Study on the Grayscale Characteristics of Borehole Images of Progressive Failure of Coal Bodies with Different Moisture Contents
Abstract
:1. Introduction
2. Theoretical and Calculation Method
2.1. Progressive Failure Phase Division Characteristic Stress
2.2. Grayscale Images and Characteristics of the Progressive Failure Process
3. Experiments
3.1. Specimen Preparation
3.2. Test Process
4. Progressive Failure Phase Grayscale Analysis
4.1. Progressive Failure Stage Division
4.2. Grayscale Image of Progressive Failure Cracks
4.3. Progressively Corrupted Image Grayscale Histogram
4.4. Progressive Failure Grayscale Characteristic Parameters
5. Conclusions
6. Declarations
Author Contributions
Funding
Conflicts of Interest
References
- Li, D.X.; Wang, E.Y.; Yue, J.H.; Zhang, X.; Wang, D.M.; Ju, Y.Q. A weak current technique for coal and rock dynamic disaster prediction and its application. Chin. J. Rock Mech. Eng. 2022, 41, 764–774. [Google Scholar]
- Qi, Q.X.; Pan, Y.S.; Li, H.T.; Jiang, D.Y.; Shu, L.Y. Theoretical basis and key technology of prevention and control of coal-rock dynamic disasters in deep coal mining. J. China Coal Soc. 2020, 45, 1567–1584. [Google Scholar]
- Pan, H.Y.; Li, J.W.; Zhang, T.J.; Li, S.G.; Zhang, L. Study on crack propagation of the CO2 presplitting blasting empty hole effect in coal seam. Energy Sci. Eng. 2020, 8, 3898–3908. [Google Scholar] [CrossRef]
- Pang, M.K.; Zhang, T.J.; Ji, X.; Wu, J.Y.; Song, S. Measurement of the coefficient of seepage characteristics in pore-crushed coal bodies around gas extraction boreholes. Energy 2022, 254, 124276. [Google Scholar] [CrossRef]
- Jalili, Y.; Yassaghi, A.; Khatib, M.M.; Golalzadeh, A. Effect of transverse faults on fracture characteristics and borehole instability in the Asmari reservoir of Zagros folded belt zone, Iran. J. Pet. Sci. Eng. 2020, 188, 106820. [Google Scholar] [CrossRef]
- Niu, Y.; Song, X.; Li, Z.; Wang, E.; Liu, Q.; Zhang, X.; Cai, G.; Zhang, Q. Experimental study and field verification of stability monitoring of gas drainage borehole in mining coal seam. J. Pet. Sci. Eng. 2020, 189, 106985. [Google Scholar] [CrossRef]
- Shi, Z.S.; Liang, B.; Wang, Y.; Qin, B. Deformation characteristics of gas drainage borehole in loading and unloading. J. China Coal Soc. 2017, 42, 1458–1465. [Google Scholar]
- Zhang, X.-B.; Shen, S.-S.; Feng, X.-J.; Ming, Y.; Liu, J.-J. Influence of Deformation and instability of borehole on gas extraction in deep mining soft coal seam. Adv. Civ. Eng. 2021, 2021, 6689277. [Google Scholar] [CrossRef]
- Hoek, E.; Bieniawski, Z.T. Brittle fracture propagation in rock under compression. Int. J. Fract. 1965, 1, 137–155. [Google Scholar] [CrossRef]
- Li, C.; Xie, H.; Wang, J. Anisotropic characteristics of crack initiation and crack damage thresholds for shale. Int. J. Rock Mech. Min. Sci. 2020, 126, 104178. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Stimpson, B.; Read, R.S. Identifying crack initiation and propagation thresholds in brittle rock. Can. Geotech. J. 1998, 35, 222–233. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.H.; Hu, Y.Z.; Zhou, X.L. A new method to evaluate the brittleness for brittle rock using crack initiation stress level from uniaxial stress-strain curves. Environ. Earth Sci. 2017, 76, 799. [Google Scholar] [CrossRef]
- Kong, R.; Feng, X.T.; Zhang, X.W.; Yang, C.X. Study on crack initiation and damage stress in sandstone under true triaxial compression. Int. J. Rock Mech. Min. Sci. 2018, 106, 117–123. [Google Scholar] [CrossRef]
- Chen, T.; Yao, Q.-L.; Wei, F.; Chong, Z.-H.; Zhou, J.; Wang, C.-B.; Li, J. Effects of water intrusion and loading rate on mechanical properties of and crack propagation in coal–rock combinations. J. Cent. South Univ. 2017, 24, 423–431. [Google Scholar] [CrossRef]
- Liu, N.; Li, C.; Feng, R.; Xia, X.; Gao, X. Experimental study of the influence of moisture content on the mechanical properties and energy storage characteristics of coal. Geofluids 2021, 2021, 6838092. [Google Scholar] [CrossRef]
- Li, M.; Lin, G.; Zhou, W.; Mao, X.; Zhang, L.; Mao, R. Experimental study on dynamic tensile failure of sandstone specimens with different water contents. Shock Vib. 2019, 2019, 7012752. [Google Scholar] [CrossRef]
- Li, T.; Liu, J.; Ding, Y.; Kong, T.; Zhang, G.; Zhang, N.; Li, G. Effects of moisture and compactness on uniaxial dynamic compression of sandy soil under high strain rates. Transp. Geotech. 2022, 34, 100757. [Google Scholar] [CrossRef]
- Wang, H.D.; Tao, Y.; Wang, D.Y.; Sun, X.; Gao, J.H. Experimental study on mechanical properties of briquette coal samples with different moisture content. Geofluids 2021, 2021, 6634678. [Google Scholar]
- Yao, Q.; Chen, T.; Tang, C.; Sedighi, M.; Wang, S.; Huang, Q. Influence of moisture on crack propagation in coal and its failure modes. Eng. Geol. 2019, 258, 105156. [Google Scholar] [CrossRef]
- Wang, K.; Pan, H.; Zhang, T.; Wang, H. Experimental study on the radial vibration characteristics of a coal briquette in each stage of its life cycle under the action of CO2 gas explosion. Fuel 2022, 320, 123922. [Google Scholar] [CrossRef]
- Shen, R.X.; Li, H.R.; Wang, E.Y.; Chen, T.Q.; Li, T.X.; Tian, H.; Hou, Z.H. Infrared radiation characteristics and fracture precursor information extraction of loaded sandstone samples with varying moisture contents. Int. J. Rock Mech. Min. Sci. 2020, 130, 104344. [Google Scholar] [CrossRef]
- Kou, M.; Liu, X.; Tang, S.; Wang, Y. 3-D X-ray computed tomography on failure characteristics of rock-like materials under coupled hydro-mechanical loading. Theor. Appl. Fract. Mec. 2019, 104, 102396. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Li, S.; Liu, J.; Pan, H.; Song, S. Stress Inversion of Coal with a Gas Drilling Borehole and the Law of Crack Propagation. Energies 2017, 10, 1743. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhang, K. Gray and texture features of strain field for fractured sandstone during failure process. J. China Coal Soc. 2021, 46, 1253–1262. [Google Scholar]
- Huang, Z.H.; Deng, S.C.; Li, H.B.; Yu, C.; Zuo, H. Evolution of the characteristic variables of plate specimens with prefabricated cracks under tension loads. Chin. J. Rock Mech. Eng. 2019, 38, 527–541. [Google Scholar]
- Tan, T.C.; Ritter, L.J.; Whitty, A.; Fernandez, R.C.; Moran, L.J.; Robertson, S.A.; Thompson, J.G.; Brown, H.M. Gray level Co-occurrence Matrices (GLCM) to assess microstructural and textural changes in pre-implantation embryos. Mol. Reprod. Dev. 2016, 83, 701–713. [Google Scholar] [CrossRef]
- Sun, C.; Cao, S.; Li, Y. Mesomechanics coal experiment and an elastic-brittle damage model based on texture features. Int. J. Min. Sci. Technol. 2018, 28, 639–647. [Google Scholar] [CrossRef]
- Blaber, J.; Adair, B.S.; Antoniou, A. Ncorr: Open-source 2D digital image correlation Matlab software. Exp. Mech. 2015, 55, 1105–1122. [Google Scholar] [CrossRef]
- Miao, S.; Pan, P.-Z.; Wu, Z.; Li, S.; Zhao, S. Fracture analysis of sandstone with a single filled flaw under uniaxial compression. Eng. Fract. Mech. 2018, 204, 319–343. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Stimpson, B. Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int. J. Rock Mech. Min. Sci. 1999, 36, 361–380. [Google Scholar] [CrossRef]
- Li, Y.J.; Huang, X.C.; Qiu, Y.P.; Chen, X. Meso-mechanical testing study of micro-fracturing process property of gypsum breccia under condition of water damage. Rock Soil Mech. 2009, 30, 1221–1225. [Google Scholar]
- Zhang, T.J.; Ji, X.; Zhang, L.; Pang, H.K. Experimental study on evolution of circumferential crack and equivalent crack width of gas drilling borehole. Chin. J. Rock Mech. Eng. 2019, 38 (Suppl. S2), 3625–3633. [Google Scholar]
- Martin, C.D.; Chandler, N.A. Progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. 1994, 31, 643–659. [Google Scholar] [CrossRef]
- Wang, J.C.; Li, L.H.; Yang, S.L. Experimental study on gray and texture features extraction of coal and gangue image under different illuminance. J. China Coal Soc. 2018, 43, 105–115. [Google Scholar]
- Wang, G.; Qin, X.; Shen, J.; Zhang, Z.; Han, D.; Jiang, C. Quantitative analysis of microscopic structure and gas seepage characteristics of low-rank coal based on CT three-dimensional reconstruction of CT images and fractal theory. Fuel 2019, 256, 115900. [Google Scholar] [CrossRef]
- Zhao, B.; Wen, G.; Sun, H.; Sun, D.; Yang, H.; Cao, J.; Dai, L.; Wang, B. Similarity criteria and coal like material in coal and gas outburst physical simulation. Int. J. Coal Sci. Technol. 2018, 5, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Fan, T.-C.; Zhou, C.-B.; Jiang, N.; Wu, T.-Y. Optimizing process of preparing artificial-similar material for rocky slope with uniform formula design. J. Cent. South Univ. 2018, 25, 2871–2882. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, Z.C.; Zhao, Y.S. Effects of liquid water on coalbed methane adsorption characteristics based on the adsorption kinetic theory. J. China Coal Soc. 2014, 39, 518–523. [Google Scholar]
- Pan, Z.; Connell, L.D.; Camilleri, M.; Connelly, L. Effects of matrix moisture on gas diffusion and flow in coal. Fuel 2010, 89, 3207–3217. [Google Scholar] [CrossRef]
- Zhang, G.K.; Li, H.B.; Wang, M.Y.; Li, X.F. Study on characteristics of failure strength and crack propagation of granite rocks containing a single fissure. Chin. J. Rock Mech. Eng. 2019, 38 (Suppl. S1), 2760–2771. [Google Scholar]
- Sun, Q.; Cai, C.; Zhang, S.; Tian, S.; Li, B.; Xia, Y.; Sun, Q. Study of localized deformation in geopolymer cemented coal gangue-fly ash backfill based on the digital speckle correlation method. Constr. Build. Mater. 2019, 215, 321–331. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Deng, J.; Su, C.; Gao, Z. Analysis of Factors Influencing Miners’ Unsafe Behaviors in Intelligent Mines using a Novel Hybrid MCDM Model. Int. J. Environ. Res. Public Health 2022, 19, 7368. [Google Scholar] [CrossRef] [PubMed]
Specimen | σee/MPa | σci/MPa | σcd/MPa | σf/MPa | σee/σf | σci/σf | σcd/σf |
---|---|---|---|---|---|---|---|
HS-0% | 2.70 | 5.34 | 8.79 | 12.93 | 0.209 | 0.413 | 0.680 |
HS-20% | 2.49 | 4.87 | 7.96 | 12.27 | 0.203 | 0.397 | 0.649 |
HS-40% | 2.07 | 4.22 | 6.42 | 10.68 | 0.194 | 0.395 | 0.601 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Ji, B.; Ji, X.; Zhang, L.; Wang, K.; Wang, H.; Zhang, T. Study on the Grayscale Characteristics of Borehole Images of Progressive Failure of Coal Bodies with Different Moisture Contents. Processes 2022, 10, 2499. https://doi.org/10.3390/pr10122499
Pan H, Ji B, Ji X, Zhang L, Wang K, Wang H, Zhang T. Study on the Grayscale Characteristics of Borehole Images of Progressive Failure of Coal Bodies with Different Moisture Contents. Processes. 2022; 10(12):2499. https://doi.org/10.3390/pr10122499
Chicago/Turabian StylePan, Hongyu, Bing Ji, Xiang Ji, Lei Zhang, Kang Wang, Haotian Wang, and Tianjun Zhang. 2022. "Study on the Grayscale Characteristics of Borehole Images of Progressive Failure of Coal Bodies with Different Moisture Contents" Processes 10, no. 12: 2499. https://doi.org/10.3390/pr10122499
APA StylePan, H., Ji, B., Ji, X., Zhang, L., Wang, K., Wang, H., & Zhang, T. (2022). Study on the Grayscale Characteristics of Borehole Images of Progressive Failure of Coal Bodies with Different Moisture Contents. Processes, 10(12), 2499. https://doi.org/10.3390/pr10122499