Review of Development and Comparison of Surface Thermometry Methods in Combustion Environments: Principles, Current State of the Art, and Applications
Abstract
:1. Introduction
2. Contact-Based Thermometry
2.1. Thermocouple Method
2.2. Thin-Film Thermocouple Methods
2.3. Limitations of Contact-Based Thermometry
2.3.1. Intrusive Probe
2.3.2. Heat Transfer Error
2.3.3. Spatial and Temporal Resolution
2.3.4. Other Problems
3. Non-Intrusive Thermometry
3.1. Radiation Thermometry
3.1.1. Principles
3.1.2. Typical Measurement Methods
Total Radiation Thermometry
Spectral Radiation Thermometry
Two-Color Thermometry
Multi-Spectral Thermometry
3.1.3. Problems Related with Radiation Thermometry
3.2. Laser-Induced Phosphorescence
3.2.1. Principles
3.2.2. Lifetime Method
3.2.3. Spectral Intensity Ratio Method
3.3. Other Non-Intrusive Thermometry
3.3.1. Liquid Crystal Thermography
3.3.2. Temperature-Sensitive Paint
3.3.3. Temperature-Indicating Paint
4. Applications
4.1. Surface Temperature of Burning Solid Fuels
4.2. Droplets and Sprays
4.3. Internal Combustion Engines
4.4. Gas Turbines and Aero Engines
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turns, S.R. Introduction to Combustion; McGraw-Hill Companies: New York, NY, USA, 1996; Volume 287. [Google Scholar]
- Michalski, L.; Eckersdorf, K.; Kucharski, J.; McGhee, J. Temperature Scales and Classification of Thermometers. In Temperature Measurement; John Wiley & Sons Ltd.: Chichester, West Sussex, England, 2001; pp. 1–18. [Google Scholar] [CrossRef]
- McGee, T.D. Principles and Methods of Temperature Measurement; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Druet, S.A.; Taran, J.P.E. CARS spectroscopy. Prog. Quantum. Electron. 1981, 7, 1–72. [Google Scholar] [CrossRef]
- Brübach, J.; Pflitsch, C.; Dreizler, A.; Atakan, B. On surface temperature measurements with thermographic phosphors: A review. Prog. Energy Combust. Sci. 2013, 39, 37–60. [Google Scholar] [CrossRef]
- Pollock, D.D. Thermocouples: Theory and Properties; Routledge: London, UK, 1991. [Google Scholar]
- Quinn, T.J. 6—Thermocouples. In Temperature, 2nd ed.; Quinn, T.J., Ed.; Academic Press: New York, NY, USA, 1990; pp. 286–331. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. NIST ITS-90 Thermocouple Database—SRD 60; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2000.
- Hindasageri, V.; Vedula, R.; Prabhu, S. Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient. Rev. Sci. Instrum. 2013, 84, 024902. [Google Scholar] [CrossRef] [PubMed]
- Ghadamgahi, M.; Ölund, P.; Ekman, T.; Andersson, N.; Jönsson, P. Numerical and experimental study on flameless oxy-fuel combustion in a pilot-scale and a real-size industrial furnace. Appl. Therm. Eng. 2018, 141, 788–797. [Google Scholar] [CrossRef]
- Salinero, J.; Gómez-Barea, A.; Fuentes-Cano, D.; Leckner, B. The effect of using thermocouples on the char particle combustion in a fluidized bed reactor. Fuel 2017, 207, 615–624. [Google Scholar] [CrossRef]
- Park, W.C.; Atreya, A.; Baum, H.R. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust. Flame 2010, 157, 481–494. [Google Scholar] [CrossRef]
- Bosschaart, K.J.; De Goey, L. Detailed analysis of the heat flux method for measuring burning velocities. Combust. Flame 2003, 132, 170–180. [Google Scholar] [CrossRef]
- Bosschaart, K.J.; De Goey, L. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame 2004, 136, 261–269. [Google Scholar] [CrossRef]
- Marr, M.A.; Wallace, J.S.; Chandra, S.; Pershin, L.; Mostaghimi, J. A fast response thermocouple for internal combustion engine surface temperature measurements. Exp. Therm. Fluid Sci. 2010, 34, 183–189. [Google Scholar] [CrossRef]
- Manjhi, S.K.; Kumar, R. Transient surface heat flux measurement for short duration using K-type, E-type and J-type of coaxial thermocouples for internal combustion engine. Measurement 2019, 136, 256–268. [Google Scholar] [CrossRef]
- Chang, J.; Filipi, Z.; Assanis, D.; Kuo, T.-W.; Najt, P.; Rask, R. Characterizing the thermal sensitivity of a gasoline homogeneous charge compression ignition engine with measurements of instantaneous wall temperature and heat flux. Int. J. Engine Res. 2005, 6, 289–310. [Google Scholar] [CrossRef]
- Alkidas, A.C. Heat Transfer Characteristics of a Spark-Ignition Engine. J. Heat Transf. 1980, 102, 189–193. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Jiang, H.C.; Zhang, W.L.; Liu, X.Z.; Jiang, S.W. Film Thickness Influences on The Thermoelectric Properties of NiCr/NiSi Thin Film Thermocouples. Mod. Phys. Lett. B 2013, 27, 1350103. [Google Scholar] [CrossRef]
- Tian, B.; Zhang, Z.; Shi, P.; Zheng, C.; Yu, Q.; Jing, W.; Jiang, Z. Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites. Rev. Sci. Instrum. 2017, 88, 015007. [Google Scholar] [CrossRef] [PubMed]
- Tougas, I.M.; Amani, M.; Gregory, O.J. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines. Sensors 2013, 13, 15324–15347. [Google Scholar] [CrossRef]
- Holanda, R. Development of thin film thermocouples on ceramic materials for advanced propulsion system applications. In Proceedings of the Conference for Preparation for Temperature: Its Measurement and Control in Science and Industry, Toronto, ON, Canada, 28 April–2 May 1992. [Google Scholar]
- Martin, L.C.; Holanda, R. Applications of thin-film thermocouples for surface temperature measurement. In Proceedings of the SPIE’s 1994 International Symposium on Optics, Imaging, and Instrumentation, San Diego, CA, USA, 24 July 1994; pp. 65–76. [Google Scholar]
- Wrbanek, J.; Fralick, G.; Farmer, S.; Sayir, A.; Blaha, C.; Gonzalez, J. Development of thin film ceramic thermocouples for high temperature environments. In Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, FL, USA, 11–14 July 2004; p. 3549. [Google Scholar]
- Kreider, K.G. Thin film thermocouples for internal combustion engines. J. Vac. Sci. Technol. A 1986, 4, 2618–2623. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Chen, Y.; Jiang, H.; Zhang, W. Enhanced thermoelectric property and stability of NiCr–NiSi thin film thermocouple on superalloy substrate. Rare Metals 2017, 36, 512–516. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, X.; Jiang, S.; Zhang, W.; Jiang, H. Microstructure evolution and thermoelectric property of Pt-PtRh thin film thermocouples. Crystals 2017, 7, 96. [Google Scholar] [CrossRef]
- Jin, X.; Tian, Y.; Zhao, K.; Ma, B.; Deng, J.; Luo, J. Experimental study on supersonic combustion fluctuation using thin-film thermocouple and time–frequency analysis. Acta Astronaut. 2021, 179, 33–41. [Google Scholar] [CrossRef]
- Childs, P.R.N.; Greenwood, J.R.; Long, C.A. Review of temperature measurement. Rev. Sci. Instrum. 2000, 71, 2959–2978. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.; Kochan, O.; Chunzhi, W.; Kochan, R. Theoretical and Experimental Research of Error of Method of Thermocouple with Controlled Profile of Temperature Field. Meas. Sci. Rev. 2015, 15, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Grant, H.; Przybyszewski, J.; Claing, R. Turbine Blade Temperature Measurements Using Thin Film Temperature Sensors. No. PWA-5604-31, 17 March 1981. [Google Scholar]
- Shannon, K.; Butler, B. A review of error associated with thermocouple temperature measurement in fire environments. In Proceedings of the 2nd Fire Ecology Congress, Orlando, Florida, USA, 16 November 2003. [Google Scholar]
- Heitor, M.V.; Moreira, A.L.N. Thermocouples and sample probes for combustion studies. Prog. Energy Combust. Sci. 1993, 19, 259–278. [Google Scholar] [CrossRef]
- Aldén, M.; Omrane, A.; Richter, M.; Särner, G. Thermographic phosphors for thermometry: A survey of combustion applications. Prog. Energy Combust. Sci. 2011, 37, 422–461. [Google Scholar] [CrossRef]
- Martinez, I.; Otamendi, U.; Olaizola, I.G.; Solsona, R.; Maiza, M.; Viles, E.; Fernandez, A.; Arzua, I. A novel method for error analysis in radiation thermometry with application to industrial furnaces. Measurement 2022, 190, 110646. [Google Scholar] [CrossRef]
- Anderson, R.; Adams, R.; Duggins, B. Limitations of Thermocouples in Temperature Measurements; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1979.
- Glückert, U.L.; Schmidt, R. Pyrometry and Thermography. In Optical Measurements: Techniques and Applications; Mayinger, F., Feldmann, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 271–300. [Google Scholar] [CrossRef]
- Carvill, J. 3—Thermodynamics and heat transfer. In Mechanical Engineer’s Data Handbook; Carvill, J., Ed.; Butterworth-Heinemann: Oxford, UK, 1993; pp. 102–145. [Google Scholar] [CrossRef]
- Khatami, R.; Levendis, Y.A. On the deduction of single coal particle combustion temperature from three-color optical pyrometry. Combust. Flame 2011, 158, 1822–1836. [Google Scholar] [CrossRef]
- Barber, R. A radiation pyrometer designed for in-flight measurement of turbine blade temperatures. SAE Trans. 1969, 78, 1591–1597. [Google Scholar]
- Hershey, A. Flame Radiation and Temperature Measurements on an Internal-Combustion Engine. Ind. Eng. Chem. 1932, 24, 867–870. [Google Scholar] [CrossRef]
- Curwen, K.R. Turbine blade radiation pyrometer system. Aircr. Eng. Aerosp. Technol. 1972, 44, 16–21. [Google Scholar] [CrossRef]
- Burgess, G.K.; Foote, P.D. Characteristics of Radiation Pyrometers; US Department of Commerce, Bureau of Standards: Washington, DC, USA, 1916.
- Emslie, A.; Blau, H. On the measurement of the temperatures of unenclosed objects by radiation methods. J. Electrochem. Soc. 1959, 106, 877. [Google Scholar] [CrossRef]
- Hollandt, J.; Hartmann, J.; Struß, O.; Gärtner, R. Chapter 1—Industrial Applications of Radiation Thermometry. In Experimental Methods in the Physical Sciences; Zhang, Z.M., Tsai, B.K., Machin, G., Eds.; Academic Press: Cambridge, MA, USA, 2010; Volume 43, pp. 1–56. [Google Scholar]
- Zhang, Z.; Tsai, B.K.; Machin, G. Radiometric Temperature Measurements: I. Fundamentals; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Brunner, M.H.; Rose, M.G.; Mühlbauer, K.; Abhari, R.S. In-engine turbine heat transfer measurement. Proc. Inst. Mech. Eng. Part A J. Power Energy 2007, 221, 727–734. [Google Scholar] [CrossRef]
- Manara, J.; Zipf, M.; Stark, T.; Arduini, M.; Ebert, H.-P.; Tutschke, A.; Hallam, A.; Hanspal, J.; Langley, M.; Hodge, D. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines. Infrared Phys. Technol. 2017, 80, 120–130. [Google Scholar] [CrossRef]
- Shin, D.H.; Kim, M.; Kim, J.S.; Lee, B.J.; Lee, J. Precise infrared thermometry with considering background radiation for gas turbine air cooling application. Int. J. Therm. Sci. 2020, 158, 106534. [Google Scholar] [CrossRef]
- Murray, T. Use of Silicon-Cell Pyrometers on Continuous Annealing Lines. Iron Steel Eng. 1971, 48, 33–39. [Google Scholar]
- Saunders, P. Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry; SPIE Press: Bellingham, WA, USA, 2007; Volume 78. [Google Scholar]
- Pregowski, P.; Goleniewski, G.; Komosa, W.; Korytkowski, W.; Zwolenik, S. Heating medium absorption and emission as factors in thermographic investigations of petrochemical furnaces. In Thermosense XXXI; SPIE: Bellingham, WA, USA, 2009; Volume 7299, pp. 131–141. [Google Scholar]
- Lopez, F.; Huot, A. Advanced signal processing applied to thermographic inspection of petrochemical furnaces. In Thermosense: Thermal Infrared Applications XLI; SPIE: Bellingham, WA, USA, 2019; Volume 11004, pp. 26–32. [Google Scholar]
- Fu, T.; Yang, Z.; Wang, L.; Cheng, X.; Zhong, M.; Shi, C. Measurement performance of an optical CCD-based pyrometer system. Opt. Laser Technol. 2010, 42, 586–593. [Google Scholar] [CrossRef]
- Brisley, P.M.; Lu, G.; Yan, Y.; Cornwell, S. Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera. IEEE Trans. Instrum. Meas. 2005, 54, 1417–1421. [Google Scholar] [CrossRef]
- Cai, X.; Cheng, Z.; Wang, S. Flame measurement and combustion diagnoses with spectrum analysis. AIP Conf. Proc. 2007, 914, 60–66. [Google Scholar]
- Sun, Y.; Lou, C.; Zhou, H. A simple judgment method of gray property of flames based on spectral analysis and the two-color method for measurements of temperatures and emissivity. Proc. Combust. Inst. 2011, 33, 735–741. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, Y.; Riley, G. Vision-based measurement of temperature distribution in a 500-kW model furnace using the two-colour method. Measurement 2000, 28, 175–183. [Google Scholar] [CrossRef]
- Khan, M.A.; Allemand, C.; Eagar, T.W. Noncontact temperature measurement. I. Interpolation based techniques. Rev. Sci. Instrum. 1991, 62, 392–402. [Google Scholar] [CrossRef]
- Khan, M.A.; Allemand, C.; Eagar, T.W. Noncontact temperature measurement. II. Least squares based techniques. Rev. Sci. Instrum. 1991, 62, 403–409. [Google Scholar] [CrossRef]
- Coates, P. Multi-wavelength pyrometry. Metrologia 1981, 17, 103. [Google Scholar] [CrossRef]
- Araújo, A. Multi-spectral pyrometry—A review. Meas. Sci. Technol. 2017, 28, 082002. [Google Scholar] [CrossRef]
- Gao, S.; Feng, C.; Wang, L.; Li, D. Multi-spectral temperature measurement method for gas turbine blade. Opt. Rev. 2016, 23, 17–25. [Google Scholar] [CrossRef]
- Estevadeordal, J.; Wang, G.; Nirmalan, N.; Wang, A.; Harper, S.P.; Rigney, J.D. Multicolor Techniques for Identification and Filtering of Burst Signals in Jet Engine Pyrometers. J. Turbomach. 2013, 136, 031004. [Google Scholar] [CrossRef]
- Ng, D.; Fralick, G. Use of a multiwavelength pyrometer in several elevated temperature aerospace applications. Rev. Sci. Instrum. 2001, 72, 1522–1530. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.; Zhao, H.; Zeng, J.; Zhong, M.; Shi, C. Two-color optical charge-coupled-device–based pyrometer using a two-peak filter. Rev. Sci. Instrum. 2010, 81, 124903. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Wang, L.; Feng, C.; Kipngetich, K.D. Analyzing the influence of combustion gas on a gas turbine by radiation thermometry. Infrared Phys. Technol. 2015, 73, 184–193. [Google Scholar] [CrossRef]
- Cutler, A.D.; Gallo, E.C.; Cantu, L.M.; Rockwell, R.D.; Goyne, C.P. Coherent anti-Stokes Raman spectroscopy of a premixed ethylene–air flame in a dual-mode scramjet. Combust. Flame 2018, 189, 92–105. [Google Scholar] [CrossRef]
- Raffius, T.; Schulz, C.; Ottenwälder, T.; Grünefeld, G.; Koß, H.-J.; Brands, T.; Pischinger, S. Flame-temperature, light-attenuation, and CO measurements by spontaneous Raman scattering in non-sooting diesel-like jets. Combust. Flame 2017, 176, 104–116. [Google Scholar] [CrossRef]
- Hoffman, D.; Münch, K.-U.; Leipertz, A. Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering. Opt. Lett. 1996, 21, 525–527. [Google Scholar] [CrossRef]
- Meier, U.E.; Wolff-Gaßmann, D.; Stricker, W. LIF imaging and 2D temperature mapping in a model combustor at elevated pressure. Aerosp. Sci. Technol. 2000, 4, 403–414. [Google Scholar] [CrossRef]
- Allison, S.W. A brief history of phosphor thermometry. Meas. Sci. Technol. 2019, 30, 072001. [Google Scholar] [CrossRef]
- Thureau, P. Etude d’und methode de mesure des temperatures utilisant las sensibilite thermique des couleurs de fluorescence. Doctoral Thesis, University of Paris, Paris, France, 1955. [Google Scholar]
- Leroux, J.-P. Étude sur la détermination des températures de surfaces (de 0 à 400° C), par l’intermédiaire des émissions de minces revêtements photoluminescents: Par Jean-Pierre Leroux; Service de documentation et d’information technique de l’aéronautique (Impr. du SDIT); 1962. [Google Scholar]
- Allison, S.; Beshears, D.; Cates, M.; Scudiere, M.; Shaw, D.; Ellis, A. Luminescence of YAG: Dy and YAG: Dy, Er crystals to 1700° C. Meas. Sci. Technol. 2020, 31, 044001. [Google Scholar] [CrossRef]
- Allison, S.; Gillies, G. Remote thermometry with thermographic phosphors: Instrumentation and applications. Rev. Sci. Instrum. 1997, 68, 2615–2650. [Google Scholar] [CrossRef]
- Khalid, A.H.; Kontis, K. Thermographic phosphors for high temperature measurements: Principles, current state of the art and recent applications. Sensors 2008, 8, 5673–5744. [Google Scholar] [CrossRef] [Green Version]
- Chambers, M.; Clarke, D. Doped oxides for high-temperature luminescence and lifetime thermometry. Annu. Rev. Mater. Sci. 2009, 39, 325–359. [Google Scholar] [CrossRef] [Green Version]
- Omrane, A.; Ossler, F.; Aldén, M. Two-dimensional surface temperature measurements of burning materials. Proc. Combust. Inst. 2002, 29, 2653–2659. [Google Scholar] [CrossRef]
- Omrane, A.; Särner, G.; Aldén, M. 2D-temperature imaging of single droplets and sprays using thermographic phosphors. Appl. Phys. B 2004, 79, 431–434. [Google Scholar] [CrossRef]
- Omrane, A.; Ossler, F.; Aldén, M. Temperature measurements of combustible and non-combustible surfaces using laser induced phosphorescence. Exp. Therm. Fluid Sci. 2004, 28, 669–676. [Google Scholar] [CrossRef]
- Fuhrmann, N.; Kissel, T.; Dreizler, A.; Brübach, J. Gd3Ga5O12: Cr—A phosphor for two-dimensional thermometry in internal combustion engines. Meas. Sci. Technol. 2011, 22, 045301. [Google Scholar] [CrossRef]
- Fuhrmann, N.; Schild, M.; Bensing, D.; Kaiser, S.A.; Schulz, C.; Brübach, J.; Dreizler, A. Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors. Appl. Phys. B 2012, 106, 945–951. [Google Scholar] [CrossRef]
- Kissel, T.; Baum, E.; Dreizler, A.; Brübach, J. Two-dimensional thermographic phosphor thermometry using a CMOS high speed camera system. Appl. Phys. B 2009, 96, 731–734. [Google Scholar] [CrossRef]
- Someya, S.; Furutani, H.; Okamoto, K. Instantaneous phosphor thermometry applicable to walls exposed to flames. Exp. Therm. Fluid Sci. 2013, 47, 224–231. [Google Scholar] [CrossRef]
- Someya, S.; Uchida, M.; Tominaga, K.; Terunuma, H.; Li, Y.; Okamoto, K. Lifetime-based phosphor thermometry of an optical engine using a high-speed CMOS camera. Int. J. Heat Mass Transf. 2011, 54, 3927–3932. [Google Scholar] [CrossRef]
- Yi, S.J.; Kim, H.D.; Kim, K.C. Decay-slope method for 2-dimensional temperature field measurement using thermographic phosphors. Exp. Therm. Fluid Sci. 2014, 59, 1–8. [Google Scholar] [CrossRef]
- Fuhrmann, N.; Schneider, M.; Ding, C.; Brübach, J.; Dreizler, A. Two-dimensional surface temperature diagnostics in a full-metal engine using thermographic phosphors. Meas. Sci. Technol. 2013, 24, 095203. [Google Scholar] [CrossRef]
- Fuhrmann, N.; Brübach, J.; Dreizler, A. Phosphor thermometry: A comparison of the luminescence lifetime and the intensity ratio approach. Proc. Combust. Inst. 2013, 34, 3611–3618. [Google Scholar] [CrossRef]
- Feist, J.; Heyes, A. The characterization of Y2O2S: Sm powder as a thermographic phosphor for high temperature applications. Meas. Sci. Technol. 2000, 11, 942. [Google Scholar] [CrossRef]
- Kontis, K. Surface heat transfer measurements inside a supersonic combustor by laser-induced fluorescence. J. Thermophys. Heat Trans. 2003, 17, 320–325. [Google Scholar] [CrossRef]
- Brübach, J.; Patt, A.; Dreizler, A. Spray thermometry using thermographic phosphors. Appl. Phys. B 2006, 83, 499–502. [Google Scholar] [CrossRef]
- Heyes, A.; Seefeldt, S.; Feist, J. Two-colour phosphor thermometry for surface temperature measurement. Opt. Laser Technol. 2006, 38, 257–265. [Google Scholar] [CrossRef]
- Särner, G.; Richter, M.; Aldén, M. Investigations of blue emitting phosphors for thermometry. Meas. Sci. Technol. 2008, 19, 125304. [Google Scholar] [CrossRef]
- Goss, L.; Smith, A.; Post, M. Surface thermometry by laser-induced fluorescence. Rev. Sci. Instrum. 1989, 60, 3702–3706. [Google Scholar] [CrossRef]
- Särner, G.; Richter, M.; Aldén, M. Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence. Opt. Lett. 2008, 33, 1327–1329. [Google Scholar] [CrossRef]
- Li, B.; Lindén, J.; Li, Z.; Konnov, A.; Aldén, M.; De Goey, L. Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique. Proc. Combust. Inst. 2011, 33, 939–946. [Google Scholar] [CrossRef]
- Sage, I. Thermochromic liquid crystals. Liq. Cryst. 2011, 38, 1551–1561. [Google Scholar] [CrossRef]
- Ireland, P.T.; Neely, A.J.; Gillespie, D.R.; Robertson, A.J. Turbulent heat transfer measurements using liquid crystals. Int. J. Heat Fluid Flow 1999, 20, 355–367. [Google Scholar] [CrossRef]
- Ekkad, S.V.; Han, J.-C. A transient liquid crystal thermography technique for gas turbine heat transfer measurements. Meas. Sci. Technol. 2000, 11, 957. [Google Scholar] [CrossRef]
- Okamura, T.; Koga, A.; Itoh, S.; Kawagishi, H. Evaluation of 1700C Class Turbine Blades in Hydrogen Fueled Combustion Turbine System. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2000; p. V001T003A100. [Google Scholar]
- Poser, R.; Von Wolfersdorf, J. Liquid crystal thermography for transient heat transfer measurements in complex internal cooling systems. In Proceedings of the TURBINE-09, International Symposium on Heat Transfer in Gas Turbine Systems, Antalya, Turkey, 9–14 August 2009. [Google Scholar]
- Wang, C. Heat Transfer Investigations by Liquid Crystal Thermography in Gas Turbine Related Applications. Ph.D. Thesis, Lund University, Lund, Sweden, 2014. [Google Scholar]
- Ekkad, S.V.; Singh, P. Liquid Crystal Thermography in Gas Turbine Heat Transfer: A Review on Measurement Techniques and Recent Investigations. Crystals 2021, 11, 1332. [Google Scholar] [CrossRef]
- Fey, U.; Engler, R.H.; Egami, Y.; Iijima, Y.; Asai, K.; Jansen, U.; Quest, J. Transition detection by temperature sensitive paint at cryogenic temperatures in the European Transonic Wind tunnel (ETW). In Proceedings of the 20th International Congress on Instrumentation in Aerospace Simulation Facilities, ICIASF ‘03, Göttingen, Germany, 25–29 August 2003; pp. 77–88. [Google Scholar]
- Morris, M.; Donovan, J. Application of pressure-and temperature-sensitive paints to high-speed flows. In Proceedings of the Fluid Dynamics Conference, Colorado, CO, USA, 20–23 June 1994; p. 2231. [Google Scholar]
- Liu, T.; Campbell, B.T.; Burns, S.P.; Sullivan, J.P. Temperature-and pressure-sensitive luminescent paints in aerodynamics. Appl. Mech. Rev. 1997, 50, 227–246. [Google Scholar] [CrossRef]
- Liu, T.; Sullivan, J.P.; Asai, K.; Klein, C.; Egami, Y. Pressure and Temperature Sensitive Paints; Springer: Berlin/Heidelberg, Germany, 2005; Volume 1. [Google Scholar]
- Navarra, K.R.; Rabe, D.C.; Fonov, S.D.; Goss, L.P.; Hah, C. The application of pressure-and temperature-sensitive paints to an advanced compressor. J. Turbomach. 2001, 123, 823–829. [Google Scholar] [CrossRef]
- Lempereur, C.; Andral, R.; Prudhomme, J. Surface temperature measurement on engine components by means of irreversible thermal coatings. Meas. Sci. Technol. 2008, 19, 105501. [Google Scholar] [CrossRef]
- Arulprakasajothi, M.; Rupesh, P.L. Surface temperature measurement of gas turbine combustor using temperature-indicating paint. Int. J. Ambient Energy 2022, 43, 2324–2327. [Google Scholar] [CrossRef]
- Yang, L.; Zhimin, L. The research of temperature indicating paints and its application in aero-engine temperature measurement. Procedia Eng. 2015, 99, 1152–1157. [Google Scholar] [CrossRef]
- Pilgrim, C.; González, A.Y.; Krewinkel, R.; Blaswich, M.; Feist, J.; Orth, U.; Rabs, M.; Frank, D.; Rodriguez, S. Surface temperature measurements in an industrial gas turbine using thermal history paints. In Proceedings of the 12th European Conference on Turbomachinery Fluid dynamics and Thermodynamics, Stockholm, Sweden, 3–7 April 2017. [Google Scholar]
- Rupesh, P. Thermal distribution on gas turbine blade using thermal paint. In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 101–113. [Google Scholar]
- Saunders, G.; Yen, J. A3 subscale rocket hot fire testing. In Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, CO, USA, 2–5 August 2009; p. 5099. [Google Scholar]
- Neely, A.; Choudhury, R.; Riesen, H.; Paukner, D.; Odam, J. Measurement of aerothermal heating on HIFiRE-0. In Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, CA, USA, 11–14 April 2011; p. 2356. [Google Scholar]
- Rupesh, P.; Arul Prakasajothi, M.; Chandrasekhar, U.; Mycherla, R.; Bhanu Teja, M. Study on temperature indicating paint for surface temperature measurement—A review. In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018); Springer: Singapore, 2019; pp. 223–231. [Google Scholar]
- Fletcher, T.H. Time-resolved temperature measurements of individual coal particles during devolatilization. Combust. Sci. Technol. 1989, 63, 89–105. [Google Scholar] [CrossRef]
- He, Y.; Qiu, K.; Whiddon, R.; Wang, Z.; Zhu, Y.; Liu, Y.; Li, Z.; Cen, K. Release characteristic of different classes of sodium during combustion of Zhun-Dong coal investigated by laser-induced breakdown spectroscopy. Sci. Bull. 2015, 60, 1927–1934. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; He, Y.; Wang, Z.; Wan, K.; Xia, J.; Liu, J.; Cen, K. Multi-point LIBS measurement and kinetics modeling of sodium release from a burning Zhundong coal particle. Combust. Flame 2018, 189, 77–86. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Whiddon, R.; Wan, K.; He, Y.; Xia, J.; Cen, K. Measurement of atomic sodium release during pyrolysis and combustion of sodium-enriched Zhundong coal pellet. Combust. Flame 2017, 176, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Ip, L.-T.; Mackrory, A.; Werrett, L.; Scott, J.; Tree, D.; Baxter, L. Particle surface temperature measurements with multicolor band pyrometry. AIChE J. 2009, 55, 243–255. [Google Scholar] [CrossRef]
- Weng, W.; Li, S.; Costa, M.; Li, Z. Quantitative imaging of potassium release from single burning pulverized biomass char particles. Fuel 2020, 264, 116866. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Q.; Alwahabi, Z.T.; Yao, Q.; Nathan, G.J. Temporal release of potassium from pinewood particles during combustion. Combust. Flame 2015, 162, 496–505. [Google Scholar] [CrossRef]
- McLean, W.; Hardesty, D.; Pohl, J. Direct observations of devolatilizing pulverized coal particles in a combustion environment. Proc. Symp. (Int.) Combust. 1981, 18, 1239–1248. [Google Scholar] [CrossRef]
- Cai, T.; Khodsiani, M.; Hallak, B.; Abram, C.; Beyrau, F.; Specht, E. Phosphor thermometry at the surface of single reacting large-diameter spherical coke particles to characterise combustion for packed bed furnaces. Proc. Combust. Inst. 2021, 38, 4225–4232. [Google Scholar] [CrossRef]
- Weng, W.; Feuk, H.; Li, S.; Richter, M.; Aldén, M.; Li, Z. Temporal temperature measurement on burning biomass pellets using phosphor thermometry and two-line atomic fluorescence. Proc. Combust. Inst. 2021, 38, 3929–3938. [Google Scholar] [CrossRef]
- McGaughey, A.; Ward, C. Temperature discontinuity at the surface of an evaporating droplet. J. Appl. Phys. 2002, 91, 6406–6415. [Google Scholar] [CrossRef]
- Israel, F.; Taylor, A.; Whitelaw, J. Simultaneous measurement of droplet velocity and size and flame mantle temperature by phase Doppler anemometry and two-colour pyrometry. Meas. Sci. Technol. 1995, 6, 727. [Google Scholar] [CrossRef]
- Omrane, A.; Juhlin, G.; Ossler, F.; Alden, M. Temperature measurements of single droplets by use of laser-induced phosphorescence. Appl. Opt. 2004, 43, 3523–3529. [Google Scholar] [CrossRef]
- Kincaid, D.C.; Longley, T.S. A water droplet evaporation and temperature model. Trans. ASAE 1989, 32, 457–463. [Google Scholar]
- Sharman, K.K.; Periasamy, A.; Ashworth, H.; Demas, J.N. Error Analysis of the Rapid Lifetime Determination Method for Double-Exponential Decays and New Windowing Schemes. Anal. Chem. 1999, 71, 947–952. [Google Scholar] [CrossRef]
- Winter, M.; Melton, L.A. Measurement of internal circulation in droplets using laser-induced fluorescence. Appl. Opt. 1990, 29, 4574–4577. [Google Scholar] [CrossRef]
- Strizhak, P.; Volkov, R.; Antonov, D.; Castanet, G.; Sazhin, S.S.; Transfer, M. Application of the laser induced phosphorescence method to the analysis of temperature distribution in heated and evaporating droplets. Int. J. Heat Mass Transf. 2020, 163, 120421. [Google Scholar] [CrossRef]
- Volkov, R.S.; Voytkov, I.S.; Strizhak, P.A.J.A.S. Temperature fields of the droplets and gases mixture. Appl. Sci. 2020, 10, 2212. [Google Scholar] [CrossRef] [Green Version]
- Khomutov, N.; Misyura, S.; Piskunov, M.; Semyonova, A.; Strizhak, P.; Volkov, R.J.E.T.; Science, F. Convective heat transfer in droplets of fuel microemulsions during conductive heating. Exp. Therm. Fluid Sci. 2021, 120, 110258. [Google Scholar] [CrossRef]
- Armfield, J.S.; Graves, R.; Beshears, D.; Cates, M.R.; Smith, T.; Allison, S. Phosphor thermometry for internal combustion engines. SAE Tech. Pap. 1997, 971642, 55–59. [Google Scholar]
- Omrane, A.; Juhlin, G.; Aldén, M.; Josefsson, G.; Engström, J.; Benham, T. Demonstration of two-dimensional temperature characterization of valves and transparent piston in a GDI optical engine. SAE Tech. Pap. 2004, 2004-01-0609, 449–457. [Google Scholar]
- Husberg, T.; Gjirja, S.; Denbratt, I.; Omrane, A.; Aldén, M.; Engström, J. Piston temperature measurement by use of thermographic phosphors and thermocouples in a heavy-duty diesel engine run under partly premixed conditions. SAE Tech. Pap. 2005, 2005-01-1646. [Google Scholar]
- Särner, G.; Richter, M.; Aldén, M.; Vressner, A.; Johansson, B. Cycle resolved wall temperature measurements using laser-induced phosphorescence in an HCCI engine. SAE Tech. Pap. 2005, 2005-01-3870, 1–7. [Google Scholar]
- Knappe, C.; Algotsson, M.; Andersson, P.; Richter, M.; Tunér, M.; Johansson, B.; Aldén, M.J.C. Thickness dependent variations in surface phosphor thermometry during transient combustion in an HCCI engine. Combust. Flame 2013, 160, 1466–1475. [Google Scholar] [CrossRef]
- Abou Nada, F.; Alden, M.; Richter, M. Investigation of the effect of engine lubricant oil on remote temperature sensing using thermographic phosphors. J. Lumin. 2016, 179, 568–573. [Google Scholar] [CrossRef]
- Fond, B.; Abram, C.; Heyes, A.L.; Kempf, A.M.; Beyrau, F. Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles. Opt. Express 2012, 20, 22118–22133. [Google Scholar] [CrossRef] [PubMed]
- Kopf, A.; Frattina, V.; Bardi, M.; Endres, T.; Bruneaux, G.; Schulz, C. In-cylinder thermographic PIV combined with phosphor thermometry using ZnO:Zn. Int. J. Engine Res. 2021. [Google Scholar] [CrossRef]
- Neal, N.J.; Jordan, J.; Rothamer, D. Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors. SAE Int. J. Engines 2013, 6, 300–318. [Google Scholar] [CrossRef]
- Liebert, C.H.; Mazaris, G.A.; Brandhorst, H.W. Turbine Blade Metal Temperature Measurement with a Sputtered Thin Film Chromel-Alumel Thermocouple. NASA Tech. Memo. 1975, No. E-8569, 1–13. [Google Scholar]
- Bird, C.; Parrish, C.J. Component temperature measuring method. US Patent No. 7003425, 2006. [Google Scholar]
- Wang, C.; Gou, X.; Duan, Y.; Hu, J. A review of aero-engine turbine blade temperature measurement. J. Infrared Millim. Waves 2018, 37, 501–512. [Google Scholar]
- Xiong, B.; Hou, M.; Chen, H.; Xu, F. Application of Infrared Thermometer in Turbine Blade Temperature Field. Gas Turbine Exp. Res. 2008, 21, 50–54. (In Chinese) [Google Scholar]
- Noel, B.W.; Borella, H.M.; Franks, L.A.; Marshall, B.R.; Allison, S.W.; Cates, M.R.; Stange, W.A. Proposed laser-induced fluorescence method for remote thermometry inturbine engines. J. Propuls. Power 1986, 2, 565–568. [Google Scholar] [CrossRef]
- Noel, B.W.; Allison, S.W.; Beshears, D.L.; Cates, M.R.; Borella, H.M. Evaluating and testing thermographic phosphors for turbine-engine temperature measurements. In Proceedings of the 23rd Joint Propulsion Conference, San Diego, CA, USA, 29 June–2 July 1987; p. 1761. [Google Scholar]
- Noel, B.W.; Bibby, M.C.; Borella, H.M.; Woodruff, S.E.; Hudson, C.L. Environmental tests of thermographic phosphors for turbine-engine temperature measurements. In Proceedings of the 25th Joint Propulsion Conference, Monterey, CA, USA, 12–16 July 1989; p. 2913. [Google Scholar]
- Noel, B.W.; Turley, W.D.; Allison, S.W. Thermographic-Phosphor Temperature Measurements: Commercial and Defense-Related Applications; EG and G Energy Measurements, Inc.: Goleta, CA, USA, 1994. [Google Scholar]
- Noel, B.W.; Borella, H.M.; Lewis, W.; Turley, W.D.; Beshears, D.L.; Capps, G.J.; Cates, M.R.; Muhs, J.D.; Tobin, K.W. Evaluating Thermographic Phosphors in an Operating Turbine Engine. J. Eng. Gas Turbine Power 1991, 113, 242–245. [Google Scholar] [CrossRef]
- Tobin, K.W.; Allison, S.W.; Gates, M.R.; Capps, G.J.; Beshears, D.L.; Cyr, M.; Noel, B.W. High-temperature phosphor thermometry of rotating turbine blades. AIAA J. 1990, 28, 1485–1490. [Google Scholar] [CrossRef]
- Tobin, K.W. Fiber-sensor design for turbine engines. In Proceedings of the Fiber Optic and Laser Sensors IX, Boston, MA, USA, 3–5 September 1991; p. 23. [Google Scholar]
- Alaruri, S.D.; Brewington, A.J.; Thomas, M.A.; Miller, J.A. High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y2O3:Eu and YAG: Tb thermographic phosphors. IEEE Trans. Instrum. Meas. 1993, 42, 735–739. [Google Scholar] [CrossRef]
- Alaruri, S.; McFarland, D.; Brewington, A.; Thomas, M.; Sallee, N. Development of a fiber-optic probe for thermographic phosphor measurements in turbine engines. Opt. Lasers Eng. 1995, 22, 17–31. [Google Scholar] [CrossRef]
- Seyfried, H.; Sarner, G.; Omrane, A.; Richter, M.; Schmidt, H.; Alden, M. Optical diagnostics for characterization of a full-size fighter-jet afterburner. In Proceedings of the 50th ASME Turbo-Expo, Reno, NV, USA, 6–9 June 2005; pp. 813–819. [Google Scholar]
- Choy, K.; Feist, J.; Heyes, A.J.U.P.N. Smart Thermal Barrier Coatings for Gas Turbines. UK Patent No, 9823749, 1998. [Google Scholar]
- Choy, K.; Heyes, A.L.; Feist, J.P. Thermal barrier coating with thermoluminescent indicator material embedded therein. US Patent No, 8173266, 2012. [Google Scholar]
- Yang, L.; Fu, Y.; Zhao, X. Research progress of on-line/off-line phosphor thermometry technology for thermal barrier coatings. Aeronaut. Manuf. Technol. 2022, 65, 71–81. (In Chinese) [Google Scholar]
- Feist, J.; Heyes, A. Photo-Stimulated Phosphorescence for Thermal Condition Monitoring and Nondestructive Evaluation in Thermal Barrier Coatings. Heat Transf. Eng. 2009, 30, 1087–1095. [Google Scholar] [CrossRef]
- Feist, J.; Sollazzo, P.; Berthier, S.; Charnley, B.; Wells, J. Application of an Industrial Sensor Coating System on a Rolls-Royce Jet Engine for Temperature Detection. J. Eng. Gas Turbine Power 2013, 135. [Google Scholar] [CrossRef]
- Sollazzo, P.; Feist, J.; Berthier, S.; Charnley, B.; Wells, J.; Heyes, A. Application of a production line phosphorescence sensor coating system on a jet engine for surface temperature detection. AIP Conf. Proc. 2013, 1552, 897–902. [Google Scholar]
- Eldridge, J.I. Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance. In Proceedings of the 37th International Conference on Advanced Ceramics and Composites, Daytona Beach, FL, USA, 27 January–1 February 2013. [Google Scholar]
- Eldridge, J.I.; Shyam, V.; Wroblewski, A.C.; Zhu, D.; Cuy, M.D.; Wolfe, D.E. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography. In Proceedings of the International Conference and Expo on Advanced Ceramics and Composites, Daytona Beach, FL, USA, 24–29 January 2016. [Google Scholar]
Type | Material (Positive/Negative) | Measurement Range (°C) | Sensitivity (µV/°C) |
---|---|---|---|
E | Ni-Cr alloy/Cu-Ni alloy | −270–1000 | 40–80 |
J | Fe/Cu-Ni alloy | −210–1200 | 50–60 |
K | Ni-Cr alloy/Ni-Al alloy | −270–1372 | 28–42 |
N | Ni-Cr-Si alloy/Ni-Si-Mg alloy | −270–1300 | 24–38 |
B | Pt-30% Rh/Pt-6% Rh | 0–1820 | 5–10 |
R | Pt-13% Rh/Pt | −50–1768 | 8–14 |
S | Pt-10% Rh/Pt | −50–1768 | 8–12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Huang, Y.; He, Y.; Zhu, Y.; Wang, Z. Review of Development and Comparison of Surface Thermometry Methods in Combustion Environments: Principles, Current State of the Art, and Applications. Processes 2022, 10, 2528. https://doi.org/10.3390/pr10122528
Liu S, Huang Y, He Y, Zhu Y, Wang Z. Review of Development and Comparison of Surface Thermometry Methods in Combustion Environments: Principles, Current State of the Art, and Applications. Processes. 2022; 10(12):2528. https://doi.org/10.3390/pr10122528
Chicago/Turabian StyleLiu, Siyu, Yu Huang, Yong He, Yanqun Zhu, and Zhihua Wang. 2022. "Review of Development and Comparison of Surface Thermometry Methods in Combustion Environments: Principles, Current State of the Art, and Applications" Processes 10, no. 12: 2528. https://doi.org/10.3390/pr10122528
APA StyleLiu, S., Huang, Y., He, Y., Zhu, Y., & Wang, Z. (2022). Review of Development and Comparison of Surface Thermometry Methods in Combustion Environments: Principles, Current State of the Art, and Applications. Processes, 10(12), 2528. https://doi.org/10.3390/pr10122528