RhoGDI1-Cdc42 Signaling Is Required for PDGF-BB-Induced Phenotypic Transformation of Vascular Smooth Muscle Cells and Neointima Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture and Treatment
2.3. Rat BI Model
2.4. Western Blot Analysis
2.5. Real-Time RT-PCR
2.6. Co-Immunoprecipitation (Co-IP)
2.7. EdU Assay
2.8. Wound Healing and Transwell Assays
2.9. siRNA Transfection
2.10. Pulldown Assay
2.11. Immunofluorescence
2.12. HE Staining
2.13. Flow Cytometry
2.14. Statistical Analysis
3. Results
3.1. PDGF-BB Regulates RhoGDI1 Stability via the PDGF Receptor
3.2. RhoGDI1 Protein Stability Promotes PDGF-BB-Induced VSMC Phenotypic Modulation
3.3. PDGF-BB Promotes RhoGDI1-Cdc42 Interaction and Thus Cdc42 Activation by Its Receptor
3.4. Inhibition of PDGF- RhoGDI1 Signaling Leads to the Accumulation of Cdc42 in the ER
3.5. Cdc42 Activation Participates in PDGF-BB-Induced VSMC Phenotypic Modulation
3.6. RhoGDI1-Cdc42 Signaling Participates in VSMC Phenotypic Transformation and Neointima Formation in Rats.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, M.W.; Roubin, G.S.; King, S.B. Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation 1989, 79, 1374–1387. [Google Scholar] [CrossRef] [Green Version]
- Guzman, L.A.; Mick, M.J.; Arnold, A.M.; Forudi, F.; Whitlow, P.L. Role of intimal hyperplasia and arterial remodeling after balloon angioplasty: An experimental study in the atherosclerotic rabbit model. Arter. Thromb. Vasc. Biol. 1996, 16, 479–487. [Google Scholar] [CrossRef]
- Tang, L.; Dai, F.; Liu, Y.; Yu, X.Q.; Huang, C.; Wang, Y.Q.; Yao, W.J. RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton. Pharm. Res. 2018, 133, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Althoff, T.F.; Juárez, J.A.; Troidl, K.; Tang, C.; Wang, S.P.; Wirth, A.; Takefuji, M.; Wettschureck, N.; Offermanns, S. Procontractile G protein-mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling. J. Exp. Med. 2012, 209, 2277–2290. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Han, Y.; Shen, Y.; Yan, Z.Q.; Zhang, P.; Yao, Q.P.; Shen, B.R.; Gao, L.Z.; Qi, Y.X.; Jiang, Z.L. Endothelial insulin-like growth factor-1 modulates proliferation and phenotype of smooth muscle cells induced by low shear stress. Ann. Biomed. Eng. 2014, 42, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Li, C.X.; Cui, X.B.; Tomarev, S.I.; Chen, S.Y. Olfactomedin 2 regulates smooth muscle phenotypic modulation and vascular remodeling through mediating runt-related transcription factor 2 binding to serum response factor. Arter. Thromb. Vasc. Biol. 2017, 37, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Q.; Bendeck, M.P.; Simmons, C.A.; Santerre, J.P. Deriving vascular smooth muscle cells from mesenchymal stromal cells: Evolving differentiation strategies and current understanding of their mechanisms. Biomaterials 2017, 145, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Zhang, E.; Senapati, P.; Amaram, V.; Reddy, M.A.; Stapleton, K.; Leung, A.; Lanting, L.; Wang, M.; Chen, Z.; et al. A novel angiotensin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells. Circ. Res. 2018, 123, 1298–1312. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.R.; Jiang, D.H.; Li, L.; Yang, Y.; Wu, P.; Luo, Y.Y.; Yang, R.L.; Li, D.Y. LPS promotes vascular smooth muscle cells proliferation through the TLR4/Rac1/Akt signalling pathway. Cell Physiol. Biochem. 2017, 44, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.X.; Jiang, J.; Jiang, X.H.; Wang, X.D.; Ji, S.Y.; Han, Y.; Long, D.K.; Shen, B.R.; Yan, Z.Q.; Chien, S.; et al. PDGF-BB and TGF-β1 on cross-talk between endothelial and smooth muscle cells in vascular remodeling induced by low shear stress. Proc. Natl. Acad. Sci. USA 2011, 108, 1908–1913. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.K.; Cha, B.Y.; Yagyu, T.; Woo, J.T.; Ojika, M. Sponge-derived acetylenic alcohols, petrosiols, inhibit proliferation and migration of platelet-derived growth factor (PDGF)-induced vascular smooth muscle cells. Bioorg. Med. Chem. 2013, 21, 1804–1810. [Google Scholar] [CrossRef]
- Yoo, S.H.; Lim, Y.; Kim, S.J.; Yoo, K.D.; Yoo, H.S.; Hong, J.T.; Lee, M.Y.; Yun, Y.P. Sulforaphane inhibits PDGF-induced proliferation of rat aortic vascular smooth muscle cell by up-regulation of p53 leading to G1/S cell cycle arrest. Vasc. Pharmacol. 2013, 59, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Sui, H.; Cai, G.X.; Pan, S.F.; Deng, W.L.; Wang, Y.W.; Chen, Z.S.; Cai, S.J.; Zhu, H.R.; Li, Q. MiR200c attenuates P-gp-mediated MDR and metastasis by targeting JNK2/c-Jun signaling pathway in colorectal cancer. Mol. Cancer Ther. 2014, 13, 3137–3151. [Google Scholar] [CrossRef] [Green Version]
- Boulter, E.; Mata, R.G. RhoGDI: A rheostat for the Rho switch. Small GTPases 2010, 1, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Boulter, E.; Mata, R.G.; Guilluy, C.; Dubash, A.; Rossi, G.; Brennwald, P.J.; Burridge, K. Regulation of RhoGTPase crosstalk, degradation and activity by RhoGDI1. Nat. Cell Biol. 2010, 12, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Mata, R.G.; Boulter, E.; Burridge, K. The ‘invisible hand’: Regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 2011, 12, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.B.; Krutzsch, H.; Shu, H.; Zhao, Y.; Liotta, L.A.; Kohn, E.C.; Petricoin, E.F. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2002, 2, 76–84. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, H.; Sun, X.; Ding, Y. Comparative proteomic analysis identifies proteins associated with the development and progression of colorectal carcinoma. FEBS J. 2010, 277, 4195–4204. [Google Scholar] [CrossRef] [PubMed]
- Forget, M.A.; Desrosiers, R.R.; Del, M.; Moumdjian, R.; Shedid, D.; Berthelet, F.; Beliveau, R. The expression of rho proteins decreases with human brain tumor progression: Potential tumor markers. Clin. Exp. Metastasis. 2002, 19, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Harding, M.A.; Theodorescu, D. RhoGDI2: A new metastasis suppressor gene: Discovery and clinical translation. Urol. Oncol. Semin. Orig. Investig. 2007, 25, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.; Qi, Y.; Guan, W.; Meng, G.L.; Liu, Z.G.; Zhang, T.; Yao, W.J. RhoGDI stability is regulated by SUMOylation and ubiquitination via the AT1 receptor and participates in Ang II-induced smooth muscle proliferation and vascular remodeling. Atherosclerosis 2019, 288, 124–136. [Google Scholar] [CrossRef]
- Heasman, S.J.; Ridley, A.J. Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 2008, 9, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Boureux, A.; Vignal, E.; Faure, S.; Fort, P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol. Biol. Evol. 2007, 24, 203–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govek, E.E.; Newey, S.E.; Aelst, L.V. The role of the Rho GTPases in neuronal development. Genes Dev. 2005, 19, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, Y.Q.; Shacter, E.; Zheng, Y. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase-evidence for a GTP/GDP displacement model. Biochemistry 2005, 44, 2566–2576. [Google Scholar] [CrossRef]
- Tulis, D.A. Rat carotid artery balloon injury model. Methods Mol. Med. 2007, 139, 1–30. [Google Scholar]
- Cappella, P.; Gasparri, F.; Pulici, M.; Moll, J. A novel method based on click chemistry, which overcomes limitations of cell cycle analysis by classical determination of BrdU incorporation, allowing multiplex antibody staining. Cytom. Part A 2008, 73, 626–636. [Google Scholar] [CrossRef]
- Yang, L.F.; Tang, L.; Dai, F.; Meng, G.L.; Yin, R.T.; Xu, X.L.; Yao, W.J. Raf-1/CK2 and RhoA/ROCK signaling promote TNF-α-mediated endothelial apoptosis via regulating vimentin cytoskeleton. Toxicology 2017, 389, 74–84. [Google Scholar] [CrossRef]
- Hernández, A.J.A.; Reyes, V.L.; Albores-García, D.; Gómez, R.; Calderón-Aranda, E.S. MeHg affects the activation of FAK, Src, Rac1 and Cdc42, critical proteins for cell movement in PDGF-stimulated SH-SY5Y neuroblastoma cells. Toxicology 2018, 394, 35–44. [Google Scholar] [CrossRef]
- Chen, J.Y.; Kitchen, C.M.; Streb, J.W.; Miano, J.M. Myocardin: A component of a molecular switch for smooth muscle differentiation. J. Mol. Cell Cardiol. 2002, 34, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.F.; Liu, X.X.; Luo, M.L.; Liu, X.P.; Luo, Q.Q.; Tao, H.; Wu, D.; Lu, S.S.; Jin, J.J.; Zhao, Y.; et al. dNK derived IFN-γ mediates VSMC migration and apoptosis via the induction of LncRNA MEG3: A role in uterovascular transformation. Placenta 2017, 50, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.B.; Wan, M.Y.; Wang, P.Y.; Zhang, C.X.; Xu, D.Y.; Liao, X.; Sun, H.J. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade. Redox Biol. 2018, 14, 656–668. [Google Scholar] [CrossRef] [PubMed]
- Gorovoy, M.; Neamu, R.; Niu, J.; Vogel, S.; Predescu, D.; Miyoshi, J.; Takai, Y.; Kini, V.; Mehta, D.; Malik, A.; et al. RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs. Circ. Res. 2007, 101, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Zhang, D.; Liu, J.; Li, J.; Yu, Y.; Wu, X.R.; Huang, C. RhoGDI SUMOylation at Lys-138 increases its binding activity to Rho GTPase and its inhibiting cancer cell motility. J. Biol. Chem. 2012, 287, 13752–13760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramovitz, A.; Gutman, M.; Nachliel, E. Structural coupling between the Rho-insert domain of Cdc42 and the geranylgeranyl binding site of RhoGDI. Biochemistry 2012, 51, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.J.; Rzucidlo, E.M.; Merenick, B.L.; Wagner, R.J.; Martin, K.A.; Powell, R.J. Endothelial cell activation of the smooth muscle cell phosphoinositide 3-kinase/Akt pathway promotes differentiation. J. Vasc. Surg. 2005, 41, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Gong, Y.; Tang, Y.; Li, H.; He, Q.; Gower, L.; Liaw, L.; Friesel, R.E. Spry1 and Spry4 differentially regulate human aortic smooth muscle cell phenotype via Akt/FoxO/myocardin signaling. PLoS ONE 2013, 8, e58746. [Google Scholar] [CrossRef] [Green Version]
- Stultiens, A.; Ho, T.T.; Nusgens, B.V.; Colige, A.C.; Deroanne, C.F. Rho proteins crosstalk via RhoGDIα: At random or hierarchically ordered? Commun. Integr. Biol. 2012, 5, 99–101. [Google Scholar] [CrossRef]
- Tkachenko, E.; Ghomi, M.S.; Pertz, O.; Kim, C.; Gutierrez, E.; Machacek, M.; Groisman, A.; Danuser, G.; Ginsberg, M.H. Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells. Nat. Cell Biol. 2011, 13, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Boscher, C.; Gaonac’h-Lovejoy, V.; Delisle, C.; Gratton, J.P. Polarization and sprouting of endothelial cells by angiopoietin-1 require PAK2 and paxillin-dependent Cdc42 activation. Mol. Biol. Cell 2019, 30, 2227–2239. [Google Scholar] [CrossRef]
- Sakabe, M.; Fan, J.; Odaka, Y.; Liu, N.; Hassan, A.; Duan, X.; Stump, P.; Byerly, L.; Donaldson, M.; Hao, J.; et al. YAP/TAZ-CDC42 signaling regulates vascular tip cell migration. Proc. Natl. Acad. Sci. USA 2017, 114, 10918–10923. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Lv, J.; Wang, P.; Liao, Y.; Li, Y.; Zhao, W.; Zen, J.; Dong, Z.; Guo, Z.; Bo, X.; et al. Vascular endothelial Cdc42 deficiency delays skin wound-healing processes by increasing IL-1beta and TNF-alpha expression. Am. J. Transl. Res. 2019, 11, 257–268. [Google Scholar] [PubMed]
- Laviña, B.; Castro, M.; Niaudet, C.; Cruys, B.; Álvarez-Aznar, A.; Carmeliet, P.; Bentley, K.; Brakebusch, C.; Betsholtz, C.; Gaengel, K. Defective endothelial cell migration in the absence of Cdc42 leads to capillary-venous malformations. Development 2018, 145, 161182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DerMardirossian, C.; Schnelzer, A.; Bokoch, G.M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol. Cell 2004, 15, 117–127. [Google Scholar] [CrossRef] [PubMed]
- de Beco, S.; Vaidžiulytė, K.; Manzi, J.; Dalier, F.; di Federico, F.; Cornilleau, G.; Dahan, M.; Coppey, M. Optogenetic dissection of Rac1 and Cdc42 gradient shaping. Nat. Commun. 2018, 9, 4816. [Google Scholar] [CrossRef] [Green Version]
- Abdrabou, A.; Wang, Z. Post-translational modification and subcellular distribution of Rac1: An update. Cells 2018, 7, 263. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Liang, X.; Guan, H.; Sun, J.; Yao, W. RhoGDI1-Cdc42 Signaling Is Required for PDGF-BB-Induced Phenotypic Transformation of Vascular Smooth Muscle Cells and Neointima Formation. Biomedicines 2021, 9, 1169. https://doi.org/10.3390/biomedicines9091169
Qi Y, Liang X, Guan H, Sun J, Yao W. RhoGDI1-Cdc42 Signaling Is Required for PDGF-BB-Induced Phenotypic Transformation of Vascular Smooth Muscle Cells and Neointima Formation. Biomedicines. 2021; 9(9):1169. https://doi.org/10.3390/biomedicines9091169
Chicago/Turabian StyleQi, Yan, Xiuying Liang, Haijing Guan, Jingwen Sun, and Wenjuan Yao. 2021. "RhoGDI1-Cdc42 Signaling Is Required for PDGF-BB-Induced Phenotypic Transformation of Vascular Smooth Muscle Cells and Neointima Formation" Biomedicines 9, no. 9: 1169. https://doi.org/10.3390/biomedicines9091169
APA StyleQi, Y., Liang, X., Guan, H., Sun, J., & Yao, W. (2021). RhoGDI1-Cdc42 Signaling Is Required for PDGF-BB-Induced Phenotypic Transformation of Vascular Smooth Muscle Cells and Neointima Formation. Biomedicines, 9(9), 1169. https://doi.org/10.3390/biomedicines9091169