Biogenic Amine Content in Retailed Cheese Varieties Produced with Commercial Bacterial or Mold Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cheese Samples
2.2. Microbiological Analyses
2.3. Identification of Dominant Lactic Acid Bacteria (LAB)
2.4. Determination of Biogenic Amines (BA)
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marijan, A.; Džaja, P.; Bogdanović, T.; Škoko, I.; Cvetnić, Ž.; Dobranić, V.; Zdolec, N.; Šatrović, E.; Severin, K. Influence of ripening time on the amount of certain biogenic amines in rind and core of cow milk Livno cheese. Mljekarstvo 2014, 64, 59–69. [Google Scholar]
- Sahu, L.; Panda, S.K.; Paramithiotis, S.; Zdolec, N.; Ray, R. Biogenic Amines in Fermented Foods: Overview. In Fermented Foods Part I. Biochemistry and Biotechnology; Montet, D., Ray, R., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 318–332. [Google Scholar]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Benkerroum, N. Biogenic amines in dairy products: Origin, incidence, and control means. Compr. Rev. Food Sci. Food Saf. 2016, 15, 801–826. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.B.; Seol, K.-H.; Ham, J.-S. Quantitative analysis of biogenic amines in different cheese varieties obtained from the Korean domestic and retail markets. Metabolites 2021, 11, 31. [Google Scholar] [CrossRef]
- Bogdanović, T.; Petričević, S.; Brkljača, M.; Listeš, I.; Pleadin, J. Biogenic amines in selected foods of animal origin obtained from the Croatian retail market. Food Addit. Contam. Part A 2020, 37, 815–830. [Google Scholar] [CrossRef]
- Ma, J.-K.; Raslan, A.A.; Elbadry, S.; El-Ghareeb, W.R.; Mulla, Z.S.; Bin-Jumah, M.; Abdel-Daim, M.M.; Darwish, W.S. Levels of biogenic amines in cheese: Correlation to microbial status, dietary intakes, and their health risk assessment. Environ. Sci. Pollut. Res. Int. 2020, 27, 44452–44459. [Google Scholar] [CrossRef]
- Dabadé, S.D.; Jacxsens, L.; Miclotte, L.; Abatih, E.; Devlieghere, F.; De Meulenaer, B. Survey of multiple biogenic amines and correlation to microbiological quality and free amino acids in foods. Food Control 2021, 120, 107497. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union. 2005, 338, 1–26. [Google Scholar]
- Ladero, V.; Calles-Enríquez, M.; Fernández, M.; Alvarez, M.A. Toxicological effects of dietary biogenic amines. Curr. Nutr. Food Sci. 2010, 6, 145–156. [Google Scholar] [CrossRef]
- Doeun, D.; Davaatseren, M.; Chung, M.S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef]
- Zdolec, N.; Jankuloski, D.; Kiš, M.; Hengl, B.; Mikulec, N. Detection and Pulsed-Field Gel Electrophoresis Typing of Listeria monocytogenes Isolates from Milk Vending Machines in Croatia. Beverages 2019, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Mikulec, N.; Špoljarić, J.; Zamberlin, Š.; Krga, M.; Radeljević, B.; Plavljanić, D.; Horvat Kesić, I.; Zdolec, N.; Dobranić, V.; Antunac, N. The investigation of suitability of raw milk consumption from vending machines in Croatia. J. Cent. Eur. Agric. 2019, 20, 1076–1088. [Google Scholar] [CrossRef]
- Kiš, M.; Kolačko, I.; Zdolec, N. Unprocessed milk as a source of multidrug-resistant Staphylococcus aureus strains. Acta Vet. Brno 2021, 90, 357–363. [Google Scholar] [CrossRef]
- Burdychova, R.; Komprda, T. Biogenic amine-forming microbial communities in cheese. FEMS Microbiol. Lett. 2007, 276, 149–155. [Google Scholar] [CrossRef]
- Ladero, V.; Fernández, M.; Calles-Enríquez, M.; Sánchez-Llana, E.; Cañedo, E.; Martín, M.C.; Alvarez, M.A. Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol. 2012, 30, 132–138. [Google Scholar] [CrossRef]
- Vrdoljak, J.; Dobranić, V.; Filipović, I.; Zdolec, N. Microbiological quality of soft, semi-hard and hard cheeses during the shelf-life. Maced. Vet. Rev. 2016, 39, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Tittarelli, F.; Perpetuini, G.; Di Gianvito, P.; Tofalo, R. Biogenic amines producing and degrading bacteria: A snapshot from raw ewes’ cheese. LWT Food Sci. Technol. 2019, 101, 1–9. [Google Scholar] [CrossRef]
- Zdolec, N.; Bogdanović, T.; Pažin, V.; Šimunić-Mežnarić, V.; Martinec, N.; Lorenzo, J. Control of biogenic amines in dry sausages inoculated with dairy-originated bacteriocinogenic Enterococcus faecalis EF-101. Vet. Arh. 2020, 90, 77–85. [Google Scholar] [CrossRef]
- Eerola, S.; Hinkkanen, R.; Lindfors, E.; Hirvi, T. Liquid chromatographic determination of biogenic amines in dry sausages. J. AOAC Int. 1993, 76, 575–578. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Microbiology of cheese ripening. In Fundamentals of Cheese Science; Springer: Boston, MA, USA, 2017; pp. 333–390. [Google Scholar]
- Ladero, V.; Sanchez-Llana, E.; Fernández, M.; Alvarez, M.A. Survival of biogenic amine-producing dairy LAB strains at pasteurisation conditions. Int. J. Food Sci. Technol. 2011, 46, 516–521. [Google Scholar] [CrossRef]
- Zdolec, N.; Kiš, M. Antimicrobial properties of food enterococci. In Microbial Biotechnology in Food and Health; Ray, R.C., Ed.; Academic Press/Elsevier: London, UK, 2021; in press. [Google Scholar]
- Franz, C.M.A.P.; Holzapfel, W. The genus Enterococcus: Biotechnological and safety issues. In Lactic Acid Bacteria: Microbiological and Functional Aspects, 3rd ed.; Saminen, S., von Wright, O.A., Eds.; Marcel Dekker: New York, NY, USA, 2011; pp. 199–248. [Google Scholar]
- Dobranić, V.; Zdolec, N.; Račić, I.; Vujnović, A.; Zdelar-Tuk, M.; Filipović, I.; Grgurević, N.; Špičić, S. Determination of enterotoxin genes in coagulase- negative staphylococci from autochthonous Croatian fermented sausages. Vet. Arh. 2013, 83, 145–152. [Google Scholar]
- Zdolec, N.; Dobranić, V.; Zdolec, G.; Đuričić, D. Antimicrobial resistance of coagulase-negative staphylococci and lactic acid bacteria from industrially produced dairy products. Mljekarstvo 2013, 63, 30–35. [Google Scholar]
- Novella-Rodríguez, S.; Veciana-Nogués, M.T.; Izquierdo-Pulido, M.; Vidal-Carou, M.C. Distribution of biogenic amines and polyamines in cheese. J. Food Sci. 2003, 68, 750–755. [Google Scholar] [CrossRef]
- Komprda, T.; Burdychová, R.; Dohnal, V.; Cwikova, O.; Sládková, P. Some factors influencing biogenic amines and polyamines content in Dutch-type semi-hard cheese. Eur. Food Res. Technol. 2007, 227, 29–36. [Google Scholar] [CrossRef]
- Shalaby, M.A.; Kassem, M.A.; Morsy, O.; Mohamed, N.M. Anti-tyramine potential of Lactobacillus rhamnosus (LGG®) in cheese samples collected from Alexandria, Egypt. Food Biotechnol. 2020, 34, 243–261. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef] [Green Version]
- Buňka, F.; Zálešáková, L.; Flasarová, R.; Pachlová, V.; Budinský, P.; Buňková, L. Biogenic amines content in selected commercial fermented products of animal origin. J. Microbiol. Biotechnol. Food Sci. 2012, 2, 209–218. [Google Scholar]
- Poveda, J.M.; Chicon, R.; Cabezas, L. Biogenic amine content and proteolysis in Manchego cheese manufactured with Lactobacillus paracasei subsp. paracasei as adjunct and other autochthonous strains as starters. Int. Dairy J. 2015, 47, 94–101. [Google Scholar] [CrossRef]
- Renes, E.; Ladero, V.; Tornadijo, M.E.; Fresno, J.M. Production of sheep milk cheese with high γ-aminobutyric acid and ornithine concentration and with reduced biogenic amines level using autochthonous lactic acid bacteria strains. Food Microbiol. 2019, 78, 1–10. [Google Scholar] [CrossRef]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria: A review. Foods 2019, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Dobranić, V.; Kazazić, S.; Filipović, I.; Mikulec, N.; Zdolec, N. Composition of raw cow’s milk microbiota and identification of enterococci by MALDI-TOF MS-short communication. Vet. Arh. 2016, 86, 581–590. [Google Scholar]
Cheese Group, Number of Samples | Properties (Microbial Cultures Involved in Ripening) | Milk |
---|---|---|
Mold-ripened (n = 8) | Surface-ripened—white mold cheese—Brie/Camembert type (Germany, n = 3) | Cow |
Internal mold—blue-veined—Gorgonzola type (Croatia, Italy, Netherlands, n = 5) | Cow (n = 4) Goat (n = 1) | |
Semi-hard cheese (n = 18) | Internal-bacterial ripened—Trappist type (Croatia, * n = 5, ** n = 1; Bosnia and Herzegovina, *** n = 5); Internal-bacterial ripened, rennet (Bosnia and Herzegovina, **** n = 5) Dutch type cheese (New Zealand, ***** n = 2) | Cow |
Hard cheese (n = 43) | Parmigiano-Reggiano cheese type (Croatia, * n = 5), | Cow |
Internal-bacterial ripened (Bosnia and Herzegovina, ** n = 5, Croatia, *** n = 10), Internal-bacterial ripened | ||
(Croatia, **** n = 15) | Cow (n = 5), goat (n = 5), ewe (n = 5) | |
Internal-bacterial ripened | ||
(Croatia, ***** n = 3) | Ewe | |
(Croatia, ****** n = 1) | Ewe | |
(Croatia, ******* n = 1), | Cow | |
Internal-bacterial ripened with wine (Croatia, ******** n = 1), | Cow | |
Internal-bacterial ripened with apricot/cranberry (Great Britain, ********* n = 2) | Cow |
Microorganisms | Mold-Ripened (n = 8) | Semi-Hard Cheese (n = 18) | Hard Cheese (n = 43) | |||
---|---|---|---|---|---|---|
Mean ± SD | Min/Max | Mean ± SD | Min/Max | Mean ± SD | Min/Max | |
Aerobic mesophilic bacteria | 5.74 ± 1.42 a | 4.04–7.77 | 7.30 ± 0.46 ab | 6.25–7.95 | 5.74 ± 1.80 b | 2.00–7.80 |
Enterococci | 4.18 ± 1.21 | 2.69–5.90 | 5.03 ± 2.20 | 2.00–8.55 | 5.20 ± 1.14 | 2.30–6.60 |
Lactic acid bacteria | 6.84 ± 1.09 | 5.00–7.90 | 7.57 ± 0.97 a | 4.00–8.50 | 6.60 ± 0.93 a | 4.69–8.00 |
Yeasts and molds | 6.49 ± 1.30 ab | 5.00–7.69 | 3.43 ± 1.48 a | 2.00–7.95 | 3.10 ± 1.07 b | 2.00–6.00 |
Enterobacteriaceae | 2.38 ± 0.49 | 1.69–3.00 | 3.06 ± 0.56 | 2.00–3.50 | 2.23 ± 0.91 | 1.00–3.80 |
Staphylococci | 3.73 ± 0.65 | 2.69–4.47 | 3.82 ± 0.98 | 2.69–6.30 | 3.80 ± 0.34 | 2.84–4.38 |
Escherichia coli | <2.00 | <2.00 | <2.00 | <2.00 | 3.81 ± 0.23 | 3.50–4.07 |
Mold-Ripened (n = 8) | Semi-Hard Cheese (n = 18) | Hard Cheese (n = 43) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BAs | Core | Rind | Core | Rind | Core | Rind | ||||||
Mean | Min–Max | Mean | Min–Max | Mean | Min–Max | Mean | Min–Max | Mean | Min–Max | Mean | Min–Max | |
TRP | <0.77 | <0.77 | <0.77 | <0.77 | <0.77 | <0.77 | <0.77 | <0.77 | 9.01 a | 1.56–23.89 | 5.58 a | 2.55–19.62 |
β-PHE | 42.90 | 1.43–84.38 | 30.03 | <0.63–84.18 | 46.55 | 1.07–130.59 | 18.81 | 1.39–55.25 | 16.05 | 0.64–52.44 | 24.55 | 10.08–92.85 |
PUT | 6.38 | 0.64–30.53 | 4.39 | 1.01–8.04 | 15.93 Aa | 1.37–95.21 | 9.78 Ba | 0.80–62.56 | 3.31 A | <0.59–11.63 | 2.28 B | <0.59–9.13 |
CAD | 2.57 A | <0.61–5.38 | 3.70 B | 2.35–4.70 | 64.22 A | 0.76–436.68 | 38.17 B | <0.61–292.80 | 19.48 A | <0.61–119.38 | 12.77 | <0.61–83.85 |
HIS | 7.05 | 0.74–13.99 | 6.23 | 2.59–13.07 | 87.82 | 13.5–248.55 | 40.83 | 4.17–127.01 | 28.35 | <0.59–116.42 | 20.96 | <0.59–85.90 |
TYR | 183.97 | 0.97–710.5 | 185.13 | 1.86–62.75 | 129.96 Aa | 2.30–767.03 | 55.13 a | <0.89–376.66 | 72.60 A | 1.33–236.33 | 36.69 | <0.89–142.81 |
SPD | 6.12 | 1.75–16.58 | 11.04 | 1.62–22.24 | 7.03 A | 3.35–17.90 | 11.65 | 0.50–66.53 | 5.35 A | <0.39–21.70 | 4.38 | <0.39–18.17 |
SPM | <1.01 | <1.01 | 7.32 | <1.01–15.64 | 2.47 a | <1.01–9.02 | <1.01 a | <1.01–1.15 | 3.23 | <1.01–5.12 | 10.05 | <1.01–10.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdolec, N.; Bogdanović, T.; Severin, K.; Dobranić, V.; Kazazić, S.; Grbavac, J.; Pleadin, J.; Petričević, S.; Kiš, M. Biogenic Amine Content in Retailed Cheese Varieties Produced with Commercial Bacterial or Mold Cultures. Processes 2022, 10, 10. https://doi.org/10.3390/pr10010010
Zdolec N, Bogdanović T, Severin K, Dobranić V, Kazazić S, Grbavac J, Pleadin J, Petričević S, Kiš M. Biogenic Amine Content in Retailed Cheese Varieties Produced with Commercial Bacterial or Mold Cultures. Processes. 2022; 10(1):10. https://doi.org/10.3390/pr10010010
Chicago/Turabian StyleZdolec, Nevijo, Tanja Bogdanović, Krešimir Severin, Vesna Dobranić, Snježana Kazazić, Jozo Grbavac, Jelka Pleadin, Sandra Petričević, and Marta Kiš. 2022. "Biogenic Amine Content in Retailed Cheese Varieties Produced with Commercial Bacterial or Mold Cultures" Processes 10, no. 1: 10. https://doi.org/10.3390/pr10010010
APA StyleZdolec, N., Bogdanović, T., Severin, K., Dobranić, V., Kazazić, S., Grbavac, J., Pleadin, J., Petričević, S., & Kiš, M. (2022). Biogenic Amine Content in Retailed Cheese Varieties Produced with Commercial Bacterial or Mold Cultures. Processes, 10(1), 10. https://doi.org/10.3390/pr10010010