COVID-19 Disease, Women’s Predominant Non-Heparin Vaccine-Induced Thrombotic Thrombocytopenia and Kounis Syndrome: A Passepartout Cytokine Storm Interplay
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Virology and Origin
3.2. SARS-CoV-2 and Other Human Coronaviruses
3.3. The Cytokine Storm
3.4. The Cytokine “Network”
- Interleukins (ILs), so named because their fundamental function appears to be the communication between (inter-) various populations of white blood cells (leucocytes-leukin) and further regulation of the immune cell differentiation and activation. They are produced by almost all stromal cells, mast cells, B lymphocytes, T lymphocytes, macrophages, monocytes, dendritic cells, and other non-lymphocytic cells, such as fibroblasts, endothelial cells, keratinocytes, glomerular mesangial cells and tumor cells [34]. They induce an increase of the acute phase signaling, activate epithelial cells, and mediate the transportation of immune cells to the infection site, triggering also the production of secondary cytokines [35]. Interleukins comprise the largest group of cytokines.
- Chemokines are small secreted proteins that can bind to one or more of 21 G-protein-coupled receptors. Chemokines serve as chemoattractants to recruit inflammatory cells from endothelium and epithelium into the inflammation site [36], especially those of the immune system, contributing to innate and adaptive immune function and development. The role of one specific chemokine, CXCL10 (previously referred to as interferon-γ inducible protein of 10 kDa, or IP-10), has been highlighted in ARDS and coronary syndromes [37]. Chemokines are emerging as the second largest family of cytokines.
- Tumor necrosis factors (TNFs), called by their ability to cause a hemorrhagic tumor necrosis post injection into experimental animals, are involved in the pathogenesis of septic shock. They are regarded, today, as the central cytokines in acute viral diseases, including influenza virus, dengue virus, and Ebola virus diseases. Immune cells can release TNFs in the acute inflammation and infection phase, while they have been correlated with several chronic inflammatory and autoimmune diseases [40,41].
- Colony-stimulating factors (CSFs) play an important role supporting the growth and differentiation of various bone marrow elements. They are proteinic components of a cascade that induces cytokine production by macrophages at sites of inflammation, further perpetuating the inflammatory reaction [42]. They divide into different subtypes based on their action as: granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), and granulocyte–macrophage colony-stimulating factor (GM-CSF). Ongoing trials will help to inform whether blunting the inflammatory signaling provided by the G-CSF axis in COVID-19 is beneficial [43].
3.5. Cytokine Storm Clinical Manifestations
3.6. COVID-19, Kawasaki Disease and Chimeric Antigen Receptor T-Cell (CAR-T) Therapy-Associated Cytokine Storm
3.7. Cytokine Storm in COVID-19, Cytokine Surge in Anaphylaxis
3.8. Viral Infections and Mast Cells
3.9. The Dengue and Human Immunodeficiency Viruses (HIV) Paradigm
3.10. The Kounis Syndrome
3.11. COVID-19 and Myocardial Infarction
3.12. COVID-19 Vaccine-Induced Thrombotic Events
- A.
- The prevalence of delayed adverse reactions and especially hypersensitivity reactions appearing days after vaccination is not new. Such reactions are antibody-independent, cell-mediated, stemming from over stimulation of T cells and monocytes/macrophages and cytokine’s release that further cause inflammation, cell death, and tissue damage [110]. They have been associated with vaccines containing anti-microbial agents and ingredients, such as thimerosal and aluminum [111] and withJapanese encephalitis and rabies vaccines [112]. A common type of delayed hypersensitivity reaction is the heparin hypersensitivity [113].
- B.
- Heparin and related polymer heparin sulfate constitute natural glycosaminoglycans that have particular relevance to allergy and inflammation. The PF4 is a highly positive protein present in the a-granules of platelets that can quickly bind to either exogenous or endogenous heparin. Indeed, the platelet released PF4 binds to surface glycosaminoglycans on hematopoietic and vascular cells [114]. The pair PF4/heparin acts as an autoantigen and induces anti-PF4/heparin antibodies of IgG class. PF4-heparin-IgG antibody complexes have been detected in 3.1–4.4% of healthy subjects and can cause thrombosis via activation of the specific low-affinity IgG (FcγRIIa/CD32) receptors on the platelet surface. However, platelet surface disposes also high affinity IgE (FcεRI) and low affinity IgE (FcεRII/CD23) receptors, a fact that is not so well known to clinical practitioners [90]. Furthermore, receptors for histamine, platelet-activating factor, thromboxan, thrombin, adenosine diphosphate (ADP) can also exist in the platelet surface (Figure 2). Upon their activation, platelets secrete pro-inflammatory pro-thrombotic, adhesive, and chemotactic mediators that propagate, amplify and sustain the thrombotic process [115]. The platelet consumption, due to extensive thrombosis, leads to thrombocytopenia [116]. The 3-component PF4-heparin-IgG antibody complex can bind to FcγRII receptors on monocytes, inducing endothelial injury that leads to tissue factor release, thrombin production and diffusion. Thrombin production plays an important role in the pathogenesis of CVST and thrombosis in general [117]. The classical HIT is not complicated with CVST, despite constituting a highly pro-thrombotic condition. In COVID-19-vaccination-associated CVST, any form of heparin (i.e., unfractionated heparin, even for line flushes, or LMWH e.g., enoxaparin) and platelet transfusion should be avoided. Treatment with Argatroban, which is a direct thrombin inhibitor together with corticosteroids (that are used for Kounis syndrome) such as dexamethasone and immunoglobulin, are recommended [118]. All this cascade of actions, reactions, interactions, together with the released mediators and inflammatory cells, constitute the pathophysiologic basis of Kounis anaphylaxis-associated thrombotic syndrome [119]. It is reasonable, therefore, to anticipate that heparin is not always required to be given externally in order to cause HIT-like thrombosis and that HIT itself behaves as a new manifestation of Kounis syndrome [120,121].
- C.
- Both adenoviral vector ChAdOx1 nCov-19(AstraZeneca) and Ad26.COV2.S (Janssen/Johnson & Johnson) vaccines contain excipients that could be potential antigens such as polysorbate, a synthetic nonionic surfactant, also known as Tween 80, which is a mixture of esters and etherates synthesized by oleic acid, ethylene oxide, sorbitan and isosorbide. Polysorbate 80 can induce systemic reactions including IgE immediate reactions as well as non-immunologic anaphylactoid reactions but also local reactions such as thrombophlebitis, pain, erythema [122]. Polysorbate can enhance membrane permeability, penetrate the blood–brain barrier and facilitate the passage of drugs from the blood compartment to the brain for therapeutic purposes, especially in oncology [123]. The release of cytokines from overstimulation of T cells, monocytes and macrophages can induce inflammatory response and delayed adverse reactions post polysorbate administration via the vaccine. Such polysorbate actions make one wonder whether or not the adenoviral vector vaccine-induced CVST is a simple coincidence. Indeed, as mentioned above, the classical HIT, which is not related to polysorbate, is not complicated with CVST.
- D.
- Younger-aged women, who routinely use creams, ointments, lotions, and other cosmetics that contain polysorbate, could have been earlier sensitized to polysorbate and will likely develop adverse reactions when exposed to the same agent. Furthermore, polysorbate is also an ingredient in various dental materials and contact sensitization in dental patients has been proven [124]. Indeed, it is estimated that 1–5.4% of the population is already sensitized to cosmetics or cosmetic ingredients [124]. We suggest, therefore, that atopic subjects and patients with a previous allergic history should carefully look at SPC (Special Product Characteristics) of their used cosmetics for any containing polysorbate excipient, and also for any other ingredient cross-reacting with polysorbate such as polyethylene glycol product. The latter is contained in the messenger RNA (mRNA)-based vaccines mRNA-1273 (Moderna) and BNT162b2 (Pfizer–BioNTech), respectively. Additionally, the Moderna vaccine contains tromethamine, also known as trometamol, that is also used in cosmetic products as an emulsifier. Contact sensitization, allergy and anaphylaxis to this compound have been already reported [125]. Individuals who present late adverse reactions following the first dose of the above vaccines could proceed to skin testing in order to elucidate the cause of the reactions and in case of being positive to polysorbate 80 to avoid the second dose as subsequent exposure to the substance could even lead to an immediate type of reactions. Pharmaceutical companies should try to produce free allergenic vaccines. Free polysorbate oncology medications have been already in the market [122]. Alternatives to polysorbate and PEG excipients such as alkylsaccharides constitute promising agents because they reduced immunogenicity, improve stability, and suppress oxidative damage problems of polysorbates or other polyoxyethylene-based excipients [126].
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aHR | Adjusted hazard ratio |
ACE2 | Angiotensin-converting enzyme 2 |
ADP | Adenosine diphosphate |
ARDS | Acute respiratory distress syndrome |
CAR-T | Chimeric antigen receptor T cells |
CD8 | Cluster of differentiation 8 |
CCL2 | Chemokine (C-C motif) ligand 2 |
CCR3 C-C | chemokine receptor type 3 |
COVID-19 | Coronavirus disease 2019 |
CRS | Cytokine release syndrome |
CSS | Cytokine storm syndrome |
CVST | Cerebral venous sinus thrombosis |
CSFs | Colony-stimulating factors |
GM-CSF | Granulocyte-macrophage colony-stimulating factor |
G-CSF | Granulocyte colony-stimulating factor |
FDA | Food and Drug Administration |
FcγRIIa | Fragment crystallizable gamma region II alpha |
FcεRI | Fragment crystallizable epsilon region I |
FcεRII | Fragment crystallizable epsilon region II |
HLH/MAS | Hemophagocytic lymphohistiocytosis/ macrophage activation syndrome |
HIV | Human immunodeficiency virus |
HIT | Heparin-induced thrombocytopenia |
HITT | Heparin-induced thrombocytopenia with thrombosis |
IFNs | Interferons |
ILs | Interleukins |
KD | Kawasaki disease |
MAS | Macrophage activation syndrome |
MERS | Middle East Respiratory Syndrome |
MCP-1 | Monocyte chemoattractant protein-1 |
M-CSF | Macrophage colony-stimulating factor |
MINOCA | Myocardial infarction with non-obstructive coronary arteries |
PAF | Platelet activating factor |
PEG | Polyethylene glycol |
RECOVERY | Randomized Evaluation of COVID-19 therapy |
mRNA | Messenger ribonucleic acid |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SARS-COV | Severe acute respiratory syndrome coronavirus |
SPC | Special product characteristics |
STEMI ST | Segment-elevation myocardial infarction |
TNFs | Tumor necrosis factors |
TLR TXA | Toll-like receptor Thromboxane |
References
- Li, Q.; Guan, X.; Wu, P.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novelhuman-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020, 9, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.P.; Look, D.C.; Shi, L.; Hickey, M.; Pewe, L.; Netland, J.; Farzan, M.; Wohlford-Lenane, C.; Perlman, S.; McCray, P.B., Jr. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 2005, 79, 14614–14621. [Google Scholar] [CrossRef] [Green Version]
- Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 2020, 21, 224. [Google Scholar] [CrossRef]
- John Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/data/mortality (accessed on 25 June 2020).
- Abdelrahman, Z.; Li, M.; Wang, X. Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza a Respiratory Viruses. Front. Immunol. 2020, 11, 552909. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Karki, C.B.; Du, D.; Teng, S.; Tang, Q.; Li, L. Spike Proteins of SARS-CoV and SARS-CoV-2 Utilize Different Mechanisms to Bind with Human ACE2. Front. Mol. Biosci. 2020, 7, 591873. [Google Scholar] [CrossRef] [PubMed]
- Peiris, J.S.; Hui, K.P.; Yen, H.L. Host response to influenza virus: Protectionversus immunopathology. Curr. Opin. Immunol. 2010, 22, 475–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tisoncik, J.R.; Korth, M.J.; Simmons, C.P.; Farrar, J.; Martin, T.R.; Katze, M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 2012, 76, 16–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suntharalingam, G.; Perry, M.R.; Ward, S.; Brett, S.J.; Castello-Cortes, A.; Brunner, M.D.; Panoskaltsis, N. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 2006, 355, 1018–1028. [Google Scholar] [CrossRef]
- Kroschinsky, F.; Stolzel, F.; von Bonin, S.; Beutel, G.; Kochanek, M.; Kiehl, M.; Schellongowski, P. New drugs, new toxicities: Severe side effects of modern targeted and immunotherapy of cancer and their management. Crit. Care 2017, 21, 89. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Bi, Y.; Sun, K.; Wang, C. IL-10-producing type 1 regulatory T cells and allergy. Cell Mol. Immunol. 2007, 4, 269–275. [Google Scholar]
- Ferrara, J.L.; Abhyankar, S.; Gilliland, D.G. Cytokine storm of graft versus host disease: A critical effector role for interleukin-1. Transplant. Proc. 1993, 25, 1216–1217. [Google Scholar]
- Imashuku, S. Clinical features and treatment strategies of Epstein-Barrvirus-associated hemophagocytic lymphohistiocytosis. Crit. Rev. Oncol. Hematol. 2002, 44, 259–272. [Google Scholar] [CrossRef]
- Bisno, A.L.; Brito, M.O.; Collins, C.M. Molecular basis of group Astreptococcal virulence. Lancet Infect. Dis. 2003, 3, 191–200. [Google Scholar] [CrossRef]
- Yokota, S. Influenza-associated encephalopathy-pathophysiology and disease mechanisms. Nippon Rinsho 2003, 61, 1953–1958. [Google Scholar] [PubMed]
- Jahrling, P.B.; Hensley, L.E.; Martinez, M.J.; Leduc, J.W.; Rubins, K.H.; Relman, D.A.; Huggins, J.W. Exploring the potential of variola virus infection of cynomolgus macaques as a model for human smallpox. Proc. Natl. Acad. Sci. USA 2004, 101, 15196–15200. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.J.; Su, I.J.; Theron, M.; Wu, Y.C.; Lai, S.K.; Liu, C.C.; Lei, H.Y. An interferon-γ-related cytokine storm in SARS patients. J. Med. Virol. 2005, 75, 185–194. [Google Scholar] [CrossRef]
- Yuen, K.Y.; Wong, S.S. Human infection by avian influenza A H5N1. Hong Kong Med. J. 2005, 11, 189–199. [Google Scholar]
- Velthuis, A.J.W.; Long, J.C.; Bauer, D.L.V.; Fan, R.L.Y.; Yen, H.L.; Sharps, J.; Siegers, J.Y.; Killip, M.J.; French, H.; Oliva-Martín, M.J. Mini viral RNAs act as innate immune agonists during influenza virus infection. Nat. Microbiol. 2018, 3, 1234–1242. [Google Scholar] [CrossRef]
- Page, D.B.; Postow, M.A.; Callahan, M.K.; Allison, J.P.; Wolchok, J.D. Immune modulation in cancer with antibodies. Annu. Rev. Med. 2014, 65, 185–202. [Google Scholar] [CrossRef]
- Van der Linden, P.W.; Hack, C.E.; Struyvenberg, A.; Roem, D.; Brouwer, M.C.; deBoer, J.P.; van der Zwan, J.K. Controlled insect-sting challenge in 55 patients: Correlation between activation of plasminogen and the development of anaphylactic shock. Blood 1993, 82, 1740–1748. [Google Scholar] [CrossRef] [Green Version]
- Castells, M. Mast cell mediators in allergic inflammation and mastocytosis. Immunol. Allergy Clin. N. Am. 2006, 26, 465–485. [Google Scholar] [CrossRef]
- Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017, 39, 517528. [Google Scholar] [CrossRef]
- Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J. Infect. Dis. 2020, 221, 1762–1769. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef]
- Comerford, I.; McColl, S.R. Focus on chemokines. Immunol. Cell Biol. 2011, 89, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef]
- Scheller, J.; Rose-John, S. Interleukin-6 and its receptor: From bench to bedside. Med. Microbiol. Immunol. 2006, 195, 173–183. [Google Scholar] [CrossRef]
- Brocker, C.; Thompson, D.; Matsumoto, A.; Nebert, D.W.; Vasiliou, V. Evolutionary divergence and functions of the human interleukin (IL) genefamily. Hum. Genom. 2010, 5, 30–55. [Google Scholar] [CrossRef]
- Zemans, R.L.; Colgan, S.P.; Downey, G.P. Transepithelial migration of neutrophils: Mechanisms and implications for acute lung injury. Am. J. Respir. Cell Mol. Biol. 2009, 40, 519–535. [Google Scholar] [CrossRef] [Green Version]
- Neville, L.F.; Abdullah, F.; McDonnell, P.M.; Young, P.R.; Feuerstein, G.Z.; Rabinovici, R. Mob-1 expression in IL-2-induced ARDS: Regulation by TNFalpha. Am. J. Physiol. 1995, 269 Pt 1, L884–L890. [Google Scholar] [CrossRef]
- Borden, E.C.; Sen, G.C.; Uze, G.; Silverman, R.H.; Ransohoff Foster, G.R.; Stark, G.R. Interferons at age 50: Past, current and future impact on biomedicine. Nat. Rev. Drug Discov. 2007, 6, 975–990. [Google Scholar] [CrossRef]
- Pandey, S.; Bonilla, H.F.; Jacobson, K.; Parsonnet, J.; Andrews, J.R.; Weiskopf, D.; Sette, A.; Pinsky, B.A.; Singh, U.; Banaei, N. Interferon-gamma release assay for accurate detection of SARS-CoV-2 T cell response. Clin. Infect. Dis. 2020, ciaa1537. [Google Scholar] [CrossRef]
- Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An endotoxin induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 1975, 72, 3666–3670. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, M.; Maini, R.N.; Woody, J.N.; Holgate, S.T.; Winter, G.; Rowland, M.; Richards, D.; Hussell, T. Trials of anti-tumour necrosis factor therapy forCOVID-19 are urgently needed. Lancet 2020, 39, 1407–1409. [Google Scholar] [CrossRef]
- Hamilton, J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 2008, 8, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Cremer, P.C.; Carey, B.; Rajendram, P.; Hudock, K.M.; Korbee, L.; Van Tassell, B.W.; Dagna, L.; Abbate, A. Targeting GM-CSF in COVID-19 Pneumonia:Rationale and Strategies. Front. Immunol. 2020, 11, 1625. [Google Scholar]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kounis, N.G.; Soufras, G.D.; Hahalis, G. Anaphylactic cardiac collapse, sudden death and the Kounis syndrome. J. Postgrad. Med. 2014, 60, 227–229. [Google Scholar] [CrossRef]
- Hay, K.A.; Hanafi, L.-A.; Li, D.; Gust, J.; Liles, W.C.; Wurfel, M.M.; López, J.A.; Chen, J.; Chung, D.; Harju-Baker, S. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017, 130, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Medaglia, A.A.; Siracusa, L.; Gioè, C.; Giordano, S.; Cascio, A.; Colomba, C. Kawasaki disease recurrence in the COVID-19 era: A systematic review of the literature. Ital. J. Pediatr. 2021, 47, 95. [Google Scholar] [CrossRef]
- Rowley, A.H.; Baker, S.C.; Arrollo, D.; Gruen, L.J.; Bodnar, T.; Innocentini, N.; Hackbart, M.; Cruz-Pulido, Y.E.; Wylie, K.M.; Kim, K.A.; et al. A Protein Epitope Targeted by the Antibody Response to Kawasaki Disease. J. Infect. Dis. 2020, 222, 158–168. [Google Scholar] [CrossRef]
- Rowley, A.H. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat. Rev. Immunol. 2020, 20, 453–454. [Google Scholar] [CrossRef]
- Morris, S.B.; Schwartz, N.G.; Patel, P.; Abbo, L.; Beauchamps, L.; Balan, S.; Lee, E.H.; Paneth-Pollak, R.; Geevarughese, A.; Lash, M.K.; et al. Case Series of Multisystem Inflammatory Syndrome in Adults Associated with SARS-CoV-2 Infection—United Kingdom and United States, March-August 2020. MMWR Morb. Mortal. Wkl. Rep. 2020, 69, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Consiglio, C.R.; Cotugno, N.; Sardh, F.; Pou, C.; Amodio, D.; Rodriguez, L.; Tan, Z.; Zicari, S.; Ruggiero, A.; Pascucci, G.R.; et al. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell 2020, 183, 968–981.e7. [Google Scholar] [CrossRef] [PubMed]
- Gruber, C.N.; Patel, R.S.; Trachtman, R.; Lepow, L.; Amanat, F.; Krammer, F.; Wilson, K.M.; Onel, K.; Geanon, D.; Tuballes, K.; et al. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). Cell 2020, 183, 982–995.e14. [Google Scholar] [CrossRef]
- Yakoub-Agha, I.; Chabannon, C.; Bader, P.; Basak, G.W.; Bonig, H.; Ciceri, F.; Corbacioglu, S.; Duarte, R.F.; Einsele, H.; Hudecek, M.; et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: Best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 2020, 105, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents 2020, 55, 105954. [Google Scholar] [CrossRef]
- Hu, Y.; Tan Su Yin, E.; Yang, Y.; Wu, H.; Wei, G.; Su, J.; Cui, Q.; Jin, A.; Yang, L.; Fu, S.; et al. CAR T-cell treatment during the COVID-19 pandemic: Management strategies and challenges. Curr. Res. Transl. Med. 2020, 68, 111–118. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Wei, J.; Liu, Y.; Wang, C.; Zhang, Y.; Tong, C.; Dai, G.; Wang, W.; Rasko, J.E.J.; Melenhorst, J.J.; Qian, W.; et al. The model of cytokine release syndrome in CAR T-cell treatment for B-cell non-Hodgkin lymphoma. Signal Transduct, Target. Ther. 2020, 5, 134. [Google Scholar] [CrossRef]
- Oliynyk, O.; Barg, W.; Slifirczyk, A.; Oliynyk, Y.; Gurianov, V.; Rorat, M. Efficacy of Tocilizumab Therapy in Different Subtypes of COVID-19 Cytokine Storm Syndrome. Viruses 2021, 13, 1067. [Google Scholar] [CrossRef] [PubMed]
- Yongzhi, X. COVID-19-associated cytokine storm syndrome and diagnostic principles: An old and new Issue. Emerg. Microbes Infect. 2021, 10, 266–276. [Google Scholar] [CrossRef]
- Kounis, N.G.; Mazarakis, A.; Tsigkas, G.; Giannopoulos, S.; Goudevenos, J. Kounis syndrome: A new twist on an old disease. Future Cardiol. 2011, 7, 805–824. [Google Scholar] [CrossRef]
- Stone, S.F.; Cotterell, C.; Isbister, G.K.; Holdgate, A.; Brown, S.G.; Emergency Department Anaphylaxis Investigators. Elevated serum cytokines during human anaphylaxis: Identification of potential mediators of acute allergic reactions. J. Allergy Clin. Immunol. 2009, 124, 786–792.e4. [Google Scholar] [CrossRef]
- Ogawa, Y.; Grant, J.A. Mediators of anaphylaxis. Immunol. Allergy Clin. N. Am. 2007, 27, 249–260. [Google Scholar] [CrossRef]
- Salari, H.; Chan-Yeung, M. Mast cell mediators stimulate synthesis of arachidonic acid metabolites in macrophages. J. Immunol. 1989, 142, 2821–2827. [Google Scholar]
- Kambayashi, T.; Allenspach, E.J.; Chang, J.T.; Zou, T.; Shoag, J.E.; Reiner, S.L.; Caton, A.J.; Koretzky, G.A. Inducible MHC class II expression by mast cells supports effector and regulatory T cell activation. J. Immunol. 2009, 182, 4686–4695. [Google Scholar] [CrossRef]
- Miyazaki, D.; Nakamura, T.; Toda, M.; Cheung-Chau, K.W.; Richardson, R.M.; Ono, S.J. Macrophage inflammatory protein-1a as a costimulatory signal for mast cell mediated immediate hypersensitivity reactions. J. Clin. Investig. 2005, 115, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Pomares, L.; Gordon, S. CD169_macrophages at the crossroads of antigen presentation. Trends Immunol. 2012, 33, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Mekori, Y.A.; Metcalfe, D.D. Mast cell-T cell interactions. J. Allergy Clin. Immunol. 1999, 104, 517–523. [Google Scholar] [CrossRef]
- Doherty, T.M. T cell regulation of macrophage function. Curr. Opin. Immunol. 1995, 7, 400–404. [Google Scholar] [CrossRef]
- Dahinden, C.A.; Geiser, T.; Brunner, T.; von Tscharner, V.; Caput, D.; Ferrara, P.; Minty, A.; Baggiolini, M. Monocyte chemotactic protein 3 is a most effective basophil-and eosinophil-activating chemokine. J. Exp. Med. 1994, 179, 751–756. [Google Scholar] [CrossRef] [Green Version]
- Ferenbach, D.; Hughes, J. Macrophages and dendritic cells: What is the difference? Kidney Int. 2008, 74, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Dollery, C.M.; Libby, P. Atherosclerosis and proteinase activation. Cardiovasc. Res. 2006, 69, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Newby, A.C. Metalloproteinases promote plaque rupture and myocardial infarction: A persuasive concept waiting for clinical translation. Matrix Biol. 2015, 44–46, 157–166. [Google Scholar] [CrossRef]
- Graham, A.C.; Temple, R.M.; Obar, J.J. Mast cells and influenza a virus: Association with allergic responses and beyond. Front. Immunol. 2015, 6, 238. [Google Scholar] [CrossRef] [Green Version]
- Galli, S.J.; Tsai, M. Mast cells in allergy and infection: Versatile effector and regulatory cells in innate and adaptive immunity. Eur. J. Immunol. 2010, 40, 1843–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, A.M.; Abraham, S.N. New roles for mast cells in modulating allergic reactions and immunity against pathogens. Curr. Opin. Immunol. 2009, 21, 679–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawicki, W.; Marshall, J.S. New and emerging roles for mast cells in host defence. Curr. Opin. Immunol. 2007, 19, 31–38. [Google Scholar] [CrossRef]
- Sundstrom, J.B.; Hair, G.A.; Ansari, A.A.; Secor, W.E.; Gilfillan, A.M.; Metcalfe, D.D.; Kirshenbaum, A.S. I gE-Fcepsilon RI interaction determine HIV co-receptor usage and susceptibility to infection during ontogeny of mast cells. J. Immunol. 2009, 182, 6401–6409. [Google Scholar] [CrossRef] [PubMed]
- Orinska, Z.; Bulanova, E.; Budagian, V.; Metz, M.; Maurer, M.; Bulfone-Paus, S. TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 2005, 106, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Kulka, M.; Alexopoulou, L.; Flavell, R.A.; Metcalfe, D.D. Activation of mast cellsby double-stranded RNA: Evidence for activation through Toll-like receptor 3. J. Allergy Clin. Immunol. 2004, 114, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Kounis, N.G. Coronary hypersensitivity disorder: The Kounis syndrome. Clin. Ther. 2013, 35, 563–571. [Google Scholar] [CrossRef]
- Joob, B.; Wiwanitkit, V. Hemorrhagic Problem among the Patients with COVID-19: Clinical Summary of 41 Thai Infected Patients. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620918308. [Google Scholar] [CrossRef] [Green Version]
- Malavige, G.N.; Ogg, G.S. Pathogenesis of vascular leak in dengue virus infection. Immunology 2017, 151, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Guzman-Rodriguez, M.; Acosta-Nanez, H.F.; Mantilla, J.C.; Bonelo, A. Dengue Virus and Influenza A Virus Co-Infection in Pregnancy: A Case Report. Trop. Med. Infect. Dis. 2019, 4, 84. [Google Scholar] [CrossRef] [Green Version]
- Marone, G.; Florio, G.; Petraroli, A.; Triggiani, M.; de Paulis, A. Role of human FcepsilonRI+ cells in HIV-1 infection. Immunol. Rev. 2001, 179, 128–138. [Google Scholar] [CrossRef]
- Westendorp, M.O.; Frank, R.; Ochsenbauer, C.; Stricker, K.; Dhein, J.; Walczak, H.; Debatin, K.M.; Krammer, P.H. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995, 37, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G.; Zavras, G.M. Histamine-induced coronary artery spasm: The concept of allergic angina. Br. J. Clin. Pract. 1991, 45, 121–128. [Google Scholar]
- Rich, M.W. Is vasospastic angina an inflammatory disease? Am. J. Cardiol 2005, 96, 1612. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G.; Kourelis, T.; Hahalis, G.; Manola, A.; Theoharides, T.C. Kounis syndrome (allergic angina and allergic myocardial infarction). In Angina Pectoris; Gallo, A.P., Ed.; Nova Biomedical Books: New York, NY, USA, 2008; pp. 6–150. [Google Scholar]
- Hasegawa, S.; Tashiro, N.; Matsubara, T.; Furukawa, S.; Ra, C. A comparison of FcepsilonRI-mediated RANTES release from human platelets between allergic patients and healthy individuals. Int. Arch. Allergy Immunol. 2001, 125 (Suppl. S1), 42–47. [Google Scholar] [CrossRef]
- Kounis, N.G.; Koniari, I.; Velissaris, D.; Tzanis, G.; Hahalis, G. Kounis Syndrome—Not a Single-organ Arterial Disorder but a Multisystem and Multidisciplinary Disease. Balkan Med. J. 2019, 36, 212–221. [Google Scholar] [CrossRef]
- Tavazzi, G.; Pellegrini, C.; Maurelli, M.; Belliato, M.; Sciutti, F.; Bottazzi, A.; Sepe, P.A.; Resasco, T.; Camporotondo, R.; Bruno, R.; et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur. J. Heart Fail. 2020, 22, 911–915. [Google Scholar] [CrossRef] [Green Version]
- Prieto-Lobato, A.; Ramos-Martínez, R.; Vallejo-Calcerrada, N.; Corbí-Pascual, M.; Córdoba-Soriano, J.G. A Case Series of Stent Thrombosis during the COVID-19 Pandemic. JACC Case Rep. 2020, 2, 1291–1296. [Google Scholar] [CrossRef]
- Dominguez-Erquicia, P.; Dobarro, D.; Raposeiras-Roubin, S.; Bastos-Fernandez, G.; Iniguez-Romo, A. Multivessel coronary thrombosis in a patient with COVID-19 pneumonia. Eur. Heart J. 2020, 41, 2132. [Google Scholar] [CrossRef]
- Kounis, N.G.; Koniari, I.; Tsigkas, G.; Davlouros, P. Humanized Monoclonal Antibodies Against IgE Antibodies as Therapy for IgE-Mediated Coronary Syndromes: Are We There Yet? Can. J. Cardiol. 2020, 36, 816–819. [Google Scholar] [CrossRef]
- Lucas, C.; Wong, P.; Klein, J.; Castro, T.B.R.; Silva, J.; Sundaram, M.; Ellingson, M.K.; Mao, T.; Oh, J.E.; Israelow, B.; et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020, 584, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, A. Triggered by Covid-19? Large Vascular Occlusion Resulting in Cytokine Storm Syndrome and Kounis Syndrome: A Case Report. J. Biomed. Res. Environ. Sci. 2021, 2, 030–033. [Google Scholar]
- Wang, M.; Talon, A.; Saririan, M. COVID-19 cardiac arrest due to Prinzmetal’s angina in a previously normal heart. Clin. Case Rep. 2021, 9, e04205. [Google Scholar] [CrossRef] [PubMed]
- Tajstra, M.; Jaroszewicz, J.; Gąsior, M. Acute Coronary Tree Thrombosis after Vaccination for COVID-19. JACC Cardiovasc. Interv. 2021, 14, e103–e104. [Google Scholar] [CrossRef]
- Özdemir, İ.H.; Özlek, B.; Özen, M.B.; Gündüz, R.; Bayturan, Ö. Type 1 Kounis Syndrome Induced by Inactivated SARS-COV-2 Vaccine. J. Emerg. Med. 2021. [Google Scholar] [CrossRef]
- Riegger, J.; Byrne, R.A.; Joner, M.; Chandraratne, S.; Gershlick, A.H.; Ten Berg, J.M.; Adriaenssens, T.; Guagliumi, G.; Godschalk, T.C.; Neumann, F.J. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: A report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium. Eur. Heart J. 2016, 37, 1538–1549. [Google Scholar] [CrossRef] [Green Version]
- Freedberg, D.E.; Conigliaro, J.; Wang, T.C.; Tracey, K.J.; Callahan, M.V.; Abrams, J.A. Famotidine Use Is Associated with Improved Clinical Outcomes in Hospitalized COVID-19 Patients: A Propensity Score Matched Retrospective Cohort Study. Gastroenterology 2020, 159, 1129–1131.e3. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.P.; Hou, D.; Pendyala, L.; Goudevenos, J.A.; Kounis, N.G. Drug eluting stent thrombosis: The Kounis hypersensitivity-associated acute coronary syndrome revisited. J. Am. Coll. Cardiol. Intv. 2009, 2, 583–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, T.; Chen, B.; Zhao, Z.; He, N.; Zeng, Z.; Wu, B.; Fukushima, Y.; Dai, M.; Huang, Q.; Xu, D. Histamine H2 receptor activation exacerbates myocardial ischemia/reperfusion injury by disturbing mitochondrial and endothelial function. Basic Res. Cardiol. 2013, 108, 342. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar]
- Liu, Y.; Lu, C.; Guo, Q. Recurrent Type III Kounis Syndrome: Will Anti-Immunoglobulin E Drug Be Another Option? Can. J. Cardiol. 2020, 36, e5–e966. [Google Scholar] [CrossRef]
- Lee, E.J.; Cines, D.B.; Gernsheimer, T.; Kessler, C.; Michel, M.; Tarantino, M.D.; Semple, J.W.; Arnold, D.M.; Godeau, B.; Lambert, M.P.; et al. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am. J. Hematol. 2021, 96, 534–537. [Google Scholar] [CrossRef]
- Cines, D.B.; Bussel, J.B. SARS-CoV-2 Vaccine-Induced Immune Thrombotic Thrombocytopenia. N. Engl. J. Med. 2021, 384, 2254–2256. [Google Scholar] [CrossRef]
- Karron, R.A.; Key, N.S.; Sharfstein, J.M. Assessing a Rare and Serious Adverse Event Following Administration of the Ad26.COV2.S Vaccine. JAMA 2021, 325, 2445–2447. [Google Scholar] [CrossRef]
- Kuder, M.M.; Lang, D.M.; Patadia, D.D. Anaphylaxis to vaccinations: A review of the literature and evaluation of the COVID-19 mRNA vaccinations. Cleve Clin. J. Med. 2021. Epub ahead of print. [Google Scholar] [CrossRef]
- McNeil, M.M.; DeStefano, F. Vaccine-associated hypersensitivity. J. Allergy Clin. Immunol. 2018, 141, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Pföhler, C.; Müller, C.S.; Pindur, G.; Eichler, H.; Schäfers, H.J.; Grundmann, U.; Tilgen, W. Delayed-type heparin allergy: Diagnostic procedures and treatment alternatives-a case series including 15 patients. World Allergy Organ. J. 2008, 1, 194–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.; Madeeva, D.; Hayes, V.; Ahn, H.S.; Tutwiler, V.; Arepally, G.M.; Cines, D.B.; Poncz, M.; Rauova, L. Dynamic intercellular redistribution of HIT antigen modulates heparin-induced thrombocytopenia. Blood 2018, 132, 727–773. [Google Scholar] [CrossRef] [PubMed]
- Bangalore, S.; Sharma, A.; Slotwiner, A.; Yatskar, L.; Harari, R.; Shah, B.; Ibrahim, H.; Friedman, G.H.; Thompson, C.; Alviar, C.L.; et al. ST-Segment Elevation in Patients with Covid-19—A Case Series. N. Engl. J. Med. 2020, 382, 2478–2480. [Google Scholar] [CrossRef] [PubMed]
- Chong, B.H. Heparin-induced thrombocytopenia. Br. J. Haematol. 1995, 89, 431–439. [Google Scholar] [CrossRef]
- Kounis, N.G.; Soufras, G.D.; Almpanis, G.; Tsigkas, G.; Mazarakis, A. Acute stent thrombosis and heparin induced thrombocytopenia: Another manifestation of kounis syndrome? Korean Circ. J. 2013, 43, 221–222. [Google Scholar] [CrossRef]
- Mehta, P.R.; ApapMangion, S.; Benger, M.; Stanton, B.R.; Czuprynska, J.; Arya, R.; Sztriha, L.K. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination—A report of two UK cases. Brain Behav. Immun. 2021, 95, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G.; Koniari, I.; de Gregorio, C. COVID-19 and Kounis Syndrome: Deciphering Their Relationship. Balkan Med. J. 2021, 38, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G.; Soufras, G.D.; Lianas, D.; Patsouras, N. Heparin-induced thrombocytopenia, allergy to heparins, heart failure, thrombi, and the Kounis syndrome. Int. J. Cardiol. 2016, 214, 508–509. [Google Scholar] [CrossRef]
- Kounis, N.G.; Koniari, I.; Soufras, G.D.; Tsigkas, G.; Plotas, P.; Davlouros, P.; Hahalis, G. The paradox of heparin induced thrombocytopenia-thrombosis, the role of fondaparinux and the need for new therapeutic strategies. Int. Angiol. 2020, 39, 350–351. [Google Scholar] [CrossRef] [PubMed]
- Schwartzberg, L.S.; Navari, R.M. Safety of polysorbate 80 in the oncology setting. Adv. Ther. 2018, 35, 754–767. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.X.; Liu, A.C.; Yu, S.W.; Wang, Z.X.; Lin, X.Q.; Zhai, G.X.; Zhang, Q.Z. The permeability of puerarin loaded poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 on the blood-brain barrier and its protective effect against cerebral ischemia/reperfusion injury. Biol. Pharm. Bull. 2013, 36, 1263–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyapina, M.G.; Stoyanova Dencheva, M. Contact sensitization to ingredients of dental materials and cosmetics in dental students: A pilot study. Cent. Eur. J. Public Health 2019, 27, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Lukawska, J.; Mandaliya, D.; Chan, A.W.E.; Foggitt, A.; Bidder, T.; Harvey, J.; Stycharczuk, L.; Bisdas, S. Anaphylaxis to trometamol excipient in gadolinium-based contrast agents for clinical imaging. J. Allergy Clin. Immunol. Pract. 2019, 7, 1086–1087. [Google Scholar] [CrossRef] [PubMed]
- Maggio, E.T. Alkylsaccharides: Circumventing oxidative damage to biotherapeutics caused by polyoxyethylene-based surfactants. Ther. Deliv. 2013, 4, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Campbell, L.A.; Rosenfeld, M.E. Infection and Atherosclerosis Development. Arch Med. Res. 2015, 46, 339–350. [Google Scholar] [CrossRef] [Green Version]
- McGonagle, D.; O’Donnell, J.S.; Sharif, K.; Emery, P.; Bridgewood, C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020, 2, e437–e445. [Google Scholar] [CrossRef]
- Saba, L.; Gerosa, C.; Wintermark, M.; Hedin, U.; Fanni, D.; Suri, J.S.; Faa, G. Can COVID 19 trigger the plaque vulnerability—A Kounis syndrome warning for “asymptomatic subjects”. Cardiovasc. Diagn. Ther. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kritas, S.K.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Conti, P. Mast cells contribute to coronavirus-induced inflammation: New anti-inflammatory strategy. J. Biol. Regul. Homeost. Agents 2020, 34, 9–14. [Google Scholar] [CrossRef]
- Ilie, P.C.; Stefanescu, S.; Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp Res. 2020, 32, 1195–1198. [Google Scholar] [CrossRef]
- Stefanini, G.G.; Montorfano, M.; Trabattoni, D.; Andreini, D.; Ferrante, G.; Ancona, M.; Metra, M.; Curello, S.; Maffeo, D.; Pero, G. ST-Elevation Myocardial Infarction in Patients with COVID-19: Clinical and Angiographic Outcomes. Circulation 2020, 141, 2113–2116. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G.; Koniari, I.; Soufras, G.D.; Chourdakis, E.; Despotopoulos, S.; Davlouros, P.; Hahalis, G. Respiratory Infections as Predictors of Hospital Admission for Myocardial Infarction and Stroke: Pathophysiologic and Therapeutic Considerations. Clin. Infect. Dis. 2019, 68, 533. [Google Scholar] [CrossRef]
- Blackburn, R.M.; Zhao, H.; Pebody, R.; Hayward, A.C.; Warren-Gash, C. Laboratory-confirmed respiratory infections as predictors of hospital admission for myocardial infarction and stroke: Time-series analysis of English data for 2004–2015. Clin. Infect. Dis. 2018, 67, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Onozuka, D.; Hagihara, A. Extreme influenza epidemics and out-of-hospital cardiac arrest. Int. J. Cardiol. 2018, 263, 158–162. [Google Scholar] [CrossRef]
- Lei, J.; Kusov, Y.; Hilgenfeld, R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral. Res. 2018, 149, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.C.; Fauci, A.S. Research in the Context of a Pandemic. N. Engl. J. Med. 2021, 384, 755–757. [Google Scholar] [CrossRef]
- Ha, J.F. The COVID-19 pandemic, personal protective equipment and respirator: A narrative review. Int. J. Clin. Pract. 2020, 74, e13578. [Google Scholar] [CrossRef]
- Kim, M.A.; Lee, Y.W.; Kim, S.R.; Kim, J.H.; Min, T.K.; Park, H.S.; Shin, M.; Ye, Y.M.; Lee, S.; Lee, J.; et al. COVID-19 Vaccine-associated Anaphylaxis and Allergic Reactions: Consensus Statements of the KAAACI Urticaria/Angioedema/Anaphylaxis Working Group. Allergy Asthma Immunol. Res. 2021, 13, 526–544. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G.; Koniari, I.; de Gregorio, C.; Velissaris, D.; Petalas, K.; Brinia, A.; Assimakopoulos, S.F.; Gogos, C.; Kouni, S.N.; Kounis, G.N.; et al. Allergic Reactions to Current Available COVID-19 Vaccinations: Pathophysiology, Causality, and Therapeutic Considerations. Vaccines 2021, 9, 221. [Google Scholar] [CrossRef]
SARS-CoV-2 | SARS-CoV | MERS-CoV | |
---|---|---|---|
Mode of transmission | Droplet, aerosol, contact | Droplet, aerosol, contact | Droplet, aerosol, contact |
Reproductive number (Ro) | 3.1 | 0.58 | 0.69 |
Median incubation period | 5 days | 4 days | 5.2 days |
Cell entry receptors | ACE2 | ACE2 | Dipeptidyl peptidase 4 |
Disease course | diphasic | diphasic | Rapidly progressive |
ARDS | 18–30% | 20% | 20–30% |
Imaging lung findings | Ground glass opacities, bilateral, multifocal, peripheral distribution | Ground glass opacities, unilateral focal and bilateral, multifocal, peripheral distribution | Ground glass opacities isolated unilateral and bilateral, multifocal, peripheral distribution |
Lung pathology | Diffuse congestions with partly hemorrhagic necrosis | Edematous lungs with diffuse congestion and consolidation areas | Edematous lungs with consolidation |
Acute kidney injury | 3% | 6.7% | 41–50% |
Fatality | 1–3.5% | 9.5% | 34.4% |
Antiviral treatments (reduce replication) | Remdesivir Favipiravir | Ribavirin Interferons Lopinavir and ribavirin | Ribavirin and interferon-a2a |
Immunological treatments | Dexamethasone in SatO2 < 94% IL-1 inhibition IL-6 inhibition Janus kinase inhibition | Methylprednisolone controversial (interferons plus corticosteroids to reduce disease-associated impaired oxygen saturation) | (-) |
Interleukins (ILs) IL-1 (IL-1β, IL-18, IL-33), IL-1α, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-13 |
---|
Chemokines (CXC, CC, C, CX3C) CXCR3, CXCL8, CXCL9, CXCL10, CXCL11, CCL2 (monocyte chemoattractant protein), CCL11 (eotaxin) |
Interferons (IFNs) Type I ΙFNs (IFN-α, IFN-β) Type II IFN (IFN-γ) Type III IFNs IFN-λ1, λ2, λ3 (ΙL29) IL-28α IL-28β |
Tumor Necrosis Factors (TNFs) |
Colony-Stimulating Factors (CSFs), Granulocyte colony-stimulating factor, Macrophage colony-stimulating factor |
Constitutional | Anorexia, arthralgias, fever, fatigue, headache, myalgias, malaise, rigors |
Skin | Edema, rash, rigor, urticaria |
Gastrointestinal | Diarrhea, nausea, splenomegaly, vomiting |
Respiratory | Hypoxemia, hypoxia, interstitial pulmonary edema, respiratory failure, tachypnea |
Cardiovascular | Acute heart failure, arrhythmias, hypotension, increased cardiac output (early), potentially diminished cardiac output (late), myocarditis, stress cardiomyopathy, tachycardia, troponin elevation, QT prolongation, widened pulse pressure |
Blood and coagulation | Bleeding, coagulopathy (increased PPT, reduced INR), cytopenias, disseminated intravascular coagulation, elevated D-dimers, febrile neutropenia, hypofibrinogenemia, hyperferritinemia |
Renal | Acute kidney injury, azotemia, renal failure |
Hepatic | Elevated liver enzymes, hepatomegaly, hyperbilirubinemia, liver failure |
Neurologic | Altered gait, aphasia, confusion, delirium, difficulty in word finding, dysmetria, hallucinations, headache, mental status changes, paresis, seizures, tremor |
Characteristics | SARS-CoV-2- Associated CSS | CAR-T-Associated CRS | Hemophagocytic Lymphohistiocytosis/ Macrophage Activation Syndrome(HLH/MAS) |
---|---|---|---|
Cytokines | IL-2, IL-7, IL-10, G-SCF, IP10, MCP-1, MIP-1A, TNF-α | IFN-γ, IL-2, IL-2Ra, IL-6, sIL-6R, GM-CSF, IL-1, IL-10, IL-12, TNF-a, IFN-a, MCP-1, MIP-1A | TNF-α, IFNγ, IL-1, IL-6, IL-18 |
Pathologic cellular or cytokine driver | Impaired viral clearance, low levels of type I interferons, increased neutrophil extracellular traps (NETs) | Macrophages, CAR T cells, interleukin-6, interleukin-1β | CD8+ T cells, interferon-γ, interleukin-1β, myeloid-cell autoinflammation |
Treatment | Glucocorticoids IL-1 inhibitor Il-6 inhibitor | IL-6 inhibitors TNF-α inhibitors Cyclophosphamide | Glucocorticoids IL-6 inhibitors TNF-α inhibitors |
Differentiating laboratory features | Soluble IL-2 receptor-α low to normal Ferritin moderately to highly increased | Soluble IL-2 receptor-α very high Ferritin extremely high | Soluble IL-2 receptor-α very high Ferritin extremely high |
Differentiating clinical features | Not specific but high rates of ARDS | Not specific | Not specific |
Preformed Mediators | Newly Synthesized Mediators |
---|---|
Biogenic amines | Cytokines |
Histamine, Renin, angiotensin II, serotonin | Interleukins 1,2,3,4,5,6,9,10,13,16 |
Interferon-γ | |
Chemokines | Macrophage activating factor |
IL-8, MCP-1, MCP-3, MCP-4, RANTES (CCL5) | Tumor necrosis factor -a |
Enzymes | Growth factors |
Arylsulfatases, carboxypeptidase A, chymase, kinogenases, phospholipases, tryptase, cathepsin G | Granulocyte monocyte colony-stimulating factor Fibroblast growth factor Nerve growth factor, stem cell factor, VEGF |
Peptides | Arachidonic acid products |
Bradykinin, corticotropin-releasing hormone, endorphins, endothelin, somatostatin, substance B, vasoactive intestinal peptide, urocortin, vascular endothelial growth factor (VEGF) | Leucotrienes Platelet activating factor Prostaglandins Thromboxane |
Proteoglycanes | |
Chondroitin, heparine, hyaluronic acid |
Antivirals | Darunavir, Favipiravir, Opinavir/Ritonavir, Oseltamivir, Remdesivir, Ribavirin, Umifenovir |
Anti-cytokine/anti-inflammatories | Anakinra, canakinumab, eculizumab, sarilumab, tocilizumab |
Anti-coagulopathy drugs | Heparin, low-molecular-weight heparins, dipyridamole |
Antiparasitics | Ivermectin, nitazoxanide |
Colchicine | |
Corticosteroids | |
Cyclosporine | |
Immunomodulatory/antivirals | Azithromycin, Auranofin, Hydroxychloroquine/Chloroquine |
Interferons | Type I IFNs (IFN-α and IFN-β) |
Janus kinase (JAK) inhibitors | Baricitinib, ruxolitinib, tofacitinib |
Specific and non-specific intravenous immune globulins |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kounis, N.G.; Koniari, I.; de Gregorio, C.; Assimakopoulos, S.F.; Velissaris, D.; Hung, M.-Y.; Mplani, V.; Saba, L.; Brinia, A.; Kouni, S.N.; et al. COVID-19 Disease, Women’s Predominant Non-Heparin Vaccine-Induced Thrombotic Thrombocytopenia and Kounis Syndrome: A Passepartout Cytokine Storm Interplay. Biomedicines 2021, 9, 959. https://doi.org/10.3390/biomedicines9080959
Kounis NG, Koniari I, de Gregorio C, Assimakopoulos SF, Velissaris D, Hung M-Y, Mplani V, Saba L, Brinia A, Kouni SN, et al. COVID-19 Disease, Women’s Predominant Non-Heparin Vaccine-Induced Thrombotic Thrombocytopenia and Kounis Syndrome: A Passepartout Cytokine Storm Interplay. Biomedicines. 2021; 9(8):959. https://doi.org/10.3390/biomedicines9080959
Chicago/Turabian StyleKounis, Nicholas G., Ioanna Koniari, Cesare de Gregorio, Stelios F. Assimakopoulos, Dimitrios Velissaris, Ming-Yow Hung, Virginia Mplani, Luca Saba, Aikaterini Brinia, Sophia N. Kouni, and et al. 2021. "COVID-19 Disease, Women’s Predominant Non-Heparin Vaccine-Induced Thrombotic Thrombocytopenia and Kounis Syndrome: A Passepartout Cytokine Storm Interplay" Biomedicines 9, no. 8: 959. https://doi.org/10.3390/biomedicines9080959
APA StyleKounis, N. G., Koniari, I., de Gregorio, C., Assimakopoulos, S. F., Velissaris, D., Hung, M. -Y., Mplani, V., Saba, L., Brinia, A., Kouni, S. N., Gogos, C., Giovannini, M., Novembre, E., Arumugham, V., Ricke, D. O., Soufras, G. D., Nugent, K., Sestili, P., & Malone, R. W. (2021). COVID-19 Disease, Women’s Predominant Non-Heparin Vaccine-Induced Thrombotic Thrombocytopenia and Kounis Syndrome: A Passepartout Cytokine Storm Interplay. Biomedicines, 9(8), 959. https://doi.org/10.3390/biomedicines9080959