Kinetics and Performance of Biological Activated Carbon Reactor for Advanced Treatment of Textile Dye Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Textile Dye Wastewater
2.2. Microorganisms
2.3. Supporting Media
2.4. BAC Reactor Design
2.5. Analytical Methods
2.6. Adsorption Experiments
2.7. Batch Biokinetic Tests
2.8. Kinetic Model Development
2.8.1. Kinetic Model in a Batch Reactor
2.8.2. Kinetic Model in a Biological Activated Carbon Reactor
3. Results and Discussion
3.1. Determination of Adsorption Constants
3.2. Evaluation of Effective Diffusivity
3.3. Evaluation of Biokinetic Parameters
3.4. Evaluation of Mass Transfer Coefficients
3.5. COD Utilization in the BAC Reactor
3.6. Biomass Growth
3.7. Fluxes into Biofilm and Activated Carbon
3.8. COD Removal by Model Simulation
3.9. Concentration Profiles
3.10. Effects of the Organic Loading Rate
3.11. Treatment Performance for Other Analyzed Substances
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sathian, S.; Rajasimman, M.; Radha, G.; Shanmugapriya, V.; Karthikeyan, C. Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies. Alex. Eng. J. 2014, 53, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Varjani, S.; Rakholiya, P.; Ng, H.Y.; You, S.; Teixeira, J.A. Microbial degradation of dyes: An overview. Bioresour. Technol. 2020, 314, 123728. [Google Scholar] [CrossRef]
- Alinsafi, A.; Da Motta, M.S.; Le Bonté, S.; Pons, M.N.; Benhammou, A. Effect of variability on the treatment of textile dyeing wastewater by activated sludge. Dyes Pigments 2006, 69, 31–39. [Google Scholar] [CrossRef]
- Verma, A.K.; Dash, R.R.; Bhunia, P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 2012, 93, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.; Abid, S.; Hamdi, M.; Bouallagui, H. Reduction of adsorbed dyes content in the discharge sludge coming from an industrial textile wastewater treatment plant using aerobic activated sludge process. J. Environ. Manag. 2018, 223, 936–946. [Google Scholar] [CrossRef]
- Mahmood, S.; Khalid, A.; Arshad, M.; Mahmood, T.; Crowley, D.E. Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit. Rev. Biotechnol. 2015, 36, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Wang, G.H.; Tseng, I.H.; Chung, Y.C. Analysis of bacterial diversity and efficiency of continuous removal of Victoria Blue R from wastewater by using packed-bed bioreactor. Chemosphere 2016, 145, 17–24. [Google Scholar] [CrossRef]
- Akar, T.; Divriklioglu, M. Biosorption application of modified fungal biomass for decolourization of reactive red 2 contaminated solutions: Batch and dynamic flow model studies. Bioresour. Technol. 2010, 101, 7271–7277. [Google Scholar] [CrossRef]
- Donkadokula, N.Y.; Kola, A.K.; Naz, I.; Saroj, D. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Biotechnol. 2020, 19, 543–560. [Google Scholar] [CrossRef]
- Kozak, M.; Cirik, K.; Başak, S. Treatment of textile wastewater using combined anaerobic moving bed biofilm reactor and powdered activated carbon-aerobic membrane reactor. J. Environ. Chem. Eng. 2021, 9, 105596. [Google Scholar] [CrossRef]
- Mahmoud, A.E.D. Graphene-based nanomaterials for the removal of organic pollutants: Insights into linear versus nonlinear mathematical models. J. Environ. Manag. 2020, 270, 110911. [Google Scholar] [CrossRef]
- Mahmoud, A.E.D.; Franke, M.; Stelter, M.; Braeutigam, P. Mechanochemical versus chemical routes for graphitic precursors and their performance in micropollutants removal in water. Powder Technol. 2020, 366, 629–640. [Google Scholar] [CrossRef]
- Ong, S.A.; Ho, L.N.; Wong, Y.S.; Raman, K. Performance and kinetic study on bioremediation of diazo dye (reactive black 5) in wastewater using spent GAC-biofilm sequencing batch reactor. Water Air Soil Pollut. 2012, 223, 1615–1623. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; Shang, H.; Li, Q.; Zhou, W. Treatment of azo dye wastewater by the self-flocculating marine bacterium Aliiglaciecola lipolytica. Environ. Technol. Innov. 2020, 19, 100810. [Google Scholar] [CrossRef]
- Kumar, V.; Chandra, R.; Thakur, I.S.; Saxena, G.; Shah, M.P. Recent advances in physicochemical and biological treatment approaches for distillery wastewater. In Combined Application of Physico-Chemical and Microbiological Processes for Industrial Effluent Treatment Plant; Shah, M., Banergee, A., Eds.; Springer: Singapore, 2020; pp. 79–118. [Google Scholar]
- Rajeshkannan, R.; Rajasimman, M.; Rajamohan, N. Optimization, equilibrium and kinetic studies on removal of acid blue 9 using brown marine algae Turbinaria conoids. Biodegradation 2010, 21, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkannan, R.; Rajasimman, M.; Rajamohan, N. Decolorization of malachite green using tamarind seed: Optimization, isotherm and kinetic studies. Chem. Ind. Chem. Eng. Quart. 2011, 17, 67–79. [Google Scholar] [CrossRef]
- Ajaz, M.; Shakeel, S.; Rehman, A. Microbial use for azo dye degradation—A strategy for dye bioremediation. Int. Microbial. 2020, 23, 149–159. [Google Scholar] [CrossRef]
- Lu, X.; Yang, B.; Chen, J.; Sun, R. Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process. J. Hazard. Mater. 2009, 161, 241–245. [Google Scholar] [CrossRef]
- Yang, Q.; Li, C.; Li, H.; Li, Y.; Yu, N. Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor. Biochem. Eng. J. 2009, 43, 225–230. [Google Scholar] [CrossRef]
- Ong, S.A.; Toorisaka, E.; Hirata, M.; Hano, T. Treatment of azo dye Orange II in a sequential anaerobic and aerobic-sequencing batch reactor system. Environ. Chem. Lett. 2005, 2, 203–207. [Google Scholar] [CrossRef]
- Assadi, A.; Naderi, M.; Mehrasbi, M.R. Anaerobic-aerobic sequencing batch reactor treating azo dye containing wastewater: Effect of high nitrate ions and salt. J. Water Reuse Desalin. 2018, 8, 251–261. [Google Scholar] [CrossRef] [Green Version]
- DeWalle, F.B.; Chian, E.S.K. Biological regeneration of powdered activated carbon added to activated sludge units. Water Res. 1977, 11, 439–446. [Google Scholar] [CrossRef]
- Speitel, G.E., Jr.; Dovantzis, K.; DiGiano, F.A. Mathematical modeling of bioregeneration in GAC columns. J. Environ. Eng. ASCE 1987, 113, 32–48. [Google Scholar] [CrossRef]
- Liang, C.H.; Chiang, P.C.; Chang, E.E. Modeling the behaviors of adsorption and biodegradation in biological activated carbon filters. Water Res. 2007, 41, 3241–3250. [Google Scholar] [CrossRef] [PubMed]
- You, S.J.; Teng, J.Y. Performance and dye-degrading bacteria isolation of a hybrid membrane process. J. Hazard. Mater. 2009, 172, 172–179. [Google Scholar] [CrossRef]
- Khouni, I.; Marrot, B.; Amar, R.B. Treatment of reconstituted textile wastewater containing a reactive dye in an aerobic sequencing batch reactor using a novel bacterial consortium. Sep. Purif. Technol. 2012, 87, 110–119. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA; AWWA: Denver, CO, USA; WEF: Alexandria, VA, USA, 2005.
- Mahmoud, A.E.D.; Fawzy, M.; Hosny, G.; Obaid, A. Equilibrium, kinetic, and diffusion models of chromium(VI) removal using Phragmites australis and Ziziphus spina-christi biomass. Int. J. Environ. Sci. Technol. 2021, 18, 2125–2136. [Google Scholar] [CrossRef]
- Pirbazari, M.; Ravindran, V.; Badriyha, B.N.; Kim, S.H. Hybrid membrane filtration process for leachate treatment. Water Res. 1996, 30, 2691–2706. [Google Scholar] [CrossRef]
- Vasiliadou, I.A.; Pavlou, S.; Vayenas, D.V. A kinetic study of hydrogenotrophic denitrification. Process Biochem. 2006, 41, 1401–1408. [Google Scholar] [CrossRef]
- Carvajal, A.; Akmirza, I.; Navia, D.; Pérez, R.; Muñoz, R. Anoxic denitrification of BTEX: Biodegradation kinetics and pollutant interactions. J. Environ. Manag. 2018, 214, 125–136. [Google Scholar] [CrossRef]
- Henze, M.; Gujer, W.; Mino, T.; Loosdrecht, M.C.M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; IWA Publishing: London, UK, 2000. [Google Scholar]
- Massalha, N.; Shaviv, A.; Sabbah, I. Modeling the effect of immobilization of microorganisms on the rate of biodegradation of phenol under inhibitory conditions. Water Res. 2010, 44, 5252–5259. [Google Scholar] [CrossRef]
- Aksakal, O.; Ucun, H. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. J. Hazard. Mater. 2010, 181, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Elkady, M.; Shokry, H.; Hamad, H. New activated carbon from mine coal for adsorption of dye in simulated water or multiple heavy metals in real wastewater. Materials 2020, 13, 2498. [Google Scholar] [CrossRef]
- Speitel, G.E., Jr.; DiGiano, F.A. Biofilm shearing under dynamic conditions. J. Environ. Eng. ASCE 1987, 113, 464–475. [Google Scholar] [CrossRef]
- Wilke, C.E.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AICHE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
- Williamson, K.; McCarty, P.L. A model of substrate utilization by bacterial films. J. Water Pollut. Control Fed. 1976, 48, 9–24. [Google Scholar] [PubMed]
- Wakao, N.; Funazkri, T. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Chem. Eng. Sci. 1978, 33, 1375–1384. [Google Scholar] [CrossRef]
- Kim, S.H.; Pirbazari, M. Bioactive adsorber model for industrial wastewater treatment. J. Environ. Eng. ASCE 1989, 115, 1235–1256. [Google Scholar] [CrossRef]
- Soh, Y.N.A.; Kunacheva, C.; Webster, R.D.; Stuckey, D.C. Identification of the production and biotransformational changes of soluble microbial products (SMP) in wastewater treatment processes: A short review. Chemosphere 2020, 251, 126391. [Google Scholar] [CrossRef]
- Rittmann, B.E.; McCarty, P.L. Substrate flux into biofilms of any thickness. J. Environ. Eng. ASCE 1981, 107, 831–849. [Google Scholar] [CrossRef]
- Rozzi, A.; Ficara, E.; Cellamare, C.; Bortone, G. Characterization of textile wastewater and other industrial wastewaters by respirometric and titration biosensors. Water Sci. Technol. 1999, 40, 161–168. [Google Scholar] [CrossRef]
- Bayramoglu, M.; Kobya, M.; Can, O.T.; Sozbir, M. Operating cost analysis of electrocoagulation of textile dye wastewater. Separ. Purif. Technol. 2004, 37, 117–125. [Google Scholar] [CrossRef]
Parameter | Range | Mean | Taiwan EPA Effluent Criteria [26] |
---|---|---|---|
pH | 6.08–7.04 | 6.80 ± 0.28 | – |
COD (mg/L) | 82–180 | 113 ± 32 | 100 |
BOD5 (mg/L) | – | – | 30 |
Color (ADMI units) | 28–89 | 59 ± 17 | 550 |
SS (mg/L) | – | – | 30 |
TKN (mg/L) | 66.69–146.82 | 100.72 ± 20.76 | – |
NH4+ (mg/L) | 2.14–16.50 | 7.23 ± 3.21 | – |
NOx− (mg/L) | 0.06–18.6 | 5.71 ± 5.20 | – |
PO43− (mg/L) | 0.0–1.8 | 0.74 ± 0.59 | – |
Conductivity (μs/cm) | 1754–2360 | 2014 ± 299 | – |
Parameter | Criteria |
---|---|
1 a E. coli (CFU/100 mL) | ND |
2 BOD5, 20 °C (mg/L) | <10 |
3 Color | NU c |
4 Odor | NU c |
5 Turbidity (NTU) | <5 |
6 Total hardness (mg/L as CaCO3) | <450 |
7 Total alkalinity (mg/L as CaCO3) | <350 |
8 Chloride (mg/L) | <500 |
9 TDS b (mg/L) | <1000 |
10 SS b (mg/L) | <10 |
Symbol | Parameter Description (Unit) | Value | Remarks |
---|---|---|---|
Sb0 | COD concentration in the feed (mg/L) | 113 | Measured |
k | Maximum specific utilization rate of COD (mg COD/mg VSS-d) | 3.52 | Measured |
Y | Yield coefficient (mg VSS/mg COD) | 0.18 | Measured |
KS | Half-saturation constant (mg COD/L) | 71.7 | Measured |
Ki | Inhibition constant (mg COD/L) | 81.63 | Measured |
kd | Death decay rate coefficient (1/d) | 4.9 × 10−3 | Measured |
Df | Diffusion coefficient in biofilm (cm2/d) | 0.376 | Computed |
kf | Liquid film mass-transfer coefficient (cm/d) | 420.52 | Computed |
bs | Biofilm shearing coefficient (1/d) | 9.02 × 10–3 | Computed |
Xf | Biofilm density (mg VSS/mL) | 9.36 | Measured |
Xb0 | Initial suspended biomass concentration (mg VSS/L) | 4.5 | Measured |
Lf0 | Initial biofilm thickness (μm) | 5.5 | Assumed |
V | Effective working volume of reactor (L) | 1.568 | Measured |
Q | Influent flow rate (1/d) | 9.408 | Measured |
Ds | Effective diffusivity coefficient (cm2/d) | 6 × 10–4 | Measured |
Ka | Freundlich capacity constant (mg/g)(L/mg)1/n | 1.023 ± 0.134 | Measured |
n | Freundlich intensity constant (dimensionless) | 2.036 ± 0.785 | Measured |
R | Activated carbon radius (cm) | 0.05 | Measured |
ρ | Activated carbon apparent density (g/mL) | 0.48 | Measured |
Xw | Weight of activated carbon (g) | 112 | Measured |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-H.; Ho, B.-H. Kinetics and Performance of Biological Activated Carbon Reactor for Advanced Treatment of Textile Dye Wastewater. Processes 2022, 10, 129. https://doi.org/10.3390/pr10010129
Lin Y-H, Ho B-H. Kinetics and Performance of Biological Activated Carbon Reactor for Advanced Treatment of Textile Dye Wastewater. Processes. 2022; 10(1):129. https://doi.org/10.3390/pr10010129
Chicago/Turabian StyleLin, Yen-Hui, and Bing-Han Ho. 2022. "Kinetics and Performance of Biological Activated Carbon Reactor for Advanced Treatment of Textile Dye Wastewater" Processes 10, no. 1: 129. https://doi.org/10.3390/pr10010129
APA StyleLin, Y.-H., & Ho, B.-H. (2022). Kinetics and Performance of Biological Activated Carbon Reactor for Advanced Treatment of Textile Dye Wastewater. Processes, 10(1), 129. https://doi.org/10.3390/pr10010129