Fermentation and the Potential of Deriving Other Value-Added Products. Processes. 2022; 10(9):1706. https://doi.org/10.3390/pr10091706
Chicago/Turabian StyleLegodi, Lesetja Moraba, Maleho Annastasia Lekganyane, and Kgabo L. Maureen Moganedi. 2022. "Morula Tree: From Fruit to Wine through Spontaneous Fermentation and the Potential of Deriving Other Value-Added Products" Processes 10, no. 9: 1706. https://doi.org/10.3390/pr10091706