Polynomial Moving Regression Band Stocks Trading System
Abstract
1. Introduction
2. Literature Review
3. Methodologies and Results
3.1. Data and Methodologies
3.2. Results
4. Summary and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aloud, Monira Essa, and Nora Alkhamees. 2021. Intelligent Algorithmic Trading Strategy Using Reinforcement Learning and Directional Change. IEEE Access 9: 114659–71. [Google Scholar] [CrossRef]
- Ayyıldız, Nazif. 2023. Prediction of Stock Market Index Movements with Machine Learning. Gaziantep: Ozgur Press. [Google Scholar]
- Benos, Evangelos, and Satchit Sagade. 2016. Price discovery and the cross-section of high-frequency trading. Journal of Financial Markets 30: 54–77. [Google Scholar] [CrossRef]
- Burgess, Nicholas. 2022. Machine Learning Algorithmic Trading Strategies for Superior Growth, Outperformance and Competitive Advantage. International Journal of Artificial Intelligence and Machine Learning 2: 38–60. [Google Scholar] [CrossRef]
- Chavarnakul, Thira, and David Enke. 2008. Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Systems with Applications 34: 1004–17. [Google Scholar] [CrossRef]
- Cliff, Dave. 2018. An Open-Source Limit-Order-Book Exchange for Teaching and Research. Paper presented at 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, November 18–21; pp. 1853–60. [Google Scholar]
- Cooper, Ricky, Wendy Currie, Jonathan Seddon, and Ben Van Vliet. 2022. Competitive advantage in algorithmic trading: A behavioral innovation economics approach. Review of Behavioral Finance 15: 371–95. [Google Scholar] [CrossRef]
- Currie, Wendy L., and Jonathan J. M. Seddon. 2017. The Regulatory, Technology and Market ‘Dark Arts Trilogy’ of High Frequency Trading: A Research Agenda. Journal of Information Technology 32: 111–26. [Google Scholar] [CrossRef]
- De Luna, Xavier. 1998. Projected polynomial autoregression for prediction of stationary time series. Journal of Applied Statistics 25: 763–75. [Google Scholar] [CrossRef]
- Frino, Alex, Dionigi Gerace, and Masud Behnia. 2021. The impact of algorithmic trading on liquidity in futures markets: New insights into the resiliency of spreads and depth. The Journal of Future Markets 41: 1301–14. [Google Scholar] [CrossRef]
- Hendershott, Terrence, and Ryan Riordan. 2011. Algorithmic Trading and the Market for Liquidity. Journal of Financial and Quantitative Analysis 48: 1001–24. [Google Scholar] [CrossRef]
- Huang, Boming, Yuziang Huan, and Li Da Xu. 2019. Automated Trading Systems Statistical and Machine Learning Methods and Hardware Implementation: A Survey. Enterprise Information Systems 13: 132–44. Available online: https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1027&context=itds_facpubs (accessed on 28 September 2024). [CrossRef]
- Huang, Wei, Yoshiteru Nakamori, and Shou-Yang Wang. 2005. Forecasting stock market movement direction with support vector machine. Computers & Operations Research 32: 2513–22. [Google Scholar]
- Islam, Sharmin, Md. Shakil Sikder, Md. Farhad Hossain, and Partha Chakraborty. 2021. Predicting the daily closing price of selected shares on the Dhaka stock exchange using machine learning techniques. SN Business & Economics 1: 58. [Google Scholar]
- Kambeu, Edson. 2019. Trading Volume as a Predictor of Market Movement An Application of Logistic Regression in the R environment. International Journal of Finance and Banking Studies 8: 57–69. [Google Scholar]
- Kara, Yakup, Melek Acar Boyacioglu, and Ömer Kaan Baykan. 2011. Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange. Expert Systems with Applications 38: 5311–19. [Google Scholar] [CrossRef]
- Kim, Ha Young, and Chang Hyun Won. 2018. Forecasting the Volatility of Stock Price Index: A Hybrid Model Integrating LSTM with Multiple GARCH-Type Models. Expert Systems with Applications 103: 25–37. [Google Scholar] [CrossRef]
- Maroto, Michelle. 2018. Sharing or limiting the wealth? Coresidence, parental support, and wealth outcomes in Canada. Journal of Family and Economic Issues 40: 102–16. [Google Scholar] [CrossRef]
- McMillan, David G. 2019. Cross-asset relations, correlations and economic implications. Global Finance Journal 41: 60–78. [Google Scholar] [CrossRef]
- Ozturk, Murat, Ismail Hakki Toroslu, and Guven Fidan. 2016. Heuristic based trading system on Forex data using technical indicator rules. Applied Soft Computing 43: 170–86. [Google Scholar] [CrossRef]
- Rather, Akhter Mohiuddin. 2014. A hybrid intelligent method of predicting stock returns. Advances in Artificial Neural Systems 2014: 246487. [Google Scholar] [CrossRef]
- Sen, Jaydip, and Sidra Mehtab. 2021. A robust predictive model for stock price prediction using deep learning and natural language processing. TechRxiv. [Google Scholar] [CrossRef]
- Srijiranon, Krittakom, Yoskorn Lertratanakham, and Tanatorn Tanantong. 2022. A hybrid framework using pca, emd and lstm methods for stock market price prediction with sentiment analysis. Applied Sciences 12: 10823. [Google Scholar] [CrossRef]
- Treleaven, Philip, Michal Galas, and Vidhi Lalchand. 2013. Algorithmic Trading Review. Communication of the ACM 56: 76–85. [Google Scholar] [CrossRef]
- Zhang, Zezheng, and Matloob Khushi. 2020. GA-MSSR: Genetic Algorithm Maximizing Sharpe and Sterling Ratio Method for Robo Trading. Ithaca: Cornell University. [Google Scholar]
- Zhao, Yang, and Zhonglu Chen. 2021. Forecasting stock price movement: New evidence from a novel hybrid deep learning model. Journal of Asian Business and Economic Studies 29: 91–104. [Google Scholar] [CrossRef]
- Zhu, Hengyue. 2022. Research advanced in financial trading systems based on reinforcement learning. Paper presented at 2nd International Conference on Artificial Intelligence Automation and High Performance (AIAHPC), Zhuhai, China, February 25–27. [Google Scholar]
Ticker | NP | PP (%) | PF | TCT | ADT | |
---|---|---|---|---|---|---|
1 | AAPL | 110.1 | 64.29 | 3.48 | 28 | 31 |
2 | ABNB | −59.28 | 42.86 | 0.56 | 14 | 27 |
3 | ADBE | −15.41 | 43.33 | 0.96 | 30 | 26 |
4 | ADI | 39.81 | 63.33 | 1.39 | 30 | 31 |
5 | ADP | 173.58 | 55.17 | 2.53 | 29 | 34 |
6 | ADSK | 178.10 | 50.00 | 2.11 | 26 | 31 |
7 | AEP | 69.29 | 73.08 | 3.53 | 26 | 35 |
8 | AMAT | 2.18 | 40.63 | 1.02 | 32 | 29 |
9 | AMD | 64.23 | 53.33 | 1.59 | 30 | 31 |
10 | AMGN | 86.39 | 55.17 | 1.48 | 29 | 29 |
11 | AMZN | 67.70 | 55.56 | 1.90 | 27 | 40 |
12 | ANSS | 69.88 | 58.62 | 1.29 | 29 | 31 |
13 | ASML | 183.05 | 57.14 | 1.33 | 28 | 31 |
14 | AVGO | 139.03 | 56.67 | 1.28 | 30 | 29 |
15 | AZN | 39.06 | 59.26 | 2.36 | 27 | 36 |
16 | BIIB | −269.62 | 36.67 | 0.46 | 30 | 30 |
17 | BKNG | −45.20 | 38.89 | 0.98 | 36 | 26 |
18 | BKR | 16.55 | 57.69 | 1.53 | 26 | 35 |
19 | CCEP | 24.18 | 51.72 | 1.78 | 29 | 34 |
20 | CDNS | 75.91 | 59.38 | 2.14 | 32 | 28 |
21 | CDW | 91.25 | 61.29 | 1.84 | 31 | 28 |
22 | CEG | 70.37 | 62.50 | 4.42 | 15 | 36 |
23 | CHTR | −4.43 | 42.86 | 0.99 | 29 | 31 |
24 | CMCSA | −7.62 | 37.04 | 0.78 | 27 | 29 |
25 | COST | 323.67 | 60.00 | 2.70 | 25 | 41 |
26 | CPRT | 19.52 | 62.5 | 1.79 | 32 | 30 |
27 | CRWD | 130.48 | 50.00 | 1.92 | 18 | 32 |
28 | CSCO | 19.42 | 70.37 | 1.60 | 27 | 35 |
29 | CSGP | −0.86 | 51.85 | 0.98 | 27 | 29 |
30 | CSX | 27.58 | 67.86 | 2.90 | 28 | 31 |
31 | CTAS | 252.56 | 59.29 | 2.88 | 27 | 32 |
32 | CTSH | 46.39 | 65.38 | 2.32 | 26 | 39 |
33 | DASH | −80.72 | 41.67 | 0.44 | 12 | 29 |
34 | DDOG | 26.95 | 42.861 | 1.31 | 14 | 31 |
35 | DLTR | 99.20 | 55.56 | 2.25 | 27 | 35 |
36 | DXCM | 63.23 | 51.85 | 1.82 | 27 | 31 |
37 | EA | 5.46 | 51.72 | 1.05 | 29 | 27 |
38 | EXC | 7.44 | 53.33 | 1.34 | 30 | 31 |
39 | FANG | −75.79 | 37.50 | 0.64 | 32 | 25 |
40 | FAST | 47.00 | 68.97 | 3.54 | 29 | 31 |
41 | FTNT | 6.19 | 50.00 | 1.13 | 28 | 29 |
42 | GEHC | −8.83 | 20.00 | 0.41 | 5 | 25 |
43 | GILD | −17.62 | 34.48 | 0.76 | 29 | 27 |
44 | GOOG | 40.52 | 55.56 | 1.95 | 27 | 23 |
45 | GOOGL | 48.77 | 64.00 | 2.17 | 25 | 36 |
46 | HON | 65.61 | 45.16 | 1.51 | 31 | 29 |
47 | IDXX | 279.48 | 50.00 | 1.78 | 30 | 29 |
48 | ILMN | 38.37 | 48.15 | 1.09 | 27 | 35 |
49 | INTC | −13.48 | 38.71 | 0.80 | 31 | 30 |
50 | INTU | 324.90 | 53.33 | 2.31 | 30 | 34 |
51 | ISRG | 182.64 | 66.67 | 1.95 | 27 | 33 |
52 | KDP | 15.57 | 45.83 | 2.41 | 24 | 41 |
53 | KHC | −22.75 | 41.94 | 0.62 | 31 | 31 |
54 | KLAC | 191.63 | 42.42 | 1.57 | 33 | 28 |
55 | LIN | 235.42 | 62.07 | 3.11 | 29 | 29 |
56 | LRCX | 184.44 | 44.83 | 1.32 | 29 | 30 |
57 | LULU | 307.57 | 60.71 | 2.55 | 28 | 35 |
58 | MAR | 124.16 | 60.00 | 2.60 | 30 | 32 |
59 | MCHP | 19.86 | 55.17 | 1.33 | 29 | 31 |
60 | MDB | 75.85 | 58.33 | 1.18 | 24 | 34 |
61 | MDLZ | 15.38 | 48.39 | 1.45 | 31 | 30 |
62 | MELI | 258.84 | 50.00 | 1.16 | 32 | 26 |
63 | META | 228.30 | 48.28 | 1.93 | 29 | 32 |
64 | MNST | 32.25 | 61.54 | 2.78 | 26 | 33 |
65 | MRNA | 72.20 | 38.89 | 1.22 | 18 | 41 |
66 | MRVL | −27.51 | 36.36 | 0.68 | 33 | 27 |
67 | MSFT | 86.64 | 47.06 | 1.55 | 34 | 31 |
68 | MU | −10.77 | 51.72 | 0.88 | 29 | 29 |
69 | NFLX | 224.49 | 58.62 | 1.57 | 29 | 31 |
70 | NVDA | 390.65 | 64.00 | 3.13 | 25 | 38 |
71 | NXPI | −6.29 | 48.57 | 0.96 | 35 | 27 |
72 | ODFL | 150.43 | 70.37 | 4.80 | 27 | 35 |
73 | ON | 26.62 | 51.85 | 1.62 | 27 | 31 |
74 | ORLY | 553.29 | 55.56 | 3.13 | 27 | 38 |
75 | PANW | 178.34 | 62.07 | 2.86 | 29 | 33 |
76 | PAYX | 33.41 | 58.06 | 1.50 | 31 | 28 |
77 | PCAR | 65.90 | 53.33 | 2.77 | 30 | 35 |
78 | PDD | −21.28 | 52.38 | 0.85 | 21 | 33 |
79 | PEP | 86.77 | 59.26 | 2.58 | 27 | 33 |
80 | PYPL | 5.64 | 46.15 | 1.04 | 26 | 39 |
81 | QCOM | 12.61 | 50.00 | 1.10 | 28 | 31 |
82 | REGN | 273.00 | 50.00 | 1.69 | 28 | 33 |
83 | ROP | 281.21 | 65.38 | 2.31 | 26 | 33 |
84 | ROST | 112.74 | 58.62 | 4.13 | 29 | 33 |
85 | SBUX | 44.83 | 64.29 | 1.74 | 28 | 32 |
86 | SIRI | 4.03 | 53.85 | 1.96 | 26 | 33 |
87 | SNPS | 181.38 | 61.29 | 2.44 | 31 | 31 |
88 | TEAM | −77.63 | 62.07 | 0.79 | 29 | 32 |
89 | TMUS | 12.53 | 38.71 | 1.15 | 31 | 29 |
90 | TSLA | 321.38 | 57.69 | 2.28 | 26 | 36 |
91 | TTD | 1.60 | 51.72 | 1.02 | 29 | 29 |
92 | TTWO | 16.55 | 46.67 | 1.09 | 30 | 31 |
93 | TXN | −13.30 | 48.39 | 0.90 | 31 | 30 |
94 | VRSK | 113.47 | 50.00 | 2.38 | 28 | 28 |
95 | VRTX | 32.30 | 51.52 | 1.13 | 33 | 27 |
96 | WBA | −53.22 | 33.33 | 0.37 | 30 | 31 |
97 | WBD | 19.40 | 41.38 | 1.54 | 29 | 27 |
98 | WDAY | 100.50 | 51.85 | 1.68 | 27 | 32 |
99 | XEL | 42.86 | 73.08 | 2.55 | 26 | 38 |
100 | ZS | 108.86 | 52.38 | 1.69 | 21 | 35 |
AV | 79.67 | 52.89 | 1.76 | 27.59 | 31.59 | |
ST.D | 117.73 | 9.75 | 0.89 | 4.70 | 3.72 | |
Max | 553.29 | 73.08 | 4.80 | 36 | 41 | |
Min | −269.62 | 20.00 | 0.37 | 5 | 23 |
Ticker | NP | PP (%) | PF | TCT | ADT | |
---|---|---|---|---|---|---|
1 | AAPL | 83.74 | 58.97 | 1.86 | 40 | 23 |
2 | ABNB | 3.11 | 64.29 | 1.03 | 14 | 25 |
3 | ADBE | 394.32 | 60.98 | 1.96 | 38 | 22 |
4 | ADI | 40.07 | 58.54 | 1.31 | 42 | 24 |
5 | ADP | 42.33 | 57.14 | 1.28 | 38 | 22 |
6 | ADSK | 42.33 | 57.14 | 1.28 | 40 | 22 |
7 | AEP | −20.12 | 46.67 | 0.80 | 45 | 19 |
8 | AMAT | 72.79 | 59.53 | 1.60 | 41 | 21 |
9 | AMD | 77.95 | 62.50 | 1.59 | 37 | 25 |
10 | AMGN | 172.48 | 50.80 | 2.14 | 39 | 23 |
11 | AMZN | 98.20 | 52.38 | 1.87 | 42 | 21 |
12 | ANSS | 186.47 | 62.16 | 1.88 | 37 | 22 |
13 | ASML | 456.63 | 66.67 | 1.77 | 42 | 21 |
14 | AVGO | 396.21 | 60.98 | 2.16 | 41 | 24 |
15 | AZN | 13.45 | 44.45 | 1.26 | 36 | 25 |
16 | BIIB | −218.23 | 39.47 | 0.57 | 38 | 19 |
17 | BKNG | 1501.25 | 68.42 | 1.62 | 38 | 24 |
18 | BKR | 11.94 | 46.15 | 1.27 | 39 | 22 |
19 | CCEP | 25.98 | 64.86 | 1.74 | 37 | 24 |
20 | CDNS | 141.49 | 62.5 | 2.17 | 40 | 22 |
21 | CDW | 114.47 | 69.44 | 1.97 | 36 | 27 |
22 | CEG | 57.60 | 60.00 | 7.45 | 25 | 26 |
23 | CHTR | 85.42 | 53.66 | 1.17 | 41 | 21 |
24 | CMCSA | −2.80 | 55.00 | 0.94 | 40 | 21 |
25 | COST | 381.09 | 64.86 | 2.47 | 37 | 23 |
26 | CPRT | 30.14 | 66.67 | 2.37 | 39 | 23 |
27 | CRWD | 4.45 | 45.83 | 1.02 | 37 | 21 |
28 | CSCO | 17.19 | 56.41 | 1.47 | 39 | 24 |
29 | CSGP | 5.12 | 55.00 | 1.08 | 40 | 23 |
30 | CSX | 25.72 | 54.05 | 2.36 | 37 | 23 |
31 | CTAS | 209.04 | 65.12 | 1.92 | 43 | 21 |
32 | CTSH | 52.28 | 57.5 | 1.88 | 40 | 24 |
33 | DASH | 12.02 | 60.00 | 1.17 | 15 | 24 |
34 | DDOG | 75.82 | 63.64 | 1.82 | 22 | 21 |
35 | DLTR | 28.98 | 55.26 | 1.24 | 38 | 23 |
36 | DXCM | 88.51 | 60.00 | 1.68 | 40 | 24 |
37 | EA | 13.11 | 50.00 | 1.08 | 42 | 22 |
38 | EXC | 11.31 | 55.26 | 1.48 | 38 | 23 |
39 | FANG | 114.94 | 56.41 | 1.76 | 39 | 25 |
40 | FAST | 19.68 | 57.14 | 1.41 | 42 | 21 |
41 | FTNT | 10.90 | 50.00 | 1.24 | 42 | 22 |
42 | GEHC | 11.33 | 60.00 | 5.00 | 5 | 30 |
43 | GILD | −35.59 | 43.18 | 0.62 | 44 | 22 |
44 | GOOG | 61.38 | 54.05 | 1.85 | 37 | 22 |
45 | GOOGL | 37.91 | 55.26 | 1.49 | 38 | 22 |
46 | HON | 95.71 | 60.00 | 1.67 | 40 | 22 |
47 | IDXX | 362.30 | 52.38 | 1.97 | 42 | 20 |
48 | ILMN | 72.76 | 62.16 | 1.18 | 37 | 24 |
49 | INTC | −3.24 | 46.15 | 0.95 | 39 | 25 |
50 | INTU | 119.06 | 58.54 | 1.38 | 41 | 23 |
51 | ISRG | 208.73 | 68.57 | 2.07 | 35 | 30 |
52 | KDP | 6.59 | 47.22 | 1.30 | 36 | 23 |
53 | KHC | −13.06 | 50.00 | 0.75 | 34 | 27 |
54 | KLAC | 403.95 | 60.00 | 2.70 | 40 | 23 |
55 | LIN | 153.83 | 52.50 | 1.99 | 40 | 24 |
56 | LRCX | 356.22 | 64.86 | 1.70 | 37 | 22 |
57 | LULU | 211.36 | 61.54 | 1.72 | 39 | 22 |
58 | MAR | 60.55 | 51.16 | 1.38 | 43 | 22 |
59 | MCHP | 81.17 | 63.89 | 2.64 | 36 | 26 |
60 | MDB | −11.01 | 57.58 | 0.98 | 33 | 24 |
61 | MDLZ | 15.25 | 51.28 | 1.38 | 39 | 22 |
62 | MELI | 506.95 | 59.52 | 1.38 | 42 | 21 |
63 | META | 13.17 | 47.62 | 1.03 | 42 | 22 |
64 | MNST | 37.12 | 56.41 | 2.48 | 39 | 24 |
65 | MRNA | 33.14 | 44.44 | 1.08 | 27 | 23 |
66 | MRVL | 3.95 | 48.65 | 1.06 | 37 | 23 |
67 | MSFT | 123.68 | 55.00 | 1.72 | 40 | 24 |
68 | MU | 24.09 | 47.50 | 1.26 | 40 | 24 |
69 | NFLX | 156.09 | 54.29 | 1.28 | 35 | 26 |
70 | NVDA | 261.28 | 51.16 | 1.77 | 43 | 21 |
71 | NXPI | 153.02 | 60.00 | 2.02 | 40 | 22 |
72 | ODFL | 44.31 | 63.89 | 1.43 | 36 | 22 |
73 | ON | 71.67 | 62.16 | 2.52 | 37 | 26 |
74 | ORLY | 605.68 | 57.50 | 2.80 | 40 | 23 |
75 | PANW | 105.63 | 52.63 | 1.67 | 38 | 22 |
76 | PAYX | 50.69 | 58.33 | 2.16 | 36 | 25 |
77 | PCAR | 72.99 | 70.27 | 3.46 | 37 | 27 |
78 | PDD | −22.37 | 43.75 | 0.89 | 32 | 21 |
79 | PEP | 51.99 | 58.54 | 1.52 | 41 | 22 |
80 | PYPL | 49.47 | 52.38 | 1.38 | 42 | 22 |
81 | QCOM | 75.43 | 59.52 | 1.50 | 42 | 22 |
82 | REGN | 136.45 | 48.65 | 1.25 | 37 | 23 |
83 | ROP | 217.64 | 58.97 | 1.83 | 39 | 24 |
84 | ROST | 60.77 | 48.65 | 1.73 | 37 | 24 |
85 | SBUX | −45.13 | 37.78 | 0.64 | 45 | 21 |
86 | SIRI | 0.12 | 38.46 | 1.02 | 39 | 25 |
87 | SNPS | 318.56 | 65.85 | 2.38 | 41 | 21 |
88 | TEAM | −58.21 | 52.50 | 0.85 | 40 | 24 |
89 | TMUS | 65.63 | 65.79 | 1.93 | 38 | 24 |
90 | TSLA | 263.05 | 61.11 | 2.17 | 36 | 23 |
91 | TTD | 32.16 | 55.00 | 1.31 | 40 | 23 |
92 | TTWO | −63.93 | 46.67 | 0.75 | 45 | 21 |
93 | TXN | 108.53 | 63.16 | 2.10 | 38 | 27 |
94 | VRSK | 70.26 | 58.97 | 1.59 | 39 | 24 |
95 | VRTX | 302.25 | 60.53 | 3.03 | 38 | 25 |
96 | WBA | −47.12 | 37.50 | 0.48 | 40 | 21 |
97 | WBD | 10.30 | 43.90 | 1.17 | 41 | 24 |
98 | WDAY | 58.09 | 62.86 | 1.25 | 35 | 24 |
99 | XEL | 14.37 | 43.59 | 1.25 | 39 | 21 |
100 | ZS | 99.09 | 54.84 | 1.35 | 31 | 23 |
AV | 110.33 | 55.85 | 1.67 | 37.75 | 23.11 | |
ST.D | 193.95 | 7.53 | 0.85 | 5.95 | 1.96 | |
Max | 1501.25 | 70.27 | 7.45 | 45 | 30 | |
Min | −218.23 | 37.50 | 0.48 | 5 | 19 |
Ticker | NP | PP (%) | PF | TCT | ADT | |
---|---|---|---|---|---|---|
1 | AAPL | 72.35 | 59.51 | 1.70 | 49 | 17 |
2 | ABNB | 25.08 | 62.50 | 1.26 | 16 | 21 |
3 | ADBE | 364.71 | 61.54 | 1.71 | 52 | 19 |
4 | ADI | 34.82 | 54.55 | 1.20 | 55 | 15 |
5 | ADP | 43.83 | 52.83 | 1.23 | 53 | 16 |
6 | ADSK | 144.40 | 58.33 | 1.54 | 48 | 20 |
7 | AEP | −31.20 | 47.37 | 0.71 | 57 | 16 |
8 | AMAT | 103.23 | 60.78 | 2.00 | 51 | 18 |
9 | AMD | 120.39 | 58.00 | 1.96 | 50 | 19 |
10 | AMGN | 98.68 | 51.02 | 1.44 | 49 | 19 |
11 | AMZN | 148.37 | 59.62 | 2.30 | 52 | 18 |
12 | ANSS | 243.07 | 67.31 | 1.87 | 52 | 18 |
13 | ASML | 681.73 | 64.81 | 2.25 | 54 | 17 |
14 | AVGO | 354.64 | 51.72 | 1.57 | 58 | 17 |
15 | AZN | 3.77 | 53.06 | 1.08 | 49 | 18 |
16 | BIIB | 4.54 | 46.67 | 1.01 | 45 | 18 |
17 | BKNG | 2166.95 | 62.00 | 2.36 | 50 | 19 |
18 | BKR | 2166.95 | 62.00 | 2.36 | 50 | 19 |
19 | CCEP | 9.91 | 46.3 | 1.17 | 54 | 19 |
20 | CDNS | 208.69 | 63.27 | 3.45 | 49 | 18 |
21 | CDW | 93.38 | 53.85 | 1.70 | 52 | 18 |
22 | CEG | 47.43 | 58.33 | 3.19 | 12 | 19 |
23 | CHTR | 357.22 | 57.14 | 1.63 | 49 | 19 |
24 | CMCSA | 9.19 | 57.69 | 1.22 | 52 | 18 |
25 | COST | 111.56 | 52.83 | 1.32 | 53 | 18 |
26 | CPRT | 32.23 | 63.27 | 2.87 | 49 | 19 |
27 | CRWD | 136.56 | 52.94 | 1.59 | 34 | 16 |
28 | CSCO | 20.84 | 61.22 | 1.38 | 49 | 19 |
29 | CSGP | 54.09 | 56.60 | 1.72 | 53 | 19 |
30 | CSX | 7.12 | 52.00 | 1.24 | 50 | 17 |
31 | CTAS | 196.94 | 57.70 | 1.69 | 52 | 18 |
32 | CTSH | 10.67 | 56.25 | 1.15 | 48 | 20 |
33 | DASH | −52.38 | 42.86 | 0.55 | 21 | 19 |
34 | DDOG | 88.90 | 58.62 | 1.83 | 29 | 17 |
35 | DLTR | −30.26 | 53.19 | 0.86 | 47 | 19 |
36 | DXCM | 48.95 | 53.70 | 1.34 | 54 | 16 |
37 | EA | −3.04 | 47.06 | 0.98 | 51 | 17 |
38 | EXC | 0.13 | 48.08 | 1.00 | 52 | 17 |
39 | FANG | 146.99 | 65.31 | 2.01 | 49 | 20 |
40 | FAST | 14.45 | 49.06 | 1.27 | 53 | 17 |
41 | FTNT | 36.08 | 60.00 | 1.64 | 55 | 19 |
42 | GEHC | 10.81 | 80.00 | 3.82 | 5 | 19 |
43 | GILD | −5.37 | 43.64 | 0.94 | 55 | 17 |
44 | GOOG | 76.25 | 60.00 | 1.98 | 55 | 18 |
45 | GOOGL | 61.96 | 56.14 | 1.72 | 57 | 17 |
46 | HON | −37.96 | 49.06 | 0.84 | 53 | 17 |
47 | IDXX | 255.39 | 59.62 | 1.59 | 52 | 18 |
48 | ILMN | −27.64 | 47.27 | 0.96 | 55 | 16 |
49 | INTC | −3.54 | 46.15 | 0.95 | 52 | 16 |
50 | INTU | 219.32 | 63.16 | 1.46 | 57 | 17 |
51 | ISRG | 322.09 | 63.46 | 2.19 | 52 | 20 |
52 | KDP | 21.87 | 60.00 | 1.98 | 50 | 19 |
53 | KHC | 19.08 | 54.55 | 1.56 | 44 | 19 |
54 | KLAC | 357.10 | 57.89 | 2.12 | 57 | 16 |
55 | LIN | 81.02 | 56.14 | 1.30 | 57 | 18 |
56 | LRCX | 457.32 | 55.36 | 1.72 | 56 | 16 |
57 | LULU | 247.89 | 52.94 | 1.71 | 51 | 18 |
58 | MAR | 7.64 | 48.15 | 1.05 | 54 | 17 |
59 | MCHP | 59.81 | 61.22 | 1.97 | 49 | 18 |
60 | MDB | 448.01 | 57.14 | 2.22 | 42 | 18 |
61 | MDLZ | 16.74 | 54.00 | 1.33 | 50 | 17 |
62 | MELI | 1393.09 | 60.34 | 1.86 | 58 | 18 |
63 | META | −66.33 | 45.1 | 0.83 | 51 | 17 |
64 | MNST | 9.24 | 54.24 | 1.17 | 59 | 17 |
65 | MRNA | −52.53 | 51.35 | 0.87 | 37 | 17 |
66 | MRVL | 34.07 | 61.82 | 1.54 | 55 | 17 |
67 | MSFT | 269.15 | 67.31 | 2.93 | 52 | 19 |
68 | MU | 55.86 | 63.83 | 1.56 | 47 | 19 |
69 | NFLX | 531.29 | 66.67 | 2.20 | 45 | 20 |
70 | NVDA | 457.86 | 56.36 | 2.60 | 55 | 17 |
71 | NXPI | 65.88 | 62.00 | 1.35 | 50 | 17 |
72 | ODFL | 14.84 | 46.43 | 1.13 | 56 | 16 |
73 | ON | 77.41 | 64.00 | 2.86 | 50 | 18 |
74 | ORLY | 441.78 | 56.36 | 2.28 | 55 | 16 |
75 | PANW | 99.64 | 51.92 | 1.51 | 52 | 18 |
76 | PAYX | 14.63 | 45.45 | 1.12 | 55 | 16 |
77 | PCAR | 11.13 | 46.31 | 1.15 | 54 | 17 |
78 | PDD | −95.52 | 51.28 | 0.59 | 39 | 16 |
79 | PEP | 4.50 | 51.72 | 1.03 | 58 | 16 |
80 | PYPL | 90.86 | 58.49 | 1.45 | 53 | 18 |
81 | QCOM | 32.46 | 45.61 | 1.16 | 57 | 15 |
82 | REGN | 286.82 | 53.19 | 1.44 | 47 | 19 |
83 | ROP | 37.01 | 55.36 | 1.08 | 56 | 18 |
84 | ROST | 13.29 | 55.32 | 1.11 | 47 | 20 |
85 | SBUX | −6.45 | 46.03 | 0.94 | 54 | 17 |
86 | SIRI | 2.38 | 53.06 | 1.49 | 49 | 19 |
87 | SNPS | 460.68 | 64.91 | 3.80 | 57 | 15 |
88 | TEAM | 208.49 | 56.60 | 1.64 | 53 | 18 |
89 | TMUS | 59.12 | 56.36 | 1.60 | 55 | 17 |
90 | TSLA | 235.78 | 59.57 | 1.66 | 47 | 18 |
91 | TTD | 92.20 | 53.06 | 1.99 | 49 | 19 |
92 | TTWO | 54.94 | 53.70 | 1.34 | 54 | 19 |
93 | TXN | 35.64 | 48.08 | 1.26 | 52 | 17 |
94 | VRSK | 64.95 | 52.94 | 1.39 | 51 | 18 |
95 | VRTX | 126.86 | 55.77 | 1.45 | 52 | 18 |
96 | WBA | −20.07 | 41.51 | 0.77 | 53 | 17 |
97 | WBD | 3.48 | 44.44 | 1.06 | 54 | 17 |
98 | WDAY | 199.89 | 61.22 | 1.764 | 49 | 19 |
99 | XEL | 4.04 | 41.82 | 1.06 | 55 | 18 |
100 | ZS | 147.06 | 58.97 | 1.79 | 39 | 18 |
AV | 162.75 | 55.45 | 1.60 | 49.71 | 17.78 | |
ST.D | 348 | 54.40 | 0.64 | 9.01 | 1.12 | |
Max | 2166.95 | 80.00 | 3.82 | 59 | 21 | |
Min | −95.52 | 41.51 | 0.55 | 5 | 15 |
NP | PP (%) | PF | Days | ||
---|---|---|---|---|---|
Model 1 | AV | 79.67 | 52.89 | 1.76 | 871.56 |
Min | −269.62 | 20.00 | 0.37 | 115 | |
Model 2 | AV | 110.33 | 55.85 | 1.67 | 872.4 |
Min | −218.23 | 37.50 | 0.48 | 95 | |
Model 3 | AV | 162.73 | 55.45 | 1.60 | 883.8 |
Min | −95.52 | 41.51 | 0.55 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, G. Polynomial Moving Regression Band Stocks Trading System. Risks 2024, 12, 166. https://doi.org/10.3390/risks12100166
Cohen G. Polynomial Moving Regression Band Stocks Trading System. Risks. 2024; 12(10):166. https://doi.org/10.3390/risks12100166
Chicago/Turabian StyleCohen, Gil. 2024. "Polynomial Moving Regression Band Stocks Trading System" Risks 12, no. 10: 166. https://doi.org/10.3390/risks12100166
APA StyleCohen, G. (2024). Polynomial Moving Regression Band Stocks Trading System. Risks, 12(10), 166. https://doi.org/10.3390/risks12100166