Chromium Distribution, Leachability and Speciation in a Chrome Plating Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sample Pretreatment
2.3. Soil Characterization
2.4. Chemical Fraction and Speciation Analyses of Cr
2.5. Quality Assurance (QA) and Quality Control (QC)
2.6. Statistical Analysis and Calculation
3. Results and Discussion
3.1. Total Concentration and Oxidation State of Chromium in Soils
Sampling Points | S1 | S2 | S3 | S4 | S5 | S6 | S1 | S2 | S3 | S4 | S5 | S6 | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Cr (mg/kg) | Cr(VI) (mg/kg) | ||||||||||||
Mean | 18.0 | 98.4 | 4081.2 | 19.2 | 523.0 | 20.9 | 0.3 | 29.5 | 763.7 | 0.3 | 38.5 | 0.7 | (In this study) |
Median | 12.9 | 87.4 | 3855.9 | 15.0 | 114.5 | 21.1 | 0.1 | 25.0 | 356.6 | 0.3 | 20.9 | 0.2 | |
Min | 7.2 | 42.1 | 33.4 | 8.2 | 42.2 | ND | ND | 5.2 | 32.4 | ND | 6.5 | ND | |
Max | 33.6 | 164.1 | 7735.2 | 39.5 | 3178.2 | 26.9 | 1.1 | 80.1 | 2298.2 | 1.0 | 163.5 | 2.0 | |
StDev 1 | 10.1 | 42.8 | 3100.6 | 13.2 | 980.4 | 4.1 | 0.5 | 23.9 | 880.9 | 0.3 | 49.0 | 0.8 | |
OSR (%) 2 | - | 80.0 | 80.0 | 10.0 | 70.0 | - | - | 50.0 | 100.0 | - | 30.0 | - | |
BVSC 3 | 61.0 | - | [46] | ||||||||||
SRSD 4 | - | 30.0 | [48] |
3.2. Spatial and Vertical Distribution Characteristics of Chromium in Soils
3.3. Leachability Characteristics and Mobility of Chromium in Soils
3.4. Speciation Characteristics of Chromium in Soils
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, A.; Kapoor, D.; Wang, J.; Shahzad, B.; Kumar, V.; Bali, A.S.; Jasrotia, S.; Zheng, B.; Yuan, H.; Yan, D. Chromium Bioaccumulation and Its Impacts on Plants: An Overview. Plants 2020, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Dhal, B.; Thatoi, H.; Das, N.; Pandey, B. Chemical and Microbial Remediation of Hexavalent Chromium from Contaminated Soil and Mining/Metallurgical Solid Waste: A Review. J. Hazard. Mater. 2013, 250–251, 272–291. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Tsou, M.-C.; Liao, H.-T.; Hseu, Z.-Y.; Dang, W.; Hsi, H.-C.; Chien, L.-C. Influence of Soil Properties on the Bioaccessibility of Cr and Ni in Geologic Serpentine and Anthropogenically Contaminated Non-Serpentine Soils in Taiwan. Sci. Total Environ. 2020, 714, 136761. [Google Scholar] [CrossRef]
- Nguyen, Q.A.; Kim, B.; Chung, H.Y.; Nguyen, A.Q.K.; Kim, J.; Kim, K. Reductive Transformation of Hexavalent Chromium by Ferrous Ions in a Frozen Environment: Mechanism, Kinetics, and Environmental Implications. Ecotoxicol. Environ. Saf. 2021, 208, 111735. [Google Scholar] [CrossRef]
- Wang, D.; Li, G.; Qin, S.; Tao, W.; Gong, S.; Wang, J. Remediation of Cr(VI)-Contaminated Soil Using Combined Chemical Leaching and Reduction Techniques Based on Hexavalent Chromium Speciation. Ecotoxicol. Environ. Saf. 2021, 208, 111734. [Google Scholar] [CrossRef]
- Xu, T.; Nan, F.; Jiang, X.; Tang, Y.; Zeng, Y.; Zhang, W.; Shi, B. Effect of Soil pH on the Transport, Fractionation, and Oxidation of Chromium(III). Ecotoxicol. Environ. Saf. 2020, 195, 110459. [Google Scholar] [CrossRef]
- Jiang, W.; Cai, Q.; Xu, W.; Yang, M.; Cai, Y.; Dionysiou, D.D.; O’Shea, K.E. Cr(VI) Adsorption and Reduction by Humic Acid Coated on Magnetite. Environ. Sci. Technol. 2014, 48, 8078–8085. [Google Scholar] [CrossRef]
- Zhang, X.; Gai, X.; Zhong, Z.; Bian, F.; Yang, C.; Li, Y.; Wen, X. Understanding Variations in Soil Properties and Microbial Communities in Bamboo Plantation Soils along a Chromium Pollution Gradient. Ecotoxicol. Environ. Saf. 2021, 222, 112507. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, V.; Mahey, S.; Bhardwaj, R.; Thukral, A.K. Antagonistic Effects of EDTA Against Biochemical Toxicity Induced by Cr(VI) in Hordeum Vulgare, L. Seedlings. Physiol. Mol. Biol. Plants 2020, 26, 2487–2502. [Google Scholar] [CrossRef]
- Zhu, F.; Liu, T.; Zhang, Z.; Liang, W. Remediation of Hexavalent Chromium in Column by Green Synthesized Nanoscale Zero-Valent Iron/Nickel: Factors, Migration Model and Numerical Simulation. Ecotoxicol. Environ. Saf. 2021, 207, 111572. [Google Scholar] [CrossRef]
- Qin, J.; Li, Q.; Liu, Y.; Niu, A.; Lin, C. Biochar-Driven Reduction of As(V) and Cr(VI): Effects of Pyrolysis Temperature and Low-Molecular-Weight Organic Acids. Ecotoxicol. Environ. Saf. 2020, 201, 110873. [Google Scholar] [CrossRef]
- Atlanta, G.A. Agency for Toxic Substances and Disease Registry. Asian Am. Pac. Isl. J. Health 1997, 6–10. [Google Scholar]
- Sukumar, C.; Janaki, V.; Kamala-Kannan, S.; Shanthi, K. Biosorption of Chromium(VI) Using Bacillus Subtilis SS-1 Isolated from Soil Samples of Electroplating Industry. Clean Technol. Environ. Policy 2013, 16, 405–413. [Google Scholar] [CrossRef]
- Zhao, L.; Ding, Z.; Sima, J.; Xu, X.; Cao, X. Development of Phosphate Rock Integrated with Iron Amendment for Simultaneous Immobilization of Zn and Cr(VI) in an Electroplating Contaminated Soil. Chemosphere 2017, 182, 15–21. [Google Scholar] [CrossRef]
- Dong, X.; Li, C.; Li, J.; Wang, J.; Huang, W. A Game-Theoretic Analysis of Implementation of Cleaner Production Policies in the Chinese Electroplating Industry. Resour. Conserv. Recycl. 2010, 54, 1442–1448. [Google Scholar] [CrossRef]
- Xiao, L.; Guan, D.; Chen, Y.; Dai, J.; Ding, W.; Peart, M.R.; Zhang, C. Distribution and Availability of Heavy Metals in Soils near Electroplating Factories. Environ. Sci. Pollut. Res. 2019, 26, 22596–22610. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Qin, F.; Ming, Y.; Zhao, H.; Liu, Y.; Chen, R. Fabrication Uniform Hollow Bi2S3 Nanospheres Via Kirkendall Effect for Photocatalytic Reduction of Cr(VI) in Electroplating Industry Wastewater. J. Hazard. Mater. 2017, 340, 253–262. [Google Scholar] [CrossRef]
- Sainger, P.A.; Dhankhar, R.; Sainger, M.; Kaushik, A.; Singh, R.P. Assessment of Heavy Metal Tolerance in Native Plant Species from Soils Contaminated with Electroplating Effluent. Ecotoxicol. Environ. Saf. 2011, 74, 2284–2291. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Teng, T.; Chang, T. Multivariate Analysis of Soil Heavy Metal Pollution and Landscape Pattern in Changhua County in Taiwan. Landsc. Urban Plan. 2002, 62, 19–35. [Google Scholar] [CrossRef]
- Yan, J.L.; Quan, G.X.; Ding, C. Speciation Analysis of Heavy Metals in Electroplating Sludge and the Effect of Composting. Adv. Mater. Res. 2011, 396–398, 1975–1979. [Google Scholar]
- Luo, Y.; Pang, J.; Li, C.; Sun, J.; Xu, Q.; Ye, J.; Wu, H.; Wan, Y.; Shi, J. Long-Term and High-Bioavailable Potentially Toxic Elements (PTEs) Strongly Influence the Microbiota in Electroplating Sites. Sci. Total Environ. 2021, 151933. [Google Scholar] [CrossRef]
- Choppala, G.; Bolan, N.; Lamb, D.; Kunhikrishnan, A. Comparative Sorption and Mobility of Cr(III) and Cr(VI) Species in a Range of Soils: Implications to Bioavailability. Water Air Soil Pollut. 2013, 224, 1–12. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Yan, X.; Meng, X.; Chen, Y. Processes of Chromium (VI) Migration and Transformation in Chromate Production Site: A Case Study from the Middle of China. Chemosphere 2020, 257, 127282. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhao, D.; Wang, Q. An Overview of Field-Scale Studies on Remediation of Soil Contaminated with Heavy Metals and Metalloids: Technical Progress over the Last Decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef]
- Hu, L.; Cai, Y.; Jiang, G. Occurrence and Speciation of Polymeric Chromium(III), Monomeric Chromium(III) and Chromium(VI) in Environmental Samples. Chemosphere 2016, 156, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium Speciation, Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System: A Review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef]
- Agnieszka, J.; Barbara, G. Chromium, Nickel and Vanadium Mobility in Soils Derived from Fluvioglacial Sands. J. Hazard. Mater. 2012, 237–238, 315–322. [Google Scholar] [CrossRef]
- Yang, L.; Liu, G.; Di, L.; Wu, X.; You, W.; Huang, B. Occurrence, Speciation, and Risks of Trace Metals in Soils of Greenhouse Vegetable Production from the Vicinity of Industrial Areas in the Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2019, 26, 8696–8708. [Google Scholar] [CrossRef]
- Lilli, M.A.; Nikolaidis, N.P.; Karatzas, G.P.; Kalogerakis, N. Identifying the Controlling Mechanism of Geogenic Origin Chromium Release in Soils. J. Hazard. Mater. 2019, 366, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, G.; Zhao, H.; Wu, D. Partitioning, Leachability, and Speciation of Chromium in the Size-Fractions of Soil Contaminated by Chromate Production. Chemosphere 2021, 263, 128308. [Google Scholar] [CrossRef]
- Fendorf, S.; Eick, M.J.; Grossl, P.; Sparks, D.L. Arsenate and Chromate Retention Mechanisms on Goethite. 1. Surface Structure. Environ. Sci. Technol. 1997, 31, 315–320. [Google Scholar] [CrossRef]
- Zachara, J.M.; Ainsworth, C.C.; Brown, G.E.; Catalano, J.; McKinley, J.P.; Qafoku, O.; Smith, S.C.; Szecsody, J.E.; Traina, S.J.; Warner, J.A. Chromium Speciation and Mobility in a High Level Nuclear Waste Vadose Zone Plume. Geochim. Cosmochim. Acta 2004, 68, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Gao, X.; Yang, F.; Lan, Y.; Mao, J.-D.; Zhou, L. Catalytic Role of Soils in the Transformation of Cr(VI) to Cr(III) in the Presence of Organic Acids Containing α-OH Groups. Geoderma 2010, 159, 270–275. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Tian, X.; Yang, Z.; Jiang, Y.; Zhao, F. Interactions between Iron Mineral-Humic Complexes and Hexavalent Chromium and the Corresponding Bio-Effects. Environ. Pollut. 2018, 241, 265–271. [Google Scholar] [CrossRef]
- Shi, J.; McGill, W.B.; Chen, N.; Rutherford, P.M.; Whitcombe, T.W.; Zhang, W. Formation and Immobilization of Cr(VI) Species in Long-Term Tannery Waste Contaminated Soils. Environ. Sci. Technol. 2020, 54, 7226–7235. [Google Scholar] [CrossRef] [PubMed]
- Szecsody, J.E.; Truex, M.J.; Qafoku, N.P.; McKinley, J.P.; Ivarson, K.A.; Di Pietro, S. Persistence of Chromate in Vadose Zone and Aquifer Sediments in Hanford, Washington. Sci. Total Environ. 2019, 676, 482–492. [Google Scholar] [CrossRef]
- Chrysochoou, M.; Ferreira, D.R.; Johnston, C.P. Calcium Polysulfide Treatment of Cr(VI)-contaminated soil. J. Hazard. Mater. 2010, 179, 650–657. [Google Scholar] [CrossRef]
- Kirichenko, K.Y.; Vakhniuk, I.A.; Ivanov, V.V.; Tarasenko, I.A.; Kosyanov, D.Y.; Medvedev, S.A.; Soparev, V.P.; Drozd, V.A.; Kholodov, A.S.; Golokhvast, K.S. Complex Study of Air Pollution in Electroplating Workshop. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Fandeur, D.; Juillot, F.; Morin, G.; Olivi, L.; Cognigni, A.; Webb, S.M.; Ambrosi, J.P.; Fritsch, E.; Guyot, F.; Brown, G.E., Jr. XANES Evidence for Oxidation of Cr(III) to Cr(VI) by Mn Oxides in a Lateritic Regolith Developed on Serpentinized Ultramafic Rocks of New Caledonia. Environ. Sci. Technol. 2009, 43, 7384–7390. [Google Scholar] [CrossRef]
- Xu, Q.; Gao, Y.; Wu, X.; Ye, J.; Ren, X.; Zhou, Z.; Cai, Q.; Wu, H.; Pang, J.; Luo, Y.; et al. Derivation of Empirical Model to Predict the Accumulation of Pb in Rice Grain. Environ. Pollut. 2021, 274, 116599. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Choppala, G.; Kunhikrishnan, A.; Seshadri, B.; Park, J.H.; Bush, R.; Bolan, N. Comparative Sorption of Chromium Species as Influenced by pH, Surface Charge and Organic Matter Content in Contaminated Soils. J. Geochem. Explor. 2018, 184, 255–260. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H.; Nandan, M.; Hursthouse, A. Potentially Toxic Elements (PTEs) Pollution in Surface Soils in a Typical Urban Region of South India: An Application of Health Risk Assessment and Distribution Pattern. Ecotoxicol. Environ. Saf. 2020, 203, 111055. [Google Scholar] [CrossRef] [PubMed]
- Negahban, S.; Mokarram, M.; Pourghasemi, H.R.; Zhang, H. Ecological Risk Potential Assessment of Heavy Metal Contaminated Soils in Ophiolitic Formations. Environ. Res. 2021, 192, 110305. [Google Scholar] [CrossRef]
- Muller, G. Index of Geo-Accumulation in Sediments of the Rhine River. Geo J. 1969, 2, 108–118. [Google Scholar]
- CNEMS. Element Background Values of Soils in China; China Environmental Sciences Press: Beijing, China, 1990; pp. 87–496. [Google Scholar]
- Del Pianta, D.; Frayret, J.; Gleyzes, C.; Cugnet, C.; Dupin, J.C.; Le Hecho, I. Determination of the Chromium(III) Reduction Mechanism During Chromium Electroplating. Electrochim. Acta 2018, 284, 234–241. [Google Scholar] [CrossRef]
- State Environmental Protection Administration of China (SEPAC). The Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land (GB36600-2018). 2018. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/t20180703_446027.shtml. (accessed on 1 January 2022).
- Jagupilla, S.C.; Moon, D.H.; Wazne, M.; Christodoulatos, C.; Kim, M.-G. Effects of Particle Size and Acid Addition on the Remediation of Chromite Ore Processing Residue Using Ferrous Sulfate. J. Hazard. Mater. 2009, 168, 121–128. [Google Scholar] [CrossRef]
- Graham, M.C.; Farmer, J.G.; Anderson, P.; Paterson, E.; Hillier, S.; Lumsdon, D.G.; Bewley, R.J. Calcium Polysulfide Remediation of Hexavalent Chromium Contamination from Chromite Ore Processing Residue. Sci. Total Environ. 2006, 364, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Chen, H.; Arocena, J.M.; Whitcombe, T.; Thring, R.W.; Memiaghe, J.N. Elemental Sulfur Amendment Decreases Bio-Available Cr-VI in Soils Impacted by Leather Tanneries. Environ. Pollut. 2016, 212, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Pohlandt-Schwandt, K. Treatment of Wood Ash Containing Soluble Chromate. Biomass Bioenergy 1999, 16, 447–462. [Google Scholar] [CrossRef]
- Kalra, Y.P.; Maynard, D.G. Methods Manual for Forest Soil and Plant Analysis; Canadian Forest Service Publications: Edmonton, AB, Canada, 1991; Volume 319. [Google Scholar]
- Wu, X.; Cai, Q.; Xu, Q.; Zhou, Z.; Shi, J. Wheat (Triticum aestivum L.) Grains Uptake of Lead (Pb), Transfer Factors and Prediction Models for Various Types of Soils from China. Ecotoxicol. Environ. Saf. 2020, 206, 111387. [Google Scholar] [CrossRef] [PubMed]
- He, Y.T.; Traina, S.J. Cr(VI) Reduction and Immobilization by Magnetite under Alkaline pH Conditions: The Role of Passivation. Environ. Sci. Technol. 2005, 39, 4499–4504. [Google Scholar] [CrossRef] [PubMed]
- Bedbabis, S.; Ben Rouina, B.; Boukhris, M.; Ferrara, G. Effect of Irrigation with Treated Wastewater on Soil Chemical Properties and Infiltration Rate. J. Environ. Manag. 2014, 133, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Mietto, A.; Borin, M.; Nardi, S. Chromium in Agricultural Soils and Crops: A Review. Water Air Soil Pollut. 2017, 228, 190. [Google Scholar] [CrossRef]
- maNeill, L.; McLean, J.; Parks, J.; Edwards, M. Hexavalent Chromium Review, part 2: Chemistry, Occurrence, and Treatment. J. Am. Water Works. 2012, 104, 39–40. [Google Scholar] [CrossRef]
- Sun, Z.; Xie, X.; Wang, P.; Hu, Y.; Cheng, H. Heavy Metal Pollution Caused by Small-Scale Metal Ore Mining Activities: A Case Study from a Polymetallic Mine in South China. Sci. Total Environ. 2018, 639, 217–227. [Google Scholar] [CrossRef]
- Li, S.; Zhao, B.; Jin, M.; Hu, L.; Zhong, H.; He, Z. A Comprehensive Survey on the Horizontal and Vertical Distribution of Heavy Metals and Microorganisms in Soils of a Pb/Zn Smelter. J. Hazard. Mater. 2020, 400, 123255. [Google Scholar] [CrossRef]
- Shaheen, S.; Rinklebe, J. Geochemical Fractions of Chromium, Copper, and Zinc and Their Vertical Distribution in Floodplain Soil Profiles along the Central Elbe River, Germany. Geoderma 2014, 228–229, 142–159. [Google Scholar] [CrossRef]
- Tengsuwan, S.; Ohshima, M. Environmentally Benign Electroless Nickel Plating Using Supercritical Carbon-Dioxide on Hydrophilically Modified Acrylonitrile–Butadiene–Styrene. Appl. Surf. Sci. 2014, 311, 189–200. [Google Scholar] [CrossRef]
- Schlesinger, M.; Paunovic, M. Modern Electroplating; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 55. [Google Scholar]
- Young, G.; Chen, Y.; Yang, M. Concentrations, Distribution, and Risk Assessment of Heavy Metals in the Iron Tailings of Yeshan National Mine Park in Nanjing, China. Chemosphere 2021, 271, 129546. [Google Scholar] [CrossRef]
- Fonseca, B.; Maio, H.; Quintelas, C.; Teixeira, A.S.; Tavares, T. Retention of Cr(VI) and Pb(II) on a Loamy Sand Soil: Kinetics, Equilibria and Breakthrough. Chem. Eng. J. 2009, 152, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Rajmohan, N.; Prathapar, S.A.; Jayaprakash, M.; Nagarajan, R. Vertical Distribution of Heavy Metals in Soil Profile in a Seasonally Waterlogging Agriculture Field in Eastern Ganges Basin. Environ. Monit. Assess. 2014, 186, 5411–5427. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, X.; Lu, Y.; Su, S.; Bai, L.; Li, L.; Wu, C. Effect of Aging on the Bioavailability and Fractionation of Arsenic in Soils Derived From Five Parent Materials in a Red Soil Region of Southern China. Environ. Pollut. 2015, 207, 79–87. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Liu, X.; Liu, X.; Li, X.; Ren, Y.; Wang, J.; Dong, L. Partitioning and Geochemical Fractions of Heavy Metals from Geogenic and Anthropogenic Sources in Various Soil Particle Size Fractions. Geoderma 2018, 312, 104–113. [Google Scholar] [CrossRef]
- Bishop, M.E.; Dong, H.; Glasser, P.; Briggs, B.; Pentrak, M.; Stucki, J.W.; Boyanov, M.I.; Kemner, K.M.; Kovarik, L. Reactivity of Redox Cycled Fe-Bearing Subsurface Sediments Towards Hexavalent Chromium Reduction. Geochim. Cosmochim. Acta 2019, 252, 88–106. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, Q.; Pigna, M.; Violante, A. Competitive Sorption of Cu and Cr on Goethite and Goethite–Bacteria Complex. Chem. Eng. J. 2012, 179, 26–32. [Google Scholar] [CrossRef]
- Zheng, C.; Wu, Q.; Hu, X.; Wang, Y.; Chen, Y.; Zhang, S.; Zheng, H. Adsorption Behavior of Heavy Metal Ions on a Polymer-Immobilized Amphoteric Biosorbent: Surface Interaction Assessment. J. Hazard. Mater. 2021, 403, 123801. [Google Scholar] [CrossRef]
- He, K.; Sun, Z.; Hu, Y.; Zeng, X.; Yu, Z.; Cheng, H. Comparison of Soil Heavy Metal Pollution Caused by e-Waste Recycling Activities and Traditional Industrial Operations. Environ. Sci. Pollut. Res. 2017, 24, 9387–9398. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Min, X.; Chai, L.; Tang, C.; Liang, Y.; Li, M.; Ke, Y.; Chen, J.; Wang, Y. Quantitative Evaluation of Environmental Risks of Flotation Tailings from Hydrothermal Sulfidation-Flotation Process. Environ. Sci. Pollut. Res. 2013, 20, 6050–6058. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, V.; Bhardwaj, R.; Thukral, A.K. Tartaric Acid Mediated Cr Hyperaccumulation and Biochemical Alterations in Seedlings of Hordeum vulgare L. J. Plant Growth Regul. 2019, 39, 1–14. [Google Scholar] [CrossRef]
- Szulczewski, M.D.; Helmke, P.A.; Bleam, W.F. Comparison of XANES Analyses and Extractions To Determine Chromium Speciation in Contaminated Soils. Environ. Sci. Technol. 1997, 31, 2954–2959. [Google Scholar] [CrossRef]
- Kunene, S.C.; Lin, K.S.; Mdlovu, N.V.; Lin, Y.-S.; Mdlovu, N.B. Speciation and Fate of Toxic Cadmium in Contaminated Paddy Soils and Rice Using XANES/EXAFS Spectroscopy. J. Hazard. Mater. 2020, 383, 121167. [Google Scholar] [CrossRef]
- Jardine, P.M.; McCarthy, J.F.; Weber, N.L. Mechanisms of Dissolved Organic Carbon Adsorption on Soil. Soil Sci. Soc. Am. J. 1989, 53, 1378–1385. [Google Scholar] [CrossRef]
- Banks, M.; Schwab, A.; Henderson, C. Leaching and Reduction of Chromium in Soil as Affected by Soil Organic Content and Plants. Chemosphere 2006, 62, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sobecky, P.A.; Zhao, L.; Crawford, P.; Li, M. Chromium(VI) Transport and Fate in Unsaturated Zone and Aquifer: 3D Sandbox results. J. Hazard. Mater. 2016, 306, 203–209. [Google Scholar] [CrossRef]
- Romero-Freire, A.; Peinado, F.M.; van Gestel, K. Effect of Soil Properties on the Toxicity of Pb: Assessment of the Appropriateness of Guideline Values. J. Hazard. Mater. 2015, 289, 46–53. [Google Scholar] [CrossRef]
- Tang, Y.; Elzinga, E.J.; Lee, Y.J.; Reeder, R.J. Coprecipitation of Chromate with Calcite: Batch Experiments and X-ray Absorption Spectroscopy. Geochim. Cosmochim. Acta 2007, 71, 1480–1493. [Google Scholar] [CrossRef]
Soil Layers | Depth | Particles (%) | pH | OM | CaCO3 | Permeability Coefficient | ||
---|---|---|---|---|---|---|---|---|
m | 2~0.05 mm | 0.05~0.002 mm | <0.002 mm | - | % | % | cm/s | |
Backfill soil | 0~0.5 | - | - | - | 8.56 | 0.46 | 9.83 | - |
Loam | 0.5~2 | 33.78% | 44.04% | 22.18% | 8.43 | 0.34 | 8.62 | 8.59 × 10−7 |
Sandy loam | >2 | 54.01% | 30.75% | 15.25% | 8.65 | 0.45 | 7.00 | 1.56 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Luo, Y.; Ye, J.; Li, C.; Shi, J. Chromium Distribution, Leachability and Speciation in a Chrome Plating Site. Processes 2022, 10, 142. https://doi.org/10.3390/pr10010142
Sun J, Luo Y, Ye J, Li C, Shi J. Chromium Distribution, Leachability and Speciation in a Chrome Plating Site. Processes. 2022; 10(1):142. https://doi.org/10.3390/pr10010142
Chicago/Turabian StyleSun, Jiacong, Yating Luo, Jien Ye, Chunhui Li, and Jiyan Shi. 2022. "Chromium Distribution, Leachability and Speciation in a Chrome Plating Site" Processes 10, no. 1: 142. https://doi.org/10.3390/pr10010142
APA StyleSun, J., Luo, Y., Ye, J., Li, C., & Shi, J. (2022). Chromium Distribution, Leachability and Speciation in a Chrome Plating Site. Processes, 10(1), 142. https://doi.org/10.3390/pr10010142