Circular Economy Indicators for the Assessment of Waste and By-Products from the Palm Oil Sector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination and Characterization of Waste and By-Products
- A.
- Determination of the processing rate, measured in tons per year of fresh fruit bunch (FFB) or crude palm oil (CPO).
- B.
- Characterization of by-products generated in the extraction process.
- C.
- Trend analysis of production area and transformation rate.
2.2. Valuation of Waste and By-Products of the Palm Oil Agro-Industry
2.3. Circular Economy Model for the Reincorporation of Waste and By-Products from the Palm-Growing Sector in the Casanare Department
2.3.1. RRSFM Indicator
2.3.2. HCRRS Indicator
3. Results and Discussion
3.1. Characterization of Waste and By-Products of the RFF Process
Physical and Chemical Characteristics of Palm Oil Waste and By-Products
3.2. Approaches and Variables Used in the Valuation of Waste and By-Products of the Palm Sector That Are Generated in the Transformation Process of RFF
Valuation Approaches for Waste and By-Products of Palm Oil
- Biofuels
- Enzymatic activity
- Nutrient source
- Building
3.3. Circular Economy Model for the Reincorporation of Waste and By-Products from the Palm-Growing Sector in the Casanare Department
3.3.1. Indicator of Reincorporation of Waste and By-Products by Flow of Materials (RRSMF) of the Palm-Growing Sector of the Casanare Department
3.3.2. Carbon Footprint Indicator of the Reincorporation of Waste and By-Products (HCRRS) of the Palm-Growing Sector of the Casanare Department
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barros, M.V.; Salvador, R.; de Francisco, A.C.; Piekarski, C.M. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renew. Sustain. Energy Rev. 2020, 131, 109958. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Suárez-Eiroa, B.; Fernández, E.; Méndez-Martínez, G.; Soto-Oñate, D. Operational principles of circular economy for sustainable development: Linking theory and practice. J. Clean. Prod. 2019, 214, 952–961. [Google Scholar] [CrossRef]
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. J. Ind. Ecol. 2018, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Rossi, E.; Bertassini, A.C.; dos Santos Ferreira, C.; do Amaral, W.A.N.; Ometto, A.R. Circular Economy indicators for organizations considering Sustainability and Business Models: Plastic, textile and electro electronic cases. J. Clean. Prod. 2019, 247, 119–137. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Martínez, A.; Porcelli, M. Estudio sobre la economía circular como una alternativa sustentable frente al ocaso de la economía tradicional (primera parte). Lex Rev. la Fac. Derecho y Cienc. Política la Univ. Alas Peru. 2018, 16, 301–334. [Google Scholar] [CrossRef]
- Moraga, G.; Huysveld, S.; Mathieux, F.; Blengini, G.; Alerts, L.; Acker, K.; Meester, S.D.; Dewulf, J. Circular economy indicators: What do they measure? Resour. Conserv. Recycl. 2019, 146, 452–461. [Google Scholar] [CrossRef]
- Elia, V.; Grazia, M.; Tornese, F. Measuring circular economy strategies through index methods: A critical analysis. J. Clean. Prod. 2016, 142, 2741–2751. [Google Scholar] [CrossRef]
- Prieto-Sandoval, V.; Ormazabal, M.; Jaca, C.; Viles, E. Key elements in assessing circular economy implementation in small and medium-sized enterprises. Bus. Strateg. Environ. 2017, 28, 1525–1534. [Google Scholar] [CrossRef]
- de Oliveira, C.T.; Dantas, T.E.T.; Soares, S.R. Nano and micro level circular economy indicators: Assisting decision-makers in circularity assessments. Sustain. Prod. Consum. 2021, 26, 455–468. [Google Scholar] [CrossRef]
- Yusuf, M. Agro-industrial Waste Materials and Their Recycled Value-Added Applications: Review. In Handbook of Ecomaterial; Torres, L., Vasilievna, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 2700–2710. [Google Scholar]
- Poh, P.E.; Wu, T.Y.; Lam, W.H.; Poon, W.C.; Lim, C.S. Palm Oil Milling Waste. In Waste Management in the Palm Oil Industry; Springer International Publishing: Cham, Swizterland, 2020; pp. 21–44. ISBN 978-3-030-39550-6. [Google Scholar]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Ramos, C.; Zilber, M.A.; Silva, L.F.; Lhama, P.; Davila, F. Economía circular, innovación y sustentabilidad. Brazilian J. Dev. 2019, 5, 21261–21276. [Google Scholar] [CrossRef]
- Rubinsin, N.; Daud, W.; Kamarudin, S.; Masdar, M.; Rosli, M.; Samsatli, S.; Tapia, J.; Ghani, W.; Lim, K. Optimization of oil palm empty fruit bunches value chain in peninsular malaysia. Food Bioprod. Process. 2020, 119, 179–194. [Google Scholar] [CrossRef]
- Umar, M.; Urmee, T.; Jennings, P. A policy framework and industry roadmap model for sustainable oil palm biomass electricity generation in Malaysia. Renew. Energy 2018, 128, 275–284. [Google Scholar] [CrossRef]
- Elias, M.A.; Hadibarata, T.; Sathishkumar, P. Modified oil palm industry solid waste as a potential adsorbent for lead removal. Environ. Chem. Ecotoxicol. 2021, 3, 1–7. [Google Scholar] [CrossRef]
- Van Fan, Y.; Lee, C.T.; Lim, J.S.; Klemeš, J.J.; Kim Le, P.T. Cross-disciplinary approaches towards smart, resilient and sustainable circular economy. J. Clean. Prod. 2019, 232, 1482–1491. [Google Scholar] [CrossRef]
- Byerlee, D.; Falcon, W.P.; Naylor, R. The Tropical Oil Crop Revolution: Food, Feed, Fuel, and Forests; Press, O.U., Ed.; New York Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- USDA Oilseeds: World Markets and Trade, United States Departament of Agriculture. 2021. Available online: https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf (accessed on 29 February 2020).
- Ortiz, A. La Palma de Aceite Como Ejemplo Para la Agroindustria en Colombia; Fundación Universitaria de América: Bogotá, Colombia, 2019. [Google Scholar]
- Rakundo, R.; Bergeron, S.; Bacoum, I.; Pelletier, N.; Doyon, M. A Methodological Approach to Designing Circular Economy Indicators for Agriculture: An Application to the Egg Sector. Sustainability 2021, 13, 8656. [Google Scholar] [CrossRef]
- Oliveira, M.; Cocozza, A.; Zucaro, A.; Santagata, R.; Ulgiati, S. Circular economy in the agro-industry: Integrated environmental assessment of dairy products. Renew. Sustain. Energy Rev. 2021, 148, 111314. [Google Scholar] [CrossRef]
- Barcelos, S.M.B.D.; Salvador, R.; Barros, M.V.; de Francisco, A.C.; Guedes, G. Circularity of Brazilian silk: Promoting a circular bioeconomy in the production of silk cocoons. J. Environ. Manag. 2021, 296, 113373. [Google Scholar] [CrossRef] [PubMed]
- Salguero-Puerta, L.; Leyva-Díaz, J.C.; Cortés-García, F.; Molina-Moreno, V. Sustainability Indicators Concerning Waste Management for Implementation of the Circular Economy Model on the University of Lome (Togo) Campus. Int. J. Environ. Res. Public Health 2019, 16, 2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Guo, Z.; Meng, F.; Wang, H.; Yin, J.; Liu, Y. The circular economy and carbon footprint: A systematic accounting for typical coal-fuelled power industrial parks. J. Clean. Prod. 2019, 229, 1262–1273. [Google Scholar] [CrossRef]
- Callejo, J.; Parra, T.; Manrique, T. Evaluación de la Producción de los Subproductos Agroindustriales en Andalucía; Descripción Los Subproductos: Andalucia, Spain, 2015. [Google Scholar]
- Ferronato, N.; Rada, E.; Gorritty, M.; Cioca, L.; Ragazzi, M.; Torretta, V. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef]
- Maina, S.; Kachrimanidou, V.; Koutinas, A. A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green Sustain. Chem. 2017, 8, 18–23. [Google Scholar] [CrossRef]
- Cardenas, P.; Rodriguez, J.; Castillo, A. Alternatives utilization of waste: Technical and environmental considerations in the agribusiness sector. Int. J. Mech. Prod. Eng. Res. Dev. 2020, 10, 15659–15676. [Google Scholar]
- Abdurahman, N.; Rosli, Y.; Azhari, N. Development of a membrane anaerobic system (MAS) for palm oil mill effluent (POME) treatment. Desalination 2011, 226, 208–212. [Google Scholar] [CrossRef]
- Abdullah, N.; Sulaiman, F. The Oil Palm Wastes in Malaysia. In Biomass Now-Sustainable Growth and Use; Darko, M., Ed.; IntechOpen: London, UK, 2013; pp. 75–99. [Google Scholar]
- Guimaraes, O. Influencia del Estado de la Madurez y Condiciones de Esterilización de Los Frutos, en el Rendimiento y Calidad de Aceite Crudo de Palma Africana (Elaeis guineensis) de la Planta Extractora Oleaginosas Amazónicas S.A; Universidad Nacional de la Amazonia: Iquitos, Peru, 2019. [Google Scholar]
- Quintero, L.A.; Torres, C.I. Análisis de residuos sólidos de palma africana, como alternativa de aprovechamiento de energías renovables en el departamento del Cesar. Ing. USBMed 2019, 10, 8–18. [Google Scholar]
- Foo, K.Y.; Hameed, B.H. Value-added utilization of oil palm ash: A superior recycling of the industrial agricultural waste. J. Hazard. Mater. 2009, 172, 523–531. [Google Scholar] [CrossRef]
- Yeo, J.; How, B.; Teng, S.; Leong, W.; Ng, W.; Lim, C.; Ngan, S.; Sunarso, J.; Lam, H. Synthesis of Sustainable Circular Economy in Palm Oil Industry Using Graph-Theoretic Method. Sustainability 2020, 12, 8081. [Google Scholar] [CrossRef]
- Loh, S.K. The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manag. 2017, 141, 285–298. [Google Scholar] [CrossRef]
- Tay, J.H. Ash from oil-palm waste as concrete material. J. Mater. Civ. Eng. 1990, 2, 94–105. [Google Scholar] [CrossRef]
- Singh, R.P.; Ibrahim, M.H.; Esa, N.; Iliyana, M.S. Composting of waste from palm oil mill: A sustainable waste management practice. Rev. Environ. Sci. Bio/Technol. 2010, 9, 331–334. [Google Scholar] [CrossRef]
- Lau, H.L.N.; Choo, Y.M.; Ma, A.N.; Chuah, C.H. Quality of residual oil from palm-pressed mesocarp fiber (Elaeis guineensis) using supercritical CO2 with and without ethanol. J. Am. Oil Chem. Soc. 2006, 83, 893–898. [Google Scholar] [CrossRef]
- Vijaya, S.; Ma, A.; Choo, Y.; Nik Meriam, N. Life cycle inventory of the production of crude palm oil-A gate to gate case study of 12 palm oil mills. J. Palm Res. 2008, 20, 484–494. [Google Scholar]
- Yusoff, S. Renewable energy from palm oil e innovation on effective utilization of waste. J. Clean. Prod. 2006, 14, 87–93. [Google Scholar] [CrossRef]
- Zinatizadeh, A.A. Biological Treatment of Palm Oil Mill Effluent (POME) Using an Up-Flow Anaerobic Sludge Fixed Film (UASFF) Bioreactor; University Sains Malaysia (School of Chemical Engineering): Nibong Tebal, Malaysia, 2006. [Google Scholar]
- Kong, S.H.; Loh, S.K.; Bachmann, R.T.; Rahim, S.A.; Salimon, J. Biochar from oil palm biomass: A review of its potential and challenges. Renew. Sustain. Energy Rev. 2014, 39, 729–739. [Google Scholar] [CrossRef]
- Ali, A.; Othman, M.; Shirai, Y.; Hassan, M. Sustainable and integrated palm oil biorefinery concept with value-addition of biomass and zero emission system. J. Clean. Prod. 2015, 91, 96–99. [Google Scholar] [CrossRef] [Green Version]
- Huailuek, N.; Silalertruksa, T.; Gheewala, S. Life cycle assessment and cost-benefit analysis of palm biorefinery in Thailand for different empty fruit bunch (EFB) management scenarios. J. Sustain. Energy Environ. 2019, 10, 65–73. [Google Scholar]
- Stichnothe, H.; Schuchardt, F. Comparison of different treatment options for palm oil production waste on a life cycle basis. Int. J. Life Cycle Assess. 2010, 15, 907–915. [Google Scholar] [CrossRef]
- Embrandiri, A.; Ibrahim, M.; Singh, R. Palm Oil Mill Wastes Utilization; Sustainability in the Malaysian Context. Int. J. Sci. Res. Publ. 2013, 24, 389–393. [Google Scholar]
- Abas, R.; Kamaruddin, M.; Nordin, A.; Simeh, M. A study on the Malaysian Oil Palm biomass sector-Supply and perception of palm oil millers. Oil Palm Ind. Econ. J. 2011, 11, 28–41. [Google Scholar]
- Cenipalma. Statistical Data Collected for Benchmarking in Oilmills by Cenipalma; Cenipalma: Bogotá, Colombia, 2005. [Google Scholar]
- Bernal, F.N. El cultivo de la Palma de Aceite y su Beneficio: Guía General Para el Nuevo Palmicultor; Fedepalma: Bogotá, Colombia, 2001; ISBN 958-96494-3-2. [Google Scholar]
- Ponce, F.; Silva, E.; Yáñez, E.; Castillo, E. Potencial de congeneración de energía eléctrica en la agroindustria colombiana de palma de aceite: Tres estudios de caso. Rev. Palmas 2008, 29, 59–72. [Google Scholar]
- García, J.; Cárdenas, M.; Yánez, E. Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia. Rev. Palmas 2010, 31, 41–48. [Google Scholar]
- Ramírez, N.; Arévalo, A.; García, J. Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Rev. Palmas 2015, 36, 41–54. [Google Scholar]
- Subramaniam, V.; Chow, M.C.; Ma, A. Energy database of the Oil Palm. Palm. Oil Bull. Kuala Lumpur Malays. 2004, 70, 15–22. [Google Scholar]
- Loh, S.K. Biocombustibles de segunda generación de la biomasa de palma de aceite. Rev. Palmas 2016, 37, 137–148. [Google Scholar]
- Shafigh, P.; Jumaat, M.Z.; Mahmud, H. Mix design and mechanical properties of oil palm shell lightweight aggregate concrete: A review. Int. J. Phys. Sci. 2010, 5, 2127. [Google Scholar]
- Cortés, C.; Cayón, D.; Aguirre, V.; Chávez, B. Respuestas de palmas de vivero a la aplicación de residuos de la planta extractora. Rev. Palmas 2006, 27, 23–32. [Google Scholar]
- Villegas, J.M.; Avila, H. Quick-scan estimating model of Higher Heating Value of oil palm empty fruit bunches based on ash from proximate analysis data. Rev. Ing. E Investig. 2014, 34, 33–38. [Google Scholar] [CrossRef]
- Abdullah, N.; Sulaiman, F.; Gerhauser, H. Characterisation of Oil Palm Empty Fruit Bunches for Fuel Application. J. Phys. Sci. 2011, 22, 1–24. [Google Scholar]
- Ramírez, N.; Silva, Á.; Garzón, E.; Yáñez, E. Caracterización y Manejo de Subproductos Del Beneficio Del Fruto de Palma de Aceite; Fedepalma: Bogotá, Columbia, 2011. [Google Scholar]
- Nalaya, P.; Wahid, S.; Izuan, H.E.M. Characterization of Empty Fruit Bunch Biochar Pyrolyzed at Different Temperatures with Respect to Activated Carbon and their Sorption Capacities for Pentachlorophenol. J. Water Environ. Technol. 2020, 18, 314–326. [Google Scholar] [CrossRef]
- Baharuddin, A.; Wakisaka, M.; Shirai, Y.; Abd-Aziz, S.; Abdul Rahman, N.; Hassan, M. Co-Composting of Empty Fruit Bunches and Partially Treated Palm Oil Mill Effluents in Pilot Scale. Int. J. Agric. Res. 2009, 4, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Sukiran, M.A.; Abnisa, F.; Daud, W.M.A.W.; Abu Bakar, N.; Loh, S.K. A review of torrefaction of oil palm solid wastes for biofuel production. Energy Convers. Manag. 2017, 149, 101–120. [Google Scholar] [CrossRef]
- Loh, S.K. Oil Palm Biomass Energy Resource Data; Malaysian Palm Oil Board: Bandar Baru Bangi, Malaysia, 2012.
- Loh, S.K.; Choo, Y.M. Prospect, challenges and opportunities on biofuels in Malaysia. In Advances in Biofuels; Pokagu, R., Sarbatly, H., Eds.; Springer: Boston, MA, USA, 2013; pp. 3–14. [Google Scholar]
- Sundram, S. The effect of Trichoderma in surface mulches supplemented with conidial drenches in the disease development of Ganoderma Basal Stem Rot in oil palm. J. Oil Palm. Res. 2013, 25, 314–339. [Google Scholar]
- Yin, C.; Kadir, S.A.S.A.; Lim, Y.P.; Syed-Ariffin, S.N.; Zamzuri, Z. An investigation into physicochemical characteristics of ash produced from combustion of oil palm biomass waste in a boiler. Fuel Process. Technol. 2008, 89, 693–696. [Google Scholar] [CrossRef]
- Poh, P.E.; Yong, W.; Chong, M.F. Palm oil mill effluent (POME) characteristics in high crop season and the applicability of high-rate anaerobic bioreactors for the treatment of POME. Ind. Eng. Chem. Res. 2010, 49, 11732–11740. [Google Scholar] [CrossRef]
- Ma, A.N.; Ong, A.S.H. Pollution Control in Palm Oil Mills in Malaysia. J. Am. Oil Chem. Soc. 1985, 62, 261–266. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Ismail, S.; Bhatia, S. Water Recycling from Palm Oil Mill Effluent (POME) Using Membrane Technology. Desalination 2003, 157, 87–95. [Google Scholar] [CrossRef]
- Oswal, N.; Sarma, P.M.; Zinjarde, S.S.; Pant, A. Palm oil mill effluent treatment by a tropical marine yeast. Bioresour. Technol. 2002, 85, 35–37. [Google Scholar] [CrossRef]
- Choorit, W.; Wisarnwan, P. Effect of Temperature on the Anaerobic Digestion of Palm Oil Mill Effluent. Electron. J. Biotechnol. 2007, 10, 376–386. [Google Scholar] [CrossRef] [Green Version]
- García, J.M. Estado actual del manejo de efluentes en Colombia. Rev. Palmas 1993, 14, 141–148. [Google Scholar]
- Kabongo, J.D. Waste Valorization. In Encyclopedia of Corporate Social Responsibility; Idowu, S.O., Capaldi, N., Zu, L., Gupta, A.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Nzihou, A.; Lifset, R. Waste Valorization, Loop-Closing, and Industrial Ecology. J. Ind. Ecol. 2010, 14, 196–199. [Google Scholar] [CrossRef]
- Fokam, C.; Toumi, E.; Kenmeugne, B.; Wiryikfu, N.; Mevaa, L. Experimental study of the addition of oil palm mesocarp fiber on the physical and mechanical properties of fiber cement mortar composites. SN Appl. Sci. 2021, 3, 85. [Google Scholar] [CrossRef]
- Quayson, E.; Amoah, J.; Rachmadona, N.; Morita, K.; Darkwah, L.; Hama, S.; Yoshida, A.; Kondo, A.; Ogino, C. Valorization of palm biomass waste into carbon matrices for the immobilization of recombinant Fusarium heterosporum lipase towards palm biodiesel synthesis. Biomas Bioenergy 2020, 142, 9. [Google Scholar] [CrossRef]
- Aprianti, N.; Faizal, M.; Said, M.; Nasir, S. Valorization of Palm Empty Fruit Bunch Waste for Syngas Production Through Gasification. J. Ecol. Eng. 2020, 21, 17–26. [Google Scholar] [CrossRef]
- Foong, S.Y.; Liew, R.K.; Yang, Y.; Cheng, Y.W.; Yuh, P.N.; Wan, W.A.; Yi, X.; Sean, C.; Vo, D.N.; Le, Q.V.; et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chem. Eng. J. 2020, 398, 124401. [Google Scholar] [CrossRef]
- Gallego, L.J.; Cardona, S.; Martínez, E.; Rios, L.A. Valorization of Palm-Oil Residues: Integrated Production of a Good Quality Bio-coal and Electricity via Torrefaction. Waste Biomass Valorization 2020, 11, 2273–2284. [Google Scholar] [CrossRef]
- Hau, L.; Shamsuddin, R.; Mai, A.K.A.; Saenong, A.; Lazim, A.M.; Narasimha, M.; Low, A. Mixed Composting of Palm Oil Empty Fruit Bunch (EFB) and Palm Oil Mill Effluent (POME) with Various Organics: An Analysis on Final Macronutrient Content and Physical Properties. Waste Biomass Valorization 2020, 11, 5539–5548. [Google Scholar] [CrossRef]
- Prasetyo, I.; Mukti, N.I.; Cahyono, R.; Prasetya, A.; Ariyanyo, T. Nanoporous Carbon Prepared from Palm Kernel Shell for CO2/CH4 Separation. Waste Biomass Valorization 2020, 11, 5599–5606. [Google Scholar] [CrossRef]
- Intasit, R.; Cheirsilp, B.; Louhasakul, Y.; Boonsawang, P.; Chaiprapat, S.; Yeesang, J. Valorization of Palm Biomass Wastes for Biodiesel Feedstock and Clean Solid Biofuel through Non-sterile Repeated Solid-State Fermentation. Bioresour. Technol. 2019, 298, 122551. [Google Scholar] [CrossRef] [PubMed]
- Lemus, E. Determinación del efecto ambiental y agronómico en el suelo y aguas de nivel freático por la aplicación de efluentes tratados, en sistemas de fertirrigación en cultivos de palma de aceite. In Proceedings of the XV Reunión Técnica Nacional de Palma de Aceite, Bucaramanga, Columbia, 25–27 September 2019; p. 22. [Google Scholar]
- Lam, S.S.; Tsang, Y.F.; Yek, P.N.Y.; Liew, R.K.; Osman, M.; Peng, W.; Lee, W.H.; Park, Y.-K. Co-processing of oil palm waste and waste oil via microwave co-torrefaction: A waste reduction approach for producing solid fuel product with improved properties. Process Saf. Environ. Prot. 2019, 128, 30–35. [Google Scholar] [CrossRef]
- Vasu, H.; Wong, C.; Vijiaretnam, N.; Chong, Y.; Thangalazhy-Gopakumar, S.; Gan, S.; Lee, L.; Ng, H. Insight into Co-pyrolysis of Palm Kernel Shell (PKS) with Palm Oil Sludge (POS): Effect on Bio-oil Yield and Properties. Waste Biomass Valorization 2019, 11, 5877–5889. [Google Scholar] [CrossRef]
- Sinjaroonsak, S.; Chaiyaso, T.; Aran, H. Optimization of Cellulase and Xylanase Productions by Streptomyces thermocoprophilus TC13W Using Low Cost Pretreated Oil Palm Empty Fruit Bunch. Waste Biomass Valorization 2019, 189, 76–86. [Google Scholar] [CrossRef]
- Chin, K.L.; Nurliyana, M.Y.; H’ng, P.S.; Lee, C.L.; Go, W.Z.; Khoo, P.S.; Raja, R.A.; Ashikin, S.N. Effects of Bacterial Bio-augmentation on the Methane Potential from Facultative Digestion of Palm Oil Mill Effluent and Empty Fruit Bunch. Waste Biomass Valorization 2019, 11, 3407–3418. [Google Scholar] [CrossRef]
- Burimsitthigul, T.; Tirapanichayakul, C.; Chantrangsuwan, P.; Prasassarakich, P. Two-Stage Liquefaction of Oil Palm Shell in Alkali Supercritical Ethanol–Water for Enhanced Bio-Oil Production. Waste Biomass Valorization 2019, 11, 2745–2754. [Google Scholar] [CrossRef]
- Dias, Y.; Souza, E.; da Costa, H.S.; Azevedo, L.C.; Penido, E.; do Amarante, C.; Marques, O.M.; Rodrigues, A. Biochar produced from Amazonian agro-industrial wastes: Properties and adsorbent potential of Cd2+ and Cu2+. Biochar 2019, 1, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Shanmugarajah, B.; Chew, I.M.; Mubarak, N.M.; Choong, T.S.; Yoo, C.; Tan, K. Valorization of palm oil agro-waste into cellulose biosorbents for highly effective textile effluent remediation. J. Clean. Prod. 2018, 210, 697–709. [Google Scholar] [CrossRef]
- Zulkarnain, A.; Bahrin, E.; Ramli, N.; Phang, L.; Abd-Aziz, S. Alkaline Hydrolysate of Oil Palm Empty Fruit Bunch as Potential Substrate for Biovanillin Production via Two-Step Bioconversion. Waste Biomass Valorization 2018, 9, 13–23. [Google Scholar] [CrossRef]
- Liew, R.K.; Nam, W.L.; Chong, M.Y.; Phang, X.Y.; Su, M.H.; Yek, P.N.Y.; Ma, N.L.; Cheng, C.K.; Chong, C.T.; Lam, S.S. Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process Saf. Environ. Prot. 2018, 115, 57–69. [Google Scholar] [CrossRef]
- Ahmad, A.F.; Abbas, Z.; Obaiys, S.J.; Zainuddin, M.F. Effect of Untreated Fiber Loading on the Thermal, Mechanical, Dielectric, and Microwave Absorption Properties of Polycaprolactone Reinforced with Oil Palm Empty Fruit Bunch Biocomposites. Polym. Compos. 2018, 39, 1778–1787. [Google Scholar] [CrossRef]
- Bukhari, N.; Loh, S.; Nasrin, A.; Jahim, J. Enzymatic Hydrolysate of Palm Oil Mill Effluent as Potential Substrate for Bioflocculant BM-8 Production. Waste Biomass Valorization 2018, 11, 17–29. [Google Scholar] [CrossRef]
- Cheah, W.; Show, P.; Juan, J.; Chang, J.; Ling, T. Waste to energy: The effects of Pseudomonas sp. on Chlorella sorokiniana biomass and lipid productions in palm oil mill effluent. Clean Technol. Environ. Policy 2018, 20, 2037–2045. [Google Scholar] [CrossRef]
- Misnon, I.I.; Mohd, N.K.; Jose, R. Conversion of Oil Palm Kernel Shell Biomass to Activated Carbon for Supercapacitor Electrode Application. Waste Biomass Valorization 2018, 10, 1731–1740. [Google Scholar] [CrossRef]
- Yoo, H.M.; Seo, Y.C.; Park, S.W.; Kang, J.J.; Choi, H.S.; Oh, C.H. Removal Effect of Ash and Metallic Species by Washing from Empty Fruit Bunch Byproducts in Palm Mills on Pyrolytic Characteristics to Produce Bio-Crude Oil. Waste Biomass Valorization 2017, 9, 491–502. [Google Scholar] [CrossRef]
- Ong, S.; Mo, K.; Alengaram, U.; Jumaat, M.; Ling, T. Valorization of Wastes from Power Plant, Steel-Making and Palm Oil Industries as Partial Sand Substitute in Concrete. Waste Biomass Valorization 2017, 9, 1645–1654. [Google Scholar] [CrossRef]
- Kamsani, N.; Salleh, M.M.; Basri, S.A.; Mohamad, S.E.; Aziz, S.A.; Kamaruddin, K. Effects of Surfactant on the Enzymatic Degradation of Oil Palm Empty Fruit Bunch (OPEFB). Waste Biomass Valorization 2017, 9, 845–852. [Google Scholar] [CrossRef]
- Idris, N.A.; Loh, S.K.; Lau, H.L.N.; Mustafa, E.M.; Vello, V.; Tan, C.; Phang, S. Cultivation of microalgae in medium containing palm oil mill effluent and its conversion into biofuel. J. Oil Palm. Res. 2017, 29, 291–299. [Google Scholar] [CrossRef]
- Thinagaran, L.; Sudesh, K. Evaluation of Sludge Palm Oil as Feedstock and Development of Efficient Method for its Utilization to Produce Polyhydroxyalkanoate. Waste Biomass Valorization 2017, 10, 709–720. [Google Scholar] [CrossRef]
- Junpadit, P.; Suksaroj, T.; Boonsawang, P. Transformation of Palm Oil Mill Effluent to Terpolymer Polyhydroxyalkanoate and Biodiesel Using Rummeliibacillus pycnus Strain TS8. Waste Biomass Valorization 2017, 8, 1247–1256. [Google Scholar] [CrossRef]
- Agudelo, B.S.; Rodriguez, D.F.; Rodriguez, A.T. Elaboración de Bloques Estructurales en Mortero Adicionado con Ceniza de Cuesco de la Palma de Aceite Africana, Para la Ciudad de Villavicencio (Meta); Universidad Cooperativa de Colombia: Bogotá, Colombia, 2016. [Google Scholar]
- Lim, S.L.; Wu, T.Y. Characterization of matured vermicompost derived from valorization of palm oil mill by-product. J. Agric. Food Chem. 2016, 64, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Silveira, E.A.; Tardioli, P.W.; Farinas, C.S. Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production. Biochem Biotechnol 2016, 179, 558–571. [Google Scholar] [CrossRef] [PubMed]
- Tsouko, E.; Kachrimanidou, V.; dos Santos, A.; do Nascimento Vitorino Lima, M.; Machado de Castro, A.; Guimarães, D.M.; Koutinas, A. Valorization of By-Products from Palm Oil Mills for the Production of Generic Fermentation Media for Microbial Oil Synthesis. Appl. Microbiol. Biotechnol. 2016, 181, 1241–1256. [Google Scholar] [CrossRef] [PubMed]
- Fatriasari, W.; Anita, S.; Risanto, L. Microwave Assisted Acid Pretreatment of Oil Palm Empty Fruit Bunches (EFB) to Enhance Its Fermentable Sugar Production. Waste Biomass Valorization 2016, 8, 379–391. [Google Scholar] [CrossRef]
- Nyakuma, B.B. Bioelectricity potential of oil palm waste in Malaysia. In Proceedings of the 3rd International Conference Research & Education in Natural Sciences (HERTSPO 2015); Shkodra BENA: Shkodër, Albania, 2015; p. 6. [Google Scholar]
- Louhasakul, Y.; Cheirsilp, B.; Prasertan, P. Valorization of Palm Oil Mill Effluent into Lipid and Cell-Bound Lipase by Marine Yeast Yarrowia lipolytica and Their Application in Biodiesel Production. Waste Biomass Valorization 2015, 7, 417–426. [Google Scholar] [CrossRef]
- Neoh, C.; Lam, C.; Yahya, A.; Ware, I.; Ibrahim, Z. Utilization of Agro Industrial Residues from Palm Oil Industry for Production of Lignocellulolytic Enzymes by Curvularia clavata. Waste Biomass Valorization 2015, 6, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Iwuagwu, J.; Ugwuanyi, J. Treatment and Valorization of Palm Oil Mill Effluent through Production of Food Grade Yeast Biomass. J. Waste Manag. 2014, 2015, 439071. [Google Scholar] [CrossRef] [Green Version]
- Ishola, M.M.; Taherzadeh, M.J. Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresour. Technol. 2014, 165, 9–12. [Google Scholar] [CrossRef]
- Nazir, M.; Wahjoedi, B.; Yussoff, A.W.; Abdullah, M.A. Eco-friendly extraction and characterization of cellulose from Oil palm Empty Fruit Bunches. Bioresour. Technol. 2013, 8, 2161–2172. [Google Scholar] [CrossRef] [Green Version]
- Stemann, J.; Erlach, B.; Ziegler, F. Hydrothermal Carbonisation of Empty Palm Oil Fruit Bunches: Laboratory Trials, Plant Simulation, Carbon Avoidance, and Economic Feasibility. Waste Biomass Valorization 2013, 4, 441–454. [Google Scholar] [CrossRef]
- Salema, A.; Ani, F. Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation. Bioresour. Technol. 2012, 125, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Nahrul, Z.; Astimar, A.; Anis, M.; Ibrahim, M.; Khalil, H.P.; Ibrahim, Z. Vermicomposting of empty fruit bunch with addition of palm oil mill efuent solid. J. Oil Palm Res. 2012, 24, 1542–1549. [Google Scholar]
- Mekhilef, S.; Saidur, R.; Safari, A.; Mustaffa, W.E.S.B. Biomass energy in Malaysia: Current state and prospects. Renew. Sustain. Energy Rev. 2011, 15, 3360–3370. [Google Scholar] [CrossRef]
- Moreno, J.E.; Martínez, L.A.; Belalcázar, L.C.; Rojas, N.Y. Corporate Carbon Footprint of a Palm Oil Mill. Tecciencia 2018, 13, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, Y.; Bong, C.P.C.; Azman, N.F.; Zakaria, Z.; Othman, N.; Abdullah, N.; Ho, C.S.; Lee, C.T.; Hansen, S.B.; Hara, H. Co-composting of palm empty fruit bunch and palm oil mill effluent: Microbial diversity and potential mitigation of greenhouse gas emission. J. Clean. Prod. 2017, 146, 94–100. [Google Scholar] [CrossRef]
- Andarani, P.; Nugraha, W.D. Widdya Energy balances and greenhouse gas emissions of crude palm oil production system in Indonesia (Case study: Mill P, PT X, Sumatera Island). Int. Conf. Chem. Chem. Process Eng. 2017, 1823, 020064. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, V.; Hashim, Z.; Loh, S.K.; Astimar, A.A. Assessing water footprint for the oil palm supply chain- a cradle to gate study. Agric. Water Manag. 2020, 237, 106184. [Google Scholar] [CrossRef]
- Rivera-Méndez, Y.; Rodríguez, D.; Romero, H. Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. J. Clean. Prod. 2017, 149, 743–750. [Google Scholar] [CrossRef]
- Stichnothe, H.; Schuchardt, F. Life cycle assessment of two palm oil production system. Biomass Bioenergy 2011, 35, 3976–3984. [Google Scholar] [CrossRef]
Google Scholar | ScienceDirect | SpringerLink | ΔQ c | ||||||
---|---|---|---|---|---|---|---|---|---|
Phase | DT f | DD d | Q e | DD d | Q | DD | Q | ||
1. DP g | Palm oil waste and valorization | 13,400 | 1 a | 1223 | 1 | 780 | 1 | - | - |
2. Leveraging Approach | Biofuel | 13,200 | 98.5 | 762 | 62.3 | 337 | 43.2 | 68.1 Q3 | Q4-Q3-Q2 |
Nutrient source | 12,500 | 93.3 | 578 | 47.3 | 361 | 46.3 | 62.3 Q3 | Q4-Q2-Q2 | |
Enzyme activity | 10,500 | 78.4 | 567 | 46.4 | 349 | 44.7 | 56.4 Q3 | Q4-Q2-Q2 | |
Construction | 8330 | 62.2 | 411 | 33.6 | 204 | 26.2 | 40.6 Q2 | Q3-Q2-Q2 | |
3. Technological approach | Technological | 15,100 | 1 | 1094 | 1 | 734 | 1 | - | |
Chemical | 13,200 | 87.4 | 1047 | 95.7 | 699 | 95.2 | 92.8 Q4 | Q4-Q4-Q4 | |
Physical | 14,500 | 96.0 | 745 | 68.1 | 488 | 66.5 | 76.9 Q4 | Q4-Q3-Q3 | |
Biological | 10,200 | 67.5 | 718 | 65.6 | 425 | 57.9 | 63.7 Q3 | Q3-Q3-Q3 |
GT | AC | Ap | At | RRSFM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | OSW a | LW b | As c | OSW | LW | As | OSW | LW | As | OSW | LW | As | |
Ag1 | OSWt1 | LWt1 | Ast1 | OSWi1 | LWi1 | Asi1 | OSWj1 | LWj1 | Asj1 | OSWAt1 | LWAt1 | AsAt1 | Ʃ |
Ag2 | OSWt2 | LWt2 | Ast2 | OSWi2 | LWi2 | Asi2 | OSWj2 | LWj2 | Asj2 | OSWAt2 | LWAt2 | AsAt2 | Ʃ |
Agn | OSWtn | LWtn | Astn | OSWin | LWin | Asin | OSWjn | LWjn | Asjn | OSWAtn | LWAtn | AsAtn | Ʃ |
Google Scholar | ScienceDirect | SpringerLink | ΔQ | ||||||
---|---|---|---|---|---|---|---|---|---|
Phase | DT | DD | Q | DD | Q | DD | Q | ||
1. DP | Carbon Footprint and Mill palm oil | 17,000 | 1 | 1184 | 1 | 533 | 1 | - | - |
2. Waste and by-products | EFB | 7420 | 43.65 | 137 | 11.57 | Four. Five | 8.44 | 21.2 | Q2-Q1-Q1 |
Fiber | 5970 | 35.12 | 745 | 62.92 | 291 | 54.60 | 50.9 | Q3-Q2-Q2 | |
Shell | 4360 | 25.65 | 523 | 44.17 | 187 | 35.08 | 35.0 | Q2-Q2-Q2 | |
POME | 16,200 | 95.29 | 184 | 15.54 | 57 | 10.69 | 40.5 | Q4-Q1-Q1 |
Waste/By-Product | EFB | Fiber | Husk | Ash | POME | Methane |
---|---|---|---|---|---|---|
Author (VRE) | ||||||
Singh et al. [41] and Lik et al. [42] | 23% | 15% | 7% | - | - | - |
Abdullah and Sulaiman [34] | 22% | 13.50% | 5.50% | - | 67% | - |
Abdullah and Sulaiman [34] * | 14.60% | 15.40% | 10.40% | - | 6.30% | - |
Loh [39] | 22% | 13.50% | 5.50% | - | 67% | - |
Loh [39] * | 35% | 60% | 8.50% | 4.60% | - | - |
Vijaya et al. [43] | 22% | 8–16% | 9–22% | 2% | 58.20% | 10.57 m3 |
Yusoff [44] | 22% | 13.50% | 5.50% | - | 67% | - |
Zinatizadeh [45] | 28.50% | 30% | 6% | 0.50% | 53.51% | - |
Zinatizadeh [45] * | 14% | 6% | 0.50% | 53.51% | - | |
Kong et al. [46] | 22–23% | 13.5–15% | 5.5–7% | - | - | - |
Ali. et al. [47] | 23% | 15.70% | - | - | 70% | - |
Huailuek et al. [48] | 21% | 12.46% | 3.95% | - | 58% | - |
Stichonothe et al. [49] | 23% | 13% | 5.50% | - | 86% | - |
Foo and Hameed [37] | 23% | 14–15% | 6–7% | - | - | - |
Embandiri [50] | 24% | 14% | 6% | 0.42% | 63% | - |
Abas et al. [51] | 23% | 13% | 5% | - | 60% | - |
Cenipalma [52] , Bernal [53] and Silva [54] | 17.7–26.1% | 11.6–15% | 5–7% | - | 70–80% | - |
Garcia et al. [55] and Ramirez [56] | 20% | 13% | 5% | 0.53% | 69% | - |
Average | 23.04% | 16.77% | 6.41% | 1.43% | 61.18% | 10.57 m3 |
Variance | 3.76% | 11.23% | 1.87% | 1.67% | 17.92% | - |
Waste/By-Product | EFB | Fiber | Husk | Ash | POME | Methane |
---|---|---|---|---|---|---|
Agribusiness (VAC) | ||||||
A | 19–23% | 13–17% | 7% | 0.80% | 80% | - |
B | 21–22% | 15% | 6% | 0.50% | 67% | - |
C | 19–25% | 15% | 6.40% | 0.43% | 63% | - |
D | 23% | 16% | 5% | 0.50% | 72% | - |
E | 20–24% | 14–18% | 5–7% | - | 75% | - |
F | 22% | 16% | 5.80% | 0.50% | 60% | - |
Average | 22.48% | 15.58% | 6.03% | 0.55% | 69.50% | - |
Variance | 0.80% | 0.49% | 0.66% | 0.15% | 7.56% | - |
Waste and By-Products | EFB | Fiber | Husk | Ash | POME | Author |
---|---|---|---|---|---|---|
Chemical Composition | ||||||
Carbon | 45.9 (%) | 45.2 (%) | 49.70 (%) | 59,583 (%) | 40.17 (%) | Abdullah et al. [62]; Loh [39]; Nalaya et al. [64] |
Hydrogen | 5.70 (%) | 5.50 (%) | 5.70 (%) | 1181 (%) | 5.81 (%) | Abdullah et al. [62]; Loh [39] |
Nitrogen | 0.8 (%) | 1.10 (%) | 0.40 (%) | 0.088 (%) | 5.26 (%) | Abdullah et al. [62]; Loh [39] |
Total nitrogen | - | - | - | - | 750 mg/L | Abdullah et al. [62]; Singh et al. [41]; Baharuddin et al. [65] |
Sulfur | 0.2 mg/L | 0.23 mg/L | 0.19 mg/L | - | - | Abdullah et al. [62]; Loh [39] |
Oxygen | 36.7 mg/L | - | - | 0.981 ± 0.42 (%) | - | Abdullah et al. [62]; Loh [39] |
Potassium | 2.24 mg/L | 1.48 mg/L | 2.20 mg/L | 26.3–41.0 g/kg | 22,700 mg/L | Singh et al. [41]; Baharuddin et al. [65]; Vijaya et al. [57]; Tay [40]; Loh [39] |
Magnesium | 0.6 ± 0.2 (%) | 0.49 mg/L | 0.24 mg/L | 20.3–22 g/kg | 615 mg/L | Singh et al. [41]; Baharuddin et al. [65]; Vijaya et al. [57]; Tay [40] |
Zinc | 16.6 ± (2.6 mg kg−1) | - | - | 0.1–0.3 g/kg | 2.3 mg/L | Singh et al. [41]; Baharuddin et al. [65]; Vijaya et al. [57]; Tay [40] |
Phosphorus | 0.6 ± 0.1 (%) | 0.12 mg/L | 0.07 mg/L | - | 180 mg/L | Baharuddin et al. [65]; Vijaya et al. [57] |
Lignin | 35.3 (%) | 27.7 (%) | 50.7 (%) | - | - | Sukiran et al. [66] |
Hemicellulose | 35.3 (%) | 26.1 (%) | 22.7 (%) | - | - | Sukiran et al. [66] |
Calorific value (MJ/kg) | 18–19.92 | 18.8–19.58 | 19.5–20.75 | - | 16.1–17.65 | Soh [58]; Abdullah et al. [62]; Singh et al. [41]; Loh [67]; Loh and Choo [68] |
Moisture content (%) | 66–69 | 35–48 | - | - | 90–95 | Soh [58]; Abdullah et al. [62]; Singh et al. [41] ; Loh [67]; Loh and Choo [68] |
Ash content (%) | 4.6 | 6.1 | 3 | - | 15.2 | Soh [58]; Abdullah et al. [62]; Singh et al. [41]; Loh [67]; Loh and Choo [68] |
Volatile matter content (%) | 87 | 84.9 | 83.4 | - | 77.7 | Soh [58]; Abdullah et al. [62]; Singh et al. [41]; Loh [67]; Loh and Choo [68] |
Biochemical Oxygen Demand | - | - | - | - | 25,000 mg/L | Singh et al. [41]; Baharuddin et al. [65]; Poh et al. [14] |
Chemical Oxygen Demand | - | - | - | - | 50,000 mg/L | Singh et al. [41]; Baharuddin et al. [65]; Poh et al. [14] |
Total solids | - | - | - | - | 40,500 mg/L | Singh et al. [41]; Baharuddin et al. [65]; Poh et al. [14] |
pH | 6.7 ± 0.2 | - | - | 9.35–9.70 | 4.7 | Singh et al. [41]; Baharuddin et al. [65]; Poh et al. [14]; Tay [40] |
Fat and oil | - | - | - | - | 4000 mg/L | Singh et al. [41]; Baharuddin et al. [65]; Poh et al. [14] |
Parameter | Temperature | pH a | Flow Rate | BOD5 d | COD e | SVT f | NKT g | GA k |
---|---|---|---|---|---|---|---|---|
Unit | °C | - | m3/h | mg/L | mg/L | mg/L | mg/L | mg/L |
Agribusiness A h | 53–61 | 4.3–4.4 | 18.8 | 31,287 | 64,242 | 25,452 | 590 | 7680 |
Agribusiness B h | 58 | 4.45 | 7.2 | 33,250 | 67,800 | 24,582 | 590 | 7500 |
Agro-industry C h | - | 4.3 | - | 33,458 | 66,570 | 24,500 | 545 | 7770 |
Agro-industry D i | 51–62 | 4.4 | 28–38 | 36,458 | 57,500 | 19,200 | 480 | 6800 |
Agribusiness E h | 54 | 4.4 | 32 | 29,500 | 59,700 | 18,500 | 490 | 6850 |
Agribusiness F i | - | 4.4 | - | 35,400 | 64,500 | 24,200 | 580 | 7650 |
Average | 56.5 | 4.4 | 22.8 | 33,225.5 | 63,385.3 | 22,739.0 | 545.8 | 7375.0 |
Standard deviation | 1.7 | 0.1 | 12.2 | 2564.0 | 3995.7 | 3049.1 | 50.0 | 435.1 |
Reference authors | ||||||||
Poh et al. [71] b | 45.8–62.1 | 4.4–4.5 | 7.8–25.4 | 12,520–42,630 | 27,840–85,267 | 12,000–47,667 | 230–780 | 2500–16,100 |
Poh et al. [71] c | 54–66.5 | 4.18–4.7 | 5.4–65.0 | 32,100–56,700 | 67,900–87,300 | 41,180–47,060 | 525–1350 | 11,004–15,880 |
Ma and Ong [72] | 80–90 | 4.5 | - | 25,000 | - | - | - | 8000 |
Ahmad et al. [73] | - | 4.7 | - | 25,000 | 50,000 | - | - | 4000 |
Oswal et al. [74] | - | 5 | - | 11,000 | 246,000 | - | - | - |
Choorit and Wisarnwan [75] | - | 4.4 | - | 65,714 | 102,696 | 72,058 | 1381 | 9341 |
García [76] j | 53 | 5.25 | - | 38,647 | 47,667 | 59,970 | - | 15,492 |
Singh et al. [41] | - | 4.7 | - | 25,000 | 50,000 | 34,000 | 750 | 4000 |
Average | 63.05 | 4.68 | 25.90 | 32,792.00 | 90,073.79 | 47,996.30 | 893.38 | 9082.14 |
Standard deviation | 14.98 | 0.30 | 13.15 | 16,635.33 | 71,602.68 | 17,770.37 | 370.19 | 4340.44 |
Geographical Area a | Leverage Approach b | Technological Focus c | Waste and/or By-Product d | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author | A.M | EU | AS | AF | DL | NS | EA | BF | CS | OI | PQ | FF | PB | EFB | FI | CA | CE | POME |
Fokam et al. [79] | x | x | x | x | ||||||||||||||
Quayson et al. [80] | x | x | x | x | x | |||||||||||||
Aprianti et al. [81] | x | x | x | x | ||||||||||||||
Foong et al. [82] | x | x | x | x | x | x | x | |||||||||||
Gallego et al. [83] | x | x | x | x | ||||||||||||||
Hau et al. [84] | x | x | x | x | x | x | ||||||||||||
Prasetyo et al. [85] | x | x | x | x | ||||||||||||||
Intasit et al. [86] | x | x | x | x | x | |||||||||||||
Lemus [87] | x | x | x | x | ||||||||||||||
Lam et al. [88] | x | x | x | x | ||||||||||||||
Vasu et al. [89] | x | x | x | x | x | |||||||||||||
Sinjaroonsak et al. [90] | x | x | x | x | x | |||||||||||||
Chin et al. [91] | x | x | x | x | x | |||||||||||||
Burimsitthigul et al. [92] | x | x | x | x | x | |||||||||||||
Dias et al. [93] | x | x | x | x | x | x | ||||||||||||
Quintero and Torres [36] | x | x | x | x | x | x | ||||||||||||
Shanmugarajah et al. [94] | x | x | x | x | ||||||||||||||
Zulkarnain et al. [95] | x | x | x | x | x | |||||||||||||
Liew et al. [96] | x | x | x | x | x | x | x | |||||||||||
Ahmad et al. [97] | x | x | x | x | ||||||||||||||
Bukhari et al. [98] | x | x | x | x | x | x | ||||||||||||
Cheah et al. [99] | x | x | x | x | x | x | ||||||||||||
Misnon et al. [100] | x | x | x | x | x | x | ||||||||||||
Sukira et al. [66] | x | x | x | x | x | x | x | x | ||||||||||
Yoo et al. [101] | x | x | x | x | ||||||||||||||
Ong et al. [102] | x | x | x | x | ||||||||||||||
Kamsani et al. [103] | x | x | x | x | x | |||||||||||||
Idris et al. [104] | x | x | x | x | ||||||||||||||
Thinagaran and Sudesh [105] | x | x | x | x | x | |||||||||||||
Junpadit et al. [106] | x | x | x | x | x | |||||||||||||
Agudelo et al. [107] | x | x | x | x | x | |||||||||||||
Lim and Wu [108] | x | x | x | x | x | |||||||||||||
Silveira et al. [109] | x | x | x | x | ||||||||||||||
Tsouko et al. [110] | x | x | x | x | x | x | x | |||||||||||
Fatriasari et al. [111] | x | x | x | x | ||||||||||||||
Nyakuma [112] | x | x | x | x | x | x | ||||||||||||
Louhasakul et al. [113] | x | x | x | x | x | |||||||||||||
Neoh et al. [114] | x | x | x | x | x | |||||||||||||
Iwuagwu and Ugwuanyi [115] | x | x | x | x | x | |||||||||||||
Ishola et al. [116] | x | x | x | x | x | |||||||||||||
Nazir et al. [117] | x | x | x | x | x | |||||||||||||
Stemann et al. [118] | x | x | x | x | x | |||||||||||||
Salema & Ani [119] | x | x | x | x | ||||||||||||||
Nahrul et al. [120] | x | x | x | x | x | |||||||||||||
Average | 0.16 | 0 | 0.73 | 0.07 | 0.05 | 0.27 | 0.34 | 0.39 | 0.14 | 0.09 | 0.39 | 0.5 | 0.43 | 0.57 | 0.2 | 0.3 | 0.14 | 0.32 |
Standard deviation | 0.37 | 0 | 0.45 | 0.25 | 0.21 | 0.45 | 0.48 | 0.49 | 0.35 | 0.29 | 0.49 | 0.51 | 0.5 | 0.5 | 0.41 | 0.46 | 0.35 | 0.47 |
Total Generation (Gt) | Current Use (Ac) | ||||||||||
OSW Gt | As Gt | LW Gt | OSW Ac | As Ac | LW Ac | ||||||
Cod Agro-Industry | Factor | EFB (t) | Fiber (t) | Husk (t) | Ash (t) | POME (m3) | EFB (t) | Fiber (t) | Husk (t) | Ash (t) | POME (m3) |
Agribusiness A | 0.04 | 300.87 | 208.52 | 80.70 | 7.36 | 930.18 | 75.22 | 104.26 | 40.35 | 5.89 | 0.00 |
Agribusiness B | 0.18 | 1353.91 | 938.34 | 363.17 | 33.13 | 4185.80 | 1083.13 | 750.67 | 290.54 | 23.19 | 2511.48 |
Agribusiness C | 0.17 | 1278.69 | 886.21 | 343.00 | 31.29 | 3953.26 | 1150.82 | 708.97 | 274.40 | 31.29 | 3162.61 |
Agribusiness D | 0.08 | 601.74 | 417.04 | 161.41 | 14.72 | 1860.36 | 361.04 | 396.19 | 153.34 | 13.25 | 1172.02 |
Agribusiness E | 0.1 | 752.17 | 521.30 | 201.76 | 18.40 | 2325.45 | 488.91 | 479.60 | 185.62 | 16.56 | 1627.81 |
Agribusiness F | 0.03 | 225.65 | 156.39 | 60.53 | 5.52 | 697.63 | 135.39 | 109.47 | 42.37 | 2.76 | 0.00 |
Agribusiness G | 0.15 | 1128.26 | 781.95 | 302.64 | 27.60 | 3488.17 | 789.78 | 742.85 | 287.51 | 22.08 | 2092.90 |
Agribusiness H | 0.25 | 1880.43 | 1303.25 | 504.41 | 46.01 | 5813.61 | 1316.30 | 1238.09 | 479.18 | 36.81 | 3488.17 |
Total | 1 | 7521.73 | 5213.01 | 2017.62 | 184.03 | 23,254.45 | 5400.60 | 4530.11 | 1753.31 | 151.82 | 14,054.99 |
Potential Use (Ap) | RRSFM Indicator | Standardization (Scaling) | |||||||||
OSW Ap | As Ap | LW Ap | |||||||||
Cod Agro-Industry | Factor | EFB (t) | Fiber (t) | Husk (t) | Ash (t) | POME (m3) | |||||
Agribusiness A | 0.04 | 210.61 | 104.26 | 40.35 | 0.88 | 697.63 | 4.62 | 0.924 | |||
Agribusiness B | 0.18 | 270.78 | 187.67 | 72.63 | 9.94 | 1674.32 | 5 | 1 | |||
Agribusiness C | 0.17 | 127.87 | 177.24 | 68.60 | 0.00 | 790.65 | 5 | 1 | |||
Agribusiness D | 0.08 | 240.70 | 20.85 | 8.07 | 1.47 | 558.11 | 4.93 | 0.986 | |||
Agribusiness E | 0.1 | 263.26 | 41.70 | 16.14 | 1.84 | 697.63 | 5 | 1 | |||
Agribusiness F | 0.03 | 81.23 | 46.92 | 18.16 | 2.76 | 523.23 | 4.71 | 0.942 | |||
Agribusiness G | 0.15 | 338.48 | 39.10 | 15.13 | 5.52 | 1395.27 | 5 | 1 | |||
Agribusiness H | 0.25 | 564.13 | 65.16 | 25.22 | 9.20 | 2325.45 | 5 | 1 | |||
Total | 1 | 2097.06 | 682.90 | 264.31 | 31.62 | 8662.28 | - | - |
Waste and By-Product | kg CO2 eq/t RFF a | kgCO2/kg EFB | kgCO2/kg Husk + Fiber | kgCO2/m3 POME | Alternative or Disposal |
---|---|---|---|---|---|
EFB | 230 | 1026 | - | - | Open sky |
EFB | 1083.86 | 4838 | - | - | Incinerated (not energy in boilers) |
POME | 140 | - | - | 0.2014 | Open sky |
EFB + POME | 0.0231 | 2.51 × 10−5 | - | - | Biochar |
EFB + POME | 110 | 0.119 | - | - | Composting |
Fiber + Husk | 941.94 | - | 4358 | - | Incineration (energy in boiler) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bejarano, P.-A.C.; Rodriguez-Miranda, J.-P.; Maldonado-Astudillo, R.I.; Maldonado-Astudillo, Y.I.; Salazar, R. Circular Economy Indicators for the Assessment of Waste and By-Products from the Palm Oil Sector. Processes 2022, 10, 903. https://doi.org/10.3390/pr10050903
Bejarano P-AC, Rodriguez-Miranda J-P, Maldonado-Astudillo RI, Maldonado-Astudillo YI, Salazar R. Circular Economy Indicators for the Assessment of Waste and By-Products from the Palm Oil Sector. Processes. 2022; 10(5):903. https://doi.org/10.3390/pr10050903
Chicago/Turabian StyleBejarano, Pedro-Antonio Cárdenas, Juan-Pablo Rodriguez-Miranda, Rayma Ireri Maldonado-Astudillo, Yanik Ixchel Maldonado-Astudillo, and Ricardo Salazar. 2022. "Circular Economy Indicators for the Assessment of Waste and By-Products from the Palm Oil Sector" Processes 10, no. 5: 903. https://doi.org/10.3390/pr10050903
APA StyleBejarano, P.-A. C., Rodriguez-Miranda, J.-P., Maldonado-Astudillo, R. I., Maldonado-Astudillo, Y. I., & Salazar, R. (2022). Circular Economy Indicators for the Assessment of Waste and By-Products from the Palm Oil Sector. Processes, 10(5), 903. https://doi.org/10.3390/pr10050903