# Study on the Damping Dynamics Characteristics of a Viscoelastic Damping Material

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basic Theory of Modal Analysis

## 3. Experiments

#### 3.1. Experimental Materials

#### 3.2. Experimental Method

#### 3.2.1. DMA Experimental Method

- Fixture mode: Film stretching fixture
- Temperature range: −50 °C~150 °C
- Selected frequency: 1 Hz, 10 Hz, 22 Hz, 50 Hz, 136 Hz

#### 3.2.2. Experimental Modal Analysis

## 4. Experimental Test Analysis

#### 4.1. DMA Test Analysis

#### 4.2. Modal Test Analysis

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Yingdong, G.; Chunlong, S.; Haiyan, L.; Shizhen, Z.; Hong, W.; Wenge, W. Research Progress in Organic Polymer Damping Coatings. Paint. Coat. Ind.
**2011**, 9, 73–76. [Google Scholar] - Yunfeng, Z. Properties and Application of Advanced Viscoelastic Damping Materials. Aerosp. Mater. Technol.
**2009**, 39, 1–6. [Google Scholar] - Gibson, R.F. A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Sci. Technol.
**2014**, 105, 51–65. [Google Scholar] - Zhiyuan, W.; Liushuan, Y. Progress of High Damping Foam Metal Metrix Composite. Dev. Appl. Mater.
**2004**, 19, 38. [Google Scholar] - Huang, Z.-C.; Qin, Z.-Y.; Chu, F.-L. A review about vibration problems of thin-walled structures with viscoelastic damping layer. J. Vib. Shock.
**2014**, 33, 105–113. [Google Scholar] - Fang, Q.-F.; Zhu, Z.-G.; Ge, T.-S. Characterization and Mechanism of High Damping Materials. Physics
**2000**, 9, 541–545. [Google Scholar] - Kang, Z.; Zhang, X.P.; Jiang, S.G.; Cheng, G. On topology optimization of damping layer in shell structures under harmonic excitations. Struct. Multidiscip. Optim.
**2012**, 46, 51–67. [Google Scholar] - Kim, S.Y.; Chris, K.M.; Kim, I.Y. Optimal damping layout in a shell structure using topology optimization. J. Sound Vib.
**2013**, 332, 2873–2883. [Google Scholar] - Yamamoto, T.; Yamada, T.; Izui, K.S.; Nishiwaki, S. Topology optimization of free-layer damping material on a thin panel for maximizing modal loss factors expressed by only real eigenvalues. J. Sound Vib.
**2015**, 358, 84–96. [Google Scholar] - Takezawa, A.; Daifuku, M.; Nakano, Y.; Nakagawa, K.; Yamamoto, T.; Katimura, M. Topology optimization of damping material for reducing resonance response based on complex dynamic compliance. J. Sound Vib.
**2015**, 358, 84–96. [Google Scholar] - EI-Sabbagh, A.; Baz, A. Topology optimization of unconstrained damping treatments for plates. Eng. Optim.
**2014**, 46, 1153–1168. [Google Scholar] - Zhang, X.P.; Kang, Z. Vibration suppression using integrated topology optimization of host structures and damping layers. J. Vib. Control
**2016**, 22, 66–76. [Google Scholar] - Yun, K.S.; Youn, S.K. Topology optimization of viscoelastic damping layers for attenuating transient response of shell structures. Finite Elem. Anal. Des.
**2018**, 141, 154–165. [Google Scholar] - Yi, Y.M.; Park, S.H.; Youn, S.-K. Asymptotic homogenization of viscoelastic composites with periodic microstructures. Int. J. Solids Struct.
**1998**, 35, 2039–2055. [Google Scholar] - Andreassen, E.; Jensen, J.S. Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials. Struct. Multidiscip. Optim.
**2014**, 49, 695–705. [Google Scholar] - Chen, W.; Liu, S. Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus. Struct. Multidiscip. Optim.
**2014**, 50, 287–296. [Google Scholar] - Li, K. Research on Vibration Reduction Efficiency of Composite High Damping Materials. Space Electron. Technol.
**2004**, 1, 42–54. [Google Scholar] - Priyankar, D.; Ray, M.C. Smart damping of large amplitude vibrations of variable thickness laminated composite shells. Thin-Walled Struct.
**2018**, 127, 710–727. [Google Scholar] - Sahoo, S.R.; Ray, M.C. Active damping of geometrically nonlinear vibrations of smart composite plates using elliptical SCLD treatment with fractional derivative viscoelastic layer. Eur. J. Mech. A Solids
**2019**, 78, 103823. [Google Scholar] - Gupta, A.; Reddy, R.S.; Panda, S.; Kumar, N. Damping treatment of beam with unconstrained/constrained 1-3 smart viscoelastic composite layer. Eur. J. Mech. A Solids
**2019**, 26, 956–962. [Google Scholar] - Fu, W.; Wang, C.; Chen, J.; Lai, X.; Li, H. Operational modal analysis of three-dimensional structure based on Laplacian Eigenmaps. Comput. Integr. Manuf. Syst.
**2020**, 2020, 6348372. [Google Scholar] - El-Labban, M.; Abdelaziz, M.Y.; Elkhatib, A. Prediction of Mechanical Properties of Nano-Composites Using Vibration Modal Analysis: Application to Aluminum Piston Alloys. Mater. Perform. Charact.
**2013**, 2, 454–467. [Google Scholar] [CrossRef] - Chang, K.-C.; Kim, C.-W. Modal-parameter identifification and vibration-based damage detection of a damaged steel truss bridge. Eng. Struct.
**2016**, 122, 156–173. [Google Scholar] [CrossRef] - Guan, C.; Zhang, H. Experimental and Theoretical Modal Analysis of Full-Sized Wood Composite Panels Supported on Four Nodes. Materials
**2017**, 10, 683. [Google Scholar] [CrossRef] [Green Version] - Mostafa, Y.; Elkhatib, A.; Nassef, M.G.A. Rolling element bearings absolute life prediction using modal analysis. J. Mech. Sci. Technol.
**2018**, 32, 91–99. [Google Scholar] [CrossRef] - Qiuhai, L.; Debao, L. Analysis of Experiments in Engineering Vibration; Tsinghua University Press: Beijing, China, 2015. [Google Scholar]
- Fu, Z.; Hua, H. Modal Analysis Theory and Applications; Shanghai Jiaotong University Press: Shanghai, China, 2000. [Google Scholar]
- Zhang, Z. Study on Viscoelastic Damping Material and Constrained Damping Structure Applied in Qingdao Subway Vibration and Noise Reduction; Qingdao Technological University: Qingdao, China, 2014; p. 18. [Google Scholar]

**Figure 1.**The form of viscoelastic damping laid on the substrate structure. (

**a**) Free damping structure; (

**b**) passive restraint damping structure; (

**c**) active constraint damping structure; and (

**d**) intelligent damping structure.

**Figure 2.**Specimen. ①is the specimen 1; ②is the specimen 2; ③is the specimen 3; and ④is the specimen 4.

**Figure 6.**Relationship between storage modulus, loss factor, and temperature of viscoelastic damping material at different frequencies.

**Figure 19.**The first four-order experimental modal diagram. (

**a**) First-order mode shape; (

**b**) second-order mode shape; (

**c**) third-order mode shape; and (

**d**) fourth-order mode shape.

**Figure 20.**The first four-order simulation modal diagram. (

**a**) First-order mode shape; (

**b**) second-order mode shape; (

**c**) third-order mode shape; and (

**d**) fourth-order mode shape.

NO. | Name | Length [mm] | Width [mm] | Thickness [mm] |
---|---|---|---|---|

1 | Sample 1 | 20 | 1.8 | 0.9 |

2 | Sample 2 | 20 | 1.85 | 0.8 |

3 | Sample 3 | 20 | 4.4 | 0.72 |

4 | Sample 4 | 20 | 4.5 | 0.78 |

5 | Sample 5 | 20 | 5 | 0.6 |

NO. | Name | Length [mm] | Thickness [mm] | Width [mm] |
---|---|---|---|---|

1 | Specimen 1 | 300 | 3 | 20 |

2 | Specimen 2 | 300 | 3 | 20 |

3 | Specimen 3 | 300 | 6 | 20 |

4 | Specimen 4 | 300 | 9 | 20 |

NO. | Name | Model Specifications |
---|---|---|

1 | LMS Test. Lab Modal Testing Advanced | TL-STR.29.2 |

2 | ICP^{®} accel., 100 mV/g, 0.5 Hz to 3 kHz, 10–32 side conn | 333B30 |

3 | PCB General purpose cable, 30-ft, 10–32 plug to BNC plug | 002C30 |

4 | Modally Tuned^{®} Impulse Hammer w/force sensor and tips, 0 to 5 klbf, 1 mV/lbf (0.23 mV/N) | 086D05 |

5 | Low-noise, blue, coaxial, Teflon cable, 20-ft, BNC plug to BNC plug | 003D20 |

6 | Handheld shaker, 1 g at 159.2 Hz | 394C06 |

Structural Type | Base Layer [mm] | Damping Layer [mm] | First Natural Frequency [Hz] | Damping Ratio [%] |
---|---|---|---|---|

Steel | 3 | / | 23.27 | 0.21 |

Steel | 3 | / | 23.16 | 0.20 |

Steel-Damping | 3 | 3 | 22.22 | 1.42 |

Steel-Damping | 3 | 6 | 21.78 | 2.44 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, F.; Liao, J.; Huang, C.; Yu, H.; Yan, J.; Li, H.
Study on the Damping Dynamics Characteristics of a Viscoelastic Damping Material. *Processes* **2022**, *10*, 635.
https://doi.org/10.3390/pr10040635

**AMA Style**

Wang F, Liao J, Huang C, Yu H, Yan J, Li H.
Study on the Damping Dynamics Characteristics of a Viscoelastic Damping Material. *Processes*. 2022; 10(4):635.
https://doi.org/10.3390/pr10040635

**Chicago/Turabian Style**

Wang, Fei, Jianbin Liao, Chaoming Huang, Hongliang Yu, Jin Yan, and Hanlin Li.
2022. "Study on the Damping Dynamics Characteristics of a Viscoelastic Damping Material" *Processes* 10, no. 4: 635.
https://doi.org/10.3390/pr10040635