Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review
Abstract
:1. Introduction
1.1. Molecular Targets of Red and Near-Infrared Light: Primary and Secondary Effects
2. Materials and Methods
3. Results
3.1. In Vitro Studies
3.2. In Vivo Preclinical (Animal) Studies
3.3. Clinical Studies
4. Discussion
4.1. In Vitro Studies
4.2. In Vivo Preclinical (Animal) Studies
4.3. Clinical Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daiber, A.; Steven, S.; Weber, A.; Shuvaev, V.V.; Muzykantov, V.R.; Laher, I.; Li, H.; Lamas, S.; Münzel, T. Targeting vascular (endothelial) dysfunction. Br. J. Pharmacol. 2017, 174, 1591–1619. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; A AlMazroa, M.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.T., Jr.; Williamson, J.D.; Whelton, P.K.; Snyder, J.K.; Sink, K.M.; Rocco, M.V.; Reboussin, D.M.; Rahman, M.; Oparil, S.; Lewis, C.E.; et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N. Engl. J. Med. 2015, 373, 2103–2116. [Google Scholar]
- Lerman, A.; Zeiher, A.M. Endothelial function: Cardiac events. Circulation 2005, 111, 363–368. [Google Scholar] [CrossRef]
- Dauphinee, S.M.; Karsan, A. Progress in Inflammation Research. In Endothelial Dysfunction and Inflammation; Springer Basel AG: Basel, Switzerland, 2010; p. 243. [Google Scholar]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The Vascular Endothelium and Human Diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szewczyk, A.; Jarmuszkiewicz, W.; Kozieł, A.; Sobieraj, I.; Nobik, W.; Łukasiak, A.; Skup, A.; Bednarczyk, P.; Drabarek, B.; Dymkowska, D.; et al. Mitochondrial mechanisms of endothelial dysfunction. Pharmacol. Rep. 2015, 67, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Kwan, H.-Y.; Huang, Y.; Yao, X. TRP channels in endothelial function and dysfunction. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2007, 1772, 907–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, Q.-K.; Ohashi, K.; Watanabe, H. Calcium signalling in endothelial cells. Cardiovasc. Res. 2000, 48, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Sitia, S.; Tomasoni, L.; Atzeni, F.; Ambrosio, G.; Cordiano, C.; Catapano, A.; Tramontana, S.; Perticone, F.; Naccarato, P.; Camici, P.; et al. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 2010, 9, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, R.Y.; Glassman, P.M.; Greineder, C.F.; Hood, E.D.; Shuvaev, V.V.; Muzykantov, V.R. Targeting therapeutics to endothelium: Are we there yet? Drug Deliv. Transl. Res. 2018, 8, 883–902. [Google Scholar] [CrossRef] [PubMed]
- Amaroli, A.; Ferrando, S.; Benedicenti, S. Photobiomodulation Affects Key Cellular Pathways of all Life-Forms: Considerations on Old and New Laser Light Targets and the Calcium Issue. Photochem. Photobiol. 2019, 95, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Amaroli, A.; Benedicenti, A.; Ferrando, S.; Parker, S.; Selting, W.; Gallus, L.; Benedicenti, S. Photobiomodulation by Infrared Diode Laser: Effects on Intracellular Calcium Concentration and Nitric Oxide Production of Paramecium. Photochem. Photobiol. 2016, 92, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Amaroli, A.; Colombo, E.; Zekiy, A.; Aicardi, S.; Benedicenti, S.; De Angelis, N. Interaction between Laser Light and Osteo-blasts: Photobiomodulation as a Trend in the Management of Socket Bone Preservation-A Review. Biology 2020, 23, 409. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, S.; Agas, D.; Mirata, S.; Signore, A.; De Angelis, N.; Ravera, S.; Utyuzh, A.S.; Parker, S.; Sabbieti, M.G.; Benedicenti, S.; et al. The 808 nm and 980 nm infrared laser irradiation affects spore germination and stored calcium homeostasis: A comparative study using delivery hand-pieces with standard (Gaussian) or flat-top profile. J. Photochem. Photobiol. B Biol. 2019, 199, 111627. [Google Scholar] [CrossRef]
- Santana-Blank, L.; Rodríguez-Santana, E.; Santana-Rodríguez, J.A.; Santana-Rodríguez, K.E.; Reyes-Barrios, H.; Hamblin, M.R.; De Sousa, M.V.P.; Agrawal, T. Water as a Photoacceptor, Energy Transducer, and Rechargeable Electrolytic Bio-battery in Photobiomodulation. In Handbook of Low-Level Laser Therapy; Chapter 8; CRC Press: Boca Raton, FL, USA, 2016; pp. 119–140. [Google Scholar]
- Gonzalez-Lima, F.; Rojas, J.C. Low-level light therapy of the eye and brain. Eye Brain 2011, 3, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Stephensa, B.J.; Jonesb, L.R. Tissue Optics. In Handbook of Low-Level Laser Therapy; Hamblin, M.R., Pires de Sousa, M.V., Agrawal, T., Eds.; Pan Stanford Publishing: Singapore, 2017; pp. 98–117. [Google Scholar]
- Santana-Blank, L.; Rodríguez-Santana, E.; Santana-Rodríguez, K. Theoretic, Experimental, Clinical Bases of the Water Oscillator Hypothesis in Near-Infrared Photobiomodulation. Photomed. Laser Surg. 2010, 28, S41. [Google Scholar] [CrossRef]
- Karu, T.I. Mitochondrial Signaling in Mammalian Cells Activated by Red and Near-IR Radiation. Photochem. Photobiol. 2008, 84, 1091–1099. [Google Scholar] [CrossRef]
- Karu, T.I. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 2010, 62, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Amaroli, A.; Ravera, S.; Parker, S.; Panfoli, I.; Benedicenti, A.; Benedicenti, S. An 808-nm Diode Laser with a Flat-Top Handpiece Positively Photobiomodulates Mitochondria Activities. Photomed. Laser Surg. 2016, 34, 564–571. [Google Scholar] [CrossRef]
- Amaroli, A.; Pasquale, C.; Zekiy, A.; Utyuzh, A.; Benedicenti, S.; Signore, A.; Ravera, S. Photobiomodulation and oxidative stress: 980nm diode-laser light regulates mitochondria activity and reactive oxygen species production. Oxidative Med. Cell. Longev. 2021, 2021, 6626286. [Google Scholar] [CrossRef]
- Ravera, S.; Ferrando, S.; Agas, D.; De Angelis, N.; Raffetto, M.; Sabbieti, M.G.; Signore, A.; Benedicenti, S.; Amaroli, A. 1064 nm Nd:YAG laser light affects transmembrane mitochondria respiratory chain complexes. J. Biophotonics 2019, 12, e201900101. [Google Scholar] [CrossRef]
- Keszler, A.; Lindemer, B.; Hogg, N.; Weihrauch, D.; Lohr, N.L. Wavelength-dependence of vasodilation and NO release from S-nitrosothiols and dinitrosyl iron complexes by far red/near infrared light. Arch. Biochem. Biophys. 2018, 649, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Mio, Y.; Pratt, P.F.; Lohr, N.; Warltier, D.C.; Whelan, H.T.; Zhu, D.; Jacobs, E.R.; Medhora, M.; Bienengraeber, M. Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J. Mol. Cell. Cardiol. 2009, 46, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Huang, Y.-Y.; Wang, Y.; Lyu, P.; Hamblin, M.R. Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Biochim. Biophys. Acta (BBA) Gen. Subj. 2017, 1861, 441–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunér, J.; Jenkins, P.A. Parameter Reproducibility in Photobiomodulation. Photomed. Laser Surg. 2016, 34, 91–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kipshidze, N.; Nikolaychik, V.; Keelan, M.H.; Shankar, L.R.; Khanna, A.; Kornowski, R.; Leon, M.; Moses, J. Low-power helium: Neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg. Med. 2001, 28, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Ricci, R.; Pazos, M.C.; Borges, R.E.; Pacheco-Soares, C. Biomodulation with low-level laser radiation induces changes in en-dothelial cell actin filaments and cytoskeletal organization. J. Photochem. Photobiol. B Biol. 2009, 95, 6–8. [Google Scholar] [CrossRef]
- Hwang, M.H.; Lee, J.W.; Son, H.-G.; Kim, J.; Choi, H. Effects of photobiomodulation on annulus fibrosus cells derived from degenerative disc disease patients exposed to microvascular endothelial cells conditioned medium. Sci. Rep. 2020, 10, 9655. [Google Scholar] [CrossRef]
- Vitor, L.L.R.; Prado, M.T.O.; Neto, N.L.; Oliveira, R.C.; Sakai, V.T.; Santos, C.F.; Dionísio, T.J.; Rios, D.; Cruvinel, T.; Machado, M.A.A.M.; et al. Does photobiomodulation change the synthesis and secretion of angiogenic proteins by different pulp cell lineages? J. Photochem. Photobiol. B Biol. 2020, 203, 111738. [Google Scholar] [CrossRef]
- Chen, C.-H.; Hung, H.-S.; Hsu, S.-H. Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway. Lasers Surg. Med. 2008, 40, 46–54. [Google Scholar] [CrossRef]
- Lukowicz, M.; Szymańska, J.; Goralczyk, K.; Zając, A.; Rość, D. Effect of low level laser therapy and high intensity laser therapy on endothelial cell proliferation in vitro: Preliminary communication. In Proceedings of the Tenth Symposium on Laser Technology, Szczecin, Poland, 24–28 September 2012. [Google Scholar] [CrossRef]
- Szymanska, J.; Goralczyk, K.; Klawe, J.J.; Lukowicz, M.; Michalska, M.; Goralczyk, B.; Zalewski, P.; Newton, J.L.; Gryko, L.; Zajac, A.; et al. Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2013, 64, 387–391. [Google Scholar]
- Góralczyk, K.; Szymańska, J.; Łukowicz, M.; Drela, E.; Kotzbach, R.; Dubiel, M.; Michalska, M.; Góralczyk, B.; Zając, A.; Rość, D. Effect of LLLT on endothelial cells culture. Lasers Med. Sci. 2014, 30, 273–278. [Google Scholar] [CrossRef]
- Góralczyk, K.; Szymańska, J.; Szot, K.; Fisz, J.; Rość, D. Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia. Lasers Med. Sci. 2016, 31, 825–831. [Google Scholar] [CrossRef] [Green Version]
- Góralczyk, K.; Szymańska, J.; Gryko, Ł.; Fisz, J.; Rość, D. Low-level laser irradiation modifies the effect of hyperglycemia on adhesion molecule levels. Lasers Med. Sci. 2018, 33, 1521–1526. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Q.; Shi, M.; Gan, P.; Huang, Q.; Wang, A.; Tan, G.; Fang, Y.; Liao, H. Low-level laser therapy induces human umbilical vascular endothelial cell proliferation, migration and tube formation through activating the PI3K/Akt signaling pathway. Microvasc. Res. 2020, 129, 103959. [Google Scholar] [CrossRef]
- Terena, S.M.L.; Mesquita-Ferrari, R.A.; Araújo, A.M.D.S.; Fernandes, K.P.S.; Fernandes, M.H. Photobiomodulation alters the viability of HUVECs cells. Lasers Med. Sci. 2021, 36, 83–90. [Google Scholar] [CrossRef]
- Martignago, C.C.; Oliveira, R.F.; Pires-Oliveira, D.A.; Oliveira, P.D.; Pacheco Soares, C.; Monzani, P.S.; Poli-Frederico, R.C. Effect of low-level laser therapy on the gene expression of collagen and vascular endothelial growth factor in a culture of fi-broblast cells in mice. Lasers Med. Sci. 2015, 30, 203–208. [Google Scholar] [CrossRef]
- Chu, Y.-H.; Chen, S.-Y.; Hsieh, Y.-L.; Teng, Y.-H.; Cheng, Y.-J. Low-level laser therapy prevents endothelial cells from TNF-α/cycloheximide-induced apoptosis. Lasers Med. Sci. 2017, 33, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Keszler, A.; Lindemer, B.; Weihrauch, D.; Jones, D.; Hogg, N.; Lohr, N.L. Red/near infrared light stimulates release of an endothelium dependent vasodilator and rescues vascular dysfunction in a diabetes model. Free. Radic. Biol. Med. 2017, 113, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Amaroli, A.; Ravera, S.; Baldini, F.; Benedicenti, S.; Panfoli, I.; Vergani, L. Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mi-tochondrial oxidative phosphorylation. Lasers Med. Sci. 2019, 34, 495–504. [Google Scholar] [CrossRef]
- Lohr, N.L.; Keszler, A.; Pratt, P.; Bienengraber, M.; Warltier, D.C.; Hogg, N. Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: Potential role in cardioprotection. J. Mol. Cell. Cardiol. 2009, 47, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.-X.; Yang, Q.-M.; Xia, Y.-C.; Zhang, W.-G.; Nie, F.-F. Effect of 810 nm Near-Infrared Laser on Revascularization of Ischemic Flaps in Rats. Photomed. Laser Surg. 2018, 36, 290–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuby, H.; Maltz, L.; Oron, U. Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers Surg. Med. 2006, 38, 682–688. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Y.; Zhang, H.; Jin, P.; Wang, W.; Hou, J.; Wei, Y.; Hu, S. Low-Level Laser Irradiation Alters Cardiac Cytokine Expression Following Acute Myocardial Infarction: A Potential Mechanism for Laser Therapy. Photomed. Laser Surg. 2011, 29, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Manchini, M.T.; Serra, A.J.; Feliciano, R.D.S.; Santana, E.T.; Antônio, E.L.; Carvalho, P.D.T.C.D.; Montemor, J.; Crajoinas, R.O.; Girardi, A.C.C.; Tucci, P.J.F.; et al. Amelioration of Cardiac Function and Activation of Anti-Inflammatory Vasoactive Peptides Expression in the Rat Myocardium by Low Level Laser Therapy. PLoS ONE 2014, 9, e101270. [Google Scholar] [CrossRef] [Green Version]
- Lopes, N.N.F.; Plapler, H.; Chavantes, M.C.; Lalla, R.V.; Yoshimura, E.M.; Alves, M.T.S. Cyclooxygenase-2 and vascular endothelial growth factor expression in 5-fluorouracil-induced oral mucositis in hamsters: Evaluation of two low-intensity laser protocols. Support. Care Cancer 2009, 17, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Iyomasa, M.M.; Rizzi, E.C.; Leão, J.C.; Issa, J.P.; Dias, F.J.; Pereira, Y.C.; Fonseca, M.J.; Vicentini, F.T.; Watanabe, I.S. Zymo-graphic and ultrastructural evaluations after low-level laser irradiation on masseter muscle of HRS/J strain mice. Lasers Med. Sci. 2013, 28, 777–783. [Google Scholar] [CrossRef]
- Rodrigues, N.C.; Brunelli, R.; De Araújo, H.S.S.; Parizotto, N.A.; Renno, A.C.M. Low-level laser therapy (LLLT) (660nm) alters gene expression during muscle healing in rats. J. Photochem. Photobiol. B Biol. 2013, 120, 29–35. [Google Scholar] [CrossRef]
- Silveira, P.C.L.; Scheffer, D.D.L.; Glaser, V.; Remor, A.P.; Pinho, R.A.; Junior, A.S.A.; Latini, A. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free. Radic. Res. 2016, 50, 503–513. [Google Scholar] [CrossRef]
- Fiorio, F.B.; Dos Santos, S.A.; de Melo Rambo, C.S.; Dalbosco, C.G.; Serra, A.J.; de Melo, B.L.; Leal-Junior, E.C.P.; de Carvalho, P.T.C. Photobiomodulation therapy action in wound repair skin induced in aged rats old: Time course of biomarkers in-flammatory and repair. Lasers Med. Sci. 2017, 32, 1769–1782. [Google Scholar] [CrossRef]
- Otterço, A.N.; Andrade, A.L.; Brassolatti, P.; Pinto, K.N.Z.; Araújo, H.S.S.; Parizotto, N.A. Photobiomodulation mechanisms in the kinetics of the wound healing process in rats. J. Photochem. Photobiol. B 2018, 183, 22–29. [Google Scholar]
- Yadav, A.; Verma, S.; Keshri, G.K.; Gupta, A. Role of 904 nm superpulsed laser-mediated photobiomodulation on nitroxidative stress and redox homeostasis in burn wound healing. Photodermatol. Photoimmunol. Photomed. 2020, 36, 208–218. [Google Scholar] [CrossRef]
- Silva, T.C.; Oliveira, T.M.; Sakai, V.T.; Dionísio, T.J.; Santos, C.F.; Bagnato, V.S.; Machado, M.A. In vivo effects on the ex-pression of vascular endothelial growth factor-A165 messenger ribonucleic acid of an infrared diode laser associated or not with a visible red diode laser. Photomed. Laser Surg. 2010, 28, 63–68. [Google Scholar] [CrossRef]
- Colombo, F.; Neto, A.A.; Sousa, A.P.; Marchionni, A.M.; Pinheiro, A.L.; Reis, S.R. Effect of low-level laser therapy (λ660 nm) on angiogenesis in wound healing: A immunohistochemical study in a rodent model. Braz. Dent. J. 2013, 24, 308–312. [Google Scholar] [CrossRef]
- Corazza, A.V.; Jorge, J.; Kurachi, C.; Bagnato, V.S. Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed. Laser Surg. 2007, 25, 102–106. [Google Scholar] [CrossRef]
- Wagner, V.P.; Curra, M.; Webber, L.P.; Nör, C.; Matte, U.; Meurer, L.; Martins, M.D. Photobiomodulation regulates cytokine release and new blood vessel formation during oral wound healing in rats. Lasers Med. Sci. 2016, 31, 665–671. [Google Scholar] [CrossRef]
- Cury, V.; Moretti, A.I.S.; Assis, L.; Bossini, P.; Crusca, J.D.S.; Neto, C.B.; Fangel, R.; De Souza, H.P.; Hamblin, M.R.; Parizotto, N.A. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. J. Photochem. Photobiol. B Biol. 2013, 125, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Fortuna, T.; Gonzalez, A.C.; Sá, M.F.; Andrade, Z.A.; Reis, S.R.A.; Medrado, A.R.A.P. Effect of 670 nm laser photobiomod-ulation on vascular density and fibroplasia in late stages of tissue repair. Int. Wound J. 2018, 15, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.C.; Santos, E.T.; Freire, T.F.C.; Sá, M.F.; Andrade, Z.D.A.; Medrado, A.R.A.P. Participation of the Immune System and Hedgehog Signaling in Neoangiogenesis Under Laser Photobiomodulation. J. Lasers Med. Sci. 2019, 10, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Salate, A.C.; Barbosa, G.; Gaspar, P.; Koeke, P.U.; Parizotto, N.A.; Benze, B.G.; Foschiani, D. Effect of In-Ga-Al-P Diode Laser Irradiation on Angiogenesis in Partial Ruptures of Achilles Tendon in Rats. Photomed. Laser Surg. 2005, 23, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Albertini, R.; Serra, A.J.; da Silva, E.A.; de Oliveira, V.L.; Silva, L.M.; Leal-Junior, E.C.; de Carvalho, P.T. Photobiomodulation therapy on collagen type I and III, vascular endothelial growth factor, and metalloproteinase in ex-perimentally induced tendinopathy in aged rats. Lasers Med. Sci. 2016, 31, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Buzinari, T.C.; De Moraes, T.F.; Cárnio, E.C.; Lopes, L.A.; Salgado, H.C.; Rodrigues, G.J. Photobiomodulation induces hypotensive effect in spontaneously hypertensive rats. Lasers Med. Sci. 2020, 35, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Oishi, J.C.; De Moraes, T.F.; Buzinari, T.C.; Cárnio, E.C.; Parizotto, N.A.; Rodrigues, G.J. Hypotensive acute effect of photo-biomodulation therapy on hypertensive rats. Life Sci. 2017, 178, 56–60. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, T.F.; Filho, J.C.C.; Oishi, J.C.; Almeida-Lopes, L.; Parizotto, N.A.; Rodrigues, G.J. Energy-dependent effect trial of photobiomodulation on blood pressure in hypertensive rats. Lasers Med. Sci. 2020, 35, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Derkacz, A.; Protasiewicz, M.; Rola, P.; Podgórska, K.; Szymczyszyn, A.; Gutherc, R.; Poreba, R.; Doroszko, A. Effects of Intravascular Low-Level Laser Therapy During Coronary Intervention on Selected Growth Factors Levels. Photomed. Laser Surg. 2014, 32, 582–587. [Google Scholar] [CrossRef]
- Derkacz, A.; Szymczyszyn, A.; Szahidewicz-Krupska, E.; Protasiewicz, M.; Poręba, R.; Doroszko, A. Effect of endovascular coronary low-level laser therapy during angioplasty on the release of endothelin-1 and nitric oxide. Adv. Clin. Exp. Med. 2017, 26, 595–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, N.C.; Pereira, M.H.C.; Tomimura, S.; De Magalhães, A.C.; Pomerantzeff, P.M.; Chavantes, M.C. Low-Level Laser Therapy Prevents Prodromal Signal Complications on Saphenectomy Post Myocardial Revascularization. Photomed. Laser Surg. 2014, 32, 330–335. [Google Scholar] [CrossRef]
- Ruh, A.C.; Frigo, L.; Cavalcanti, M.F.X.B.; Svidnicki, P.; Vicari, V.N.; Lopes-Martins, R.A.B.; Junior, E.C.P.L.; De Isla, N.; Diomede, F.; Trubiani, O.; et al. Laser photobiomodulation in pressure ulcer healing of human diabetic patients: Gene expression analysis of inflammatory biochemical markers. Lasers Med. Sci. 2017, 33, 165–171. [Google Scholar] [CrossRef]
- Angiero, F.; Ugolini, A.; Cattoni, F.; Bova, F.; Blasi, S.; Gallo, F.; Cossellu, G.; Gherlone, E. Evaluation of bradykinin, VEGF, and EGF biomarkers in gingival crevicular fluid and comparison of PhotoBioModulation with conventional techniques in perio-dontitis: A split-mouth randomized clinical trial. Lasers Med. Sci. 2020, 35, 965–970. [Google Scholar] [CrossRef]
- Szymczyszyn, A.; Doroszko, A.; Szahidewicz-Krupska, E.; Rola, P.; Gutherc, R.; Jasiczek, J.; Mazur, G.; Derkacz, A. Effect of the transdermal low-level laser therapy on endothelial function. Lasers Med. Sci. 2016, 31, 1301–1307. [Google Scholar] [CrossRef]
- Maksimovich, I.V. Intracerebral Transcatheter Laser Photobiomodulation Therapy in the Treatment of Binswanger’s Disease and Vascular Parkinsonism: Research and Clinical Experience. Photobiomodul. Photomed. Laser Surg. 2019, 37, 606–614.76. [Google Scholar] [CrossRef] [PubMed]
- Kovalenko, Y.L.; A Rudenko, L.; Melekhovets, O.K.; Chepeliuk, A.D.; Melekhovets, I.V. Efficiency of hyperuricemia correction by low level laser therapy in the treatment of arterial hypertension. Wiad. Lek. 2018, 71, 1310–1315. [Google Scholar]
- Martineau, I.; Lacoste, E.; Gagnon, G. Effects of calcium and thrombin on growth factor release from platelet concentrates: Kinetics and regulation of endothelial cell proliferation. Biomaterials 2004, 25, 4489–4502. [Google Scholar] [CrossRef] [PubMed]
- Lacoste, E.; Martineau, I.; Gagnon, G. Platelet Concentrates: Effects of Calcium and Thrombin on Endothelial Cell Proliferation and Growth Factor Release. J. Periodontol. 2003, 74, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.L.; Leavitt, L.; Varacallo, M. Physiology, Growth Factor. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Hu, T.; Ramachandrarao, S.P.; Siva, S.; Valancius, C.; Zhu, Y.; Mahadev, K.; Toh, I.; Goldstein, B.J.; Woolkalis, M.; Sharma, K. Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. Am. J. Physiol. Renal. Physiol. 2005, 289, F816–F825. [Google Scholar] [CrossRef] [Green Version]
- Pocock, T.M.; Williams, B.; Curry, F.E.; Bates, D.O. VEGF and ATP act by different mechanisms to increase microvascular permeability and endothelial [Ca2+]i. Am. J. Physiol. Circ. Physiol. 2000, 279, H1625–H1634. [Google Scholar] [CrossRef] [Green Version]
- Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular Endothelial Growth Factor and Angiogenesis. Pharmacol. Rev. 2004, 56, 549–580. [Google Scholar] [CrossRef]
- Zhao, Y.; Adjei, A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncol. 2015, 20, 660–673. [Google Scholar] [CrossRef] [Green Version]
- Hanna, R.; Agas, D.; Benedicenti, S.; Ferrando, S.; Laus, F.; Cuteri, V.; Lacava, G.; Sabbieti, M.G.; Amaroli, A. A Comparative Study Between the Effectiveness of 980 nm Photobiomodulation Delivered by Hand-Piece with Gaussian vs. Flat-Top Profiles on Osteoblasts Maturation. Front. Endocrinol. 2019, 10, 92. [Google Scholar] [CrossRef] [Green Version]
- Cooke, J.P.; Losordo, D.W. Nitric Oxide and Angiogenesis. Circulation 2002, 105, 2133–2135. [Google Scholar] [CrossRef]
- Faas, M.; Sáez, T.; de Vos, P. Extracellular ATP and adenosine: The Yin and Yang in immune responses? Mol. Asp. Med. 2017, 55, 9–19. [Google Scholar] [CrossRef]
- Xia, Z.; Vanhoutte, P.M. Nitric Oxide and Protection against Cardiac Ischemia. Curr. Pharm. Des. 2011, 17, 1774–1782. [Google Scholar] [CrossRef]
- De Nadai, C.; Sestili, P.; Cantoni, O.; Lièvremont, J.-P.; Sciorati, C.; Barsacchi, R.; Moncada, S.; Meldolesi, J.; Clementi, E. Nitric oxide inhibits tumor necrosis factor-alpha -induced apoptosis by reducing the generation of ceramide. Proc. Natl. Acad. Sci. USA 2000, 97, 5480–5485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totaro, A.; Panciera, T.; Piccolo, S. YAP/TAZ upstream signals and downstream responses. Nat. Cell Biol. 2018, 20, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Plass, C.A.; Loew, H.G.; Podesser, B.K.; Prusa, A.M. Light-Induced Vasodilation of Coronary Arteries and Its Possible Clinical Implication. Ann. Thorac. Surg. 2012, 93, 1181–1186. [Google Scholar] [CrossRef]
- Tafur, J.; Mills, P.J. Low-Intensity Light Therapy: Exploring the Role of Redox Mechanisms. Photomed. Laser Surg. 2008, 26, 323–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hode, T.; Hamblin, M.R.; De Sousa, M.V.P.; Agrawal, T. Is Coherence Important in Photobiomodulation? In Handbook of Low-Level Laser Therapy; Chapter 4; CRC Press: Boca Raton, FL, USA, 2016; pp. 51–66. [Google Scholar]
- Ashikaga, H.; Ben-Yehuda, O.; Chien, K.R. Chapter 25-Coronary Restenosis. In Molecular Basis of Cardiovascular Disease, 2nd ed.; Chien, K.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 455–469. [Google Scholar]
- Takase, H.; Sugiyama, M.; Nakazawa, A.; Toriyama, T.; Hayashi, K.; Goto, T.; Sato, K.; Ikeda, K.; Ueda, R.; Dohi, Y. Increased endogenous endothelin-1 in coronary circulation is associated with restenosis after coronary angioplasty. Can. J. Cardiol. 2003, 19, 902–906. [Google Scholar]
- Eddleston, J.; Christiansen, S.C.; Zuraw, B.L. KININS AND NEUROPEPTIDES, Bradykinin. In Encyclopedia of Respiratory Medicine; Laurent, G.J., Shapiro, S.D., Eds.; Academic Press: Cambridge, MA, USA, 2006; pp. 502–506. [Google Scholar]
- Hardwicke, J.; Schmaljohann, D.; Boyce, D.; Thomas, D. Epidermal growth factor therapy and wound healing—past, present and future perspectives. Surgeon 2008, 6, 172–177. [Google Scholar] [CrossRef]
- Vargas, E.; Barrett, D.W.; Saucedo, C.L.; Huang, L.-D.; Abraham, J.A.; Tanaka, H.; Haley, A.P.; Gonzalez-Lima, F. Beneficial neurocognitive effects of transcranial laser in older adults. Lasers Med. Sci. 2017, 32, 1153–1162. [Google Scholar] [CrossRef]
- Mitchell, U.H.; Mack, G.L. Low-Level Laser Treatment with Near-Infrared Light Increases Venous Nitric Oxide Levels Acutely: A Single-Blind, Randomized Clinical Trial of Efficacy. Am. J. Phys. Med. Rehabil. 2013, 92, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Meneguzzo, D.T.; Ferreira, L.S.; De Carvalho, E.M.; Nakashima, C.F.; Hamblin, M.R.; De Sousa, M.V.P.; Agrawal, T. Intravascular Laser Irradiation of Blood. In Handbook of Low-Level Laser Therapy; Chapter 46; CRC Press: Boca Raton, FL, USA, 2016; pp. 933–952. [Google Scholar]
- Alizade, I.G.; Karaeva, N.T. Experience in the use of autotransfusions of laser irradiated blood in treating hypertension patients. Lik. Sprava 1994, 5–6, 29–32. [Google Scholar]
Cell Line | Wavelength | Parameters Irradiated | Methods | Effect of PBM |
---|---|---|---|---|
HuC EC (PCC) [29] | 632 nm Laser | Power = 0.0035 W; power density = 0.0017 W/cm2; time = 0, 60, 180, 300, 600, 900, 1200, 1800, 2400, and 3600 s; spot area = 2 cm2; energy = from 0 to 12.6 J; fluence = from 0 to 6.3 J/cm2; mode = continuous wave (CW) | No. of irradiations = 1. Investigation setup: proliferation and human VEGF immunoassay | Stimulation of endothelial cell growth; increment of VEGF secretion by 0.63, 1.05, 2.1, and 4.2 J; no effect by 0.21 and 6.3 J; decrement of VEGF secretion by 8.4 and 12.6 J |
RVM-neo (PCC) [26] | 670 nm LED | Power = 0.005, 0.025, and 0.05 W; power density = 0.005, 0.025, and 0.05 W/cm2; time = 300 s; spot area = 1 cm2; energy = 1.5, 7.5, and 15 J; fluence = 1.5, 7.5, and 15 J/cm2; mode = CW | No. of irradiations = 1 with incremented energies (1.5, 7.5, and 15 J) in LDH and Casp experiments. 1 with fluence 7.5 J/cm2 in other experiments. Investigation setup: cell viability; Casp 3 assay; flow cytometer for annexin V, cytochrome c release assay; measurement of intracellular NO, oxygen consumption, ATP synthesis | Decrement of apoptosis indices (casp 3, annexin, cytochrome c); increment of ATP and NO production |
RAEC (PCC) [30] | 685 nm Laser | Power = 0.02 W, Power density = 0.011 W/cm2, Time = 720 s, Spot area = 1.8 cm2, Energy = 14.4 J, Fluence = 8 J/cm2, Mode = continuous wave (CW) | No. of irradiations = 4 (12, 24, 36, and 48 h after plating). Investigation set-up: proliferation assay; immunohistochemistry for actin filaments | Stimulation of cellular proliferation; changes in the cytoskeleton through the reorganization of actin filaments and neo-formation of stress fibres |
h-AFC (PCC) [31] | 645 nm Laser | Power = 0.025, 0.010, 0.012 W; power density = 0.009, 0.003, 0.004 W/cm2; time = 640, 1591, 1257 s to generate 6 J; time = 1278, 3183, 2515 s to generate 32 J; time = 2559, 6366, 5029 s to generate 64 J; spot area = 2.8 cm2; energy = 16, 32, and 64 J; fluence = 5.76, 11.51, 23.02 J/cm2; mode = CW | No. of irradiations = 1. Investigation set-up: cell cytotoxicity and LDH release assay. Immunofluorescence and qRT-PCR: TNF-α, IL-1β, MMP1, MMP3, IL-6, IL-8, VEGF-A, VEGF-B, VEGF-C, NGF, and BDNF | Decrement of inflammatory mediators, and catabolic enzymes; 32 J inhibited MMP1, MMP3 BDNF; 64 J inhibited MMP1, MMP3, BDNF, IL-8 |
HPF (PCC) [32] | 660 nm Laser | Power = 0.01 W or 0.015 W; power density = 0.25 or 0.37 W/cm2; time = 10 s; spot area = 0.04 cm2; energy = 0.1 or 0.15 J; fluence = 2.5 or 3.7 J/cm2; mode = CW | No. of irradiations = 1. Investigation setup: viability and proliferation assay; ELISA, VEGF-C, VEGF-A, VEGFR2, FGF-2, PDGF, VEGFR1, PECAM-1, VEGF-D, PLGF, BMP-9 | Both energy increased secretion of VEGF-A, VEGF-C, and VEGFR1; upregulation of BMP-9; downregulation of PDGF by both energies; 0.1 J was better than 0.15 J for capillary-like structure formation |
HUVEC(PCC) [33] | 623.5 nm Laser | Power = 0.0013 W; power density = 0.0001 W/cm2; time = s; spot area = 9.06 cm2; energy = 0.78, 2.34, 4.68, 7.02; fluence = 0.086, 0.26, 0.52, 0.77 J/cm2; mode = CW | No. of irradiations = 1. Investigation setup: nitrate and nitrite Griess Assay; qRT-PCR, eNOS; Western Blot Analysis, eNOS and vinculin; migration assay; tube formation analysis | Upregulation of eNOS expression through PI3K pathway and increment of vinculin protein; cell migration promoted with 2.34 J |
HUVEC [34] | 660, 670, 820, 808 nm Laser | Power = 0.01, 0.02, 0.04, 0.1, 1.5 W; power density = 0.028, 0.057, 0.11, 0.28, 4.28 W/cm2; time = from 5 to 100 s; spot area = 0.35 cm2; energy = from 0.05 to 150 J; fluence from 0.14 to 428 J/cm2; mode = CW | No. of irradiations = 1. Investigation setup: cell proliferation assay | Stimulation of cell proliferation |
HUVEC(PCC) [35] | 635, 830 nm Laser | 635-nm: Power = 0.15 W Power density = 0.00187 W/cm2 Time = 1066, 2133, 4266 s Spot area = 80 cm2, Energy = 160, 320, 640 J, Fluence 2, 4, 8 J/cm2 Mode = CW 830-nm: Power = 0.3 W Power density = 0.00375 W/cm2 Time = 533, 1066, 2133 s Spot area = 80 cm2, Energy = 160, 320, 640 J, Fluence 2, 4, 8 J/cm2 Mode = CW | No. of irradiations = 2 radiations on the day 2 and 4 with one day-break Investigation set-up: proliferation assay; ELISA, VEGF-A, TGF-1 | 635 nm increased cell proliferation and decreases VEGF-A concentration; 830 nm decreased TGF-1 concentration |
HUVEC(PCC) [36] | 635 nm Laser | Power = 0.15 W; power density = 0.00187 W/cm2; time = 1066, 2133, 4266 s; spot area = 80 cm2; energy = 160, 320, 640 J; fluence 2, 4, 8 J/cm2; mode = CW | No. of irradiations = 2 radiations on day 2 and 4 with one day break. Investigation setup: proliferation assay; ELISA test, VEGF-A and presence of soluble VEGF receptors (sVEGFR-1 and sVEGFR-2) | Decrement of VEGF-A, sVEGFR-1, and sVEGFR-2; activation of cell proliferation |
HUVEC(PCC) hyperglycemia [37] | 635, 830 nm Laser | 635 nm: Power = 0.15 W; power density = 0.00187 W/cm2; time = 1066 s; spot area = 80 cm2; energy = 160 J; fluence 2 J/cm2; mode = CW 830 nm: Power = 0.3 W; power density = 0.00375 W/cm2; Time = 533 s; spot area = 80 cm2; energy = 160 J; fluence 2 J/cm2; mode = CW | No. of irradiations = 2 on day 5 and 6. Investigation setup: induction of hyperglycemia; proliferation assay; ELISA, TNF-α and IL-6 | Increment of proliferation; reduction of inflammation by decrease of TNF-α and IL-6; 830 nm affect more than 635 nm |
HUVEC(PCC) hyperglycemia [38] | 635, 830 nm Laser | 635 nm: Power = 0.15 W; power density = 0.00187 W/cm2; time = 1066 s; spot area = 80 cm2; energy = 160 J; fluence 2 J/cm2; mode = CW 830 nm: Powe r = 0.3 W; power density = 0.00375 W/cm2; time = 533 s; spot area = 80 cm2; energy = 160 J; fluence 2 J/cm2; mode = CW | No. of irradiations = 2 on day 5 and 6. Investigation setup: induction of hyperglycemia; proliferation assay. ELISA, sE-selectin and sVCAM | Decrement in sE-selectin and sVCAM concentration; increment of proliferation; 830 nm affect more than 635 nm |
HUVEC [39] | 650 nm Laser | Power = ~2 W; power density = 0.031, 0.011, 0.002 W/cm2; time = from 16 to 1920 s; spot area = 63.6, 191, 961.6 cm2; energy = from 32 to 3,840 J; fluence = from 0.5 to 20 J/cm2; mode = CW | No. of irradiations = 1. Investigation setup: proliferation assay; scratch test; tube formation assay; Western blot analysis, PI3K, p-PI3K, Akt, p-Akt, VEGF-A, eNOS, HIF-1α. ELISA, VEGF-A | Increment of proliferation, migration, and tube formation; activation of by PI3K/Akt signalling pathway |
HUVEC [40] | 660, 780 nm Laser | Power = 0.04 W; power density = 1 W/cm2; time = 1, 5, 10, 20 s; spot area = 0.04 cm2; energy = 0.04, 0.2, 0.4, 0.8 J; fluence 1, 5, 10, 20 J/cm2; mode = CW | No. of irradiations = 1. Investigation setup: cell viability assay; total protein measure | 660 nm induced increment of viability and concentration of total proteins; 0.2 and 0.4 J had better effect; 780 nm had inhibitory effect. |
L929 [41] | 904 nm Laser | Repetition rate = 10 KHz; output power = 50 mW; pulse width = 100 ns; peak power = 50 W; spot area = 0.01 cm2; active cycle of 0.1%; energy = 200 J or 300 J; fluence = 2 J/cm2 or 3 J/cm2 | No. of irradiations = 2 for two consecutive days. Investigation setup: qRT-PCR, COL1α1, VEGF | 200 J incremented expression of the genes COL1α1 and VEGF; 300 J incremented expression of the genes VEGF |
EA.hy926 [42] | 660 nm Laser | Power = 1 W; power density = 0.003 W/cm2; time = 3600 s; spot area = 314 cm2; energy = 3600 J; fluence = 11. 5 J/cm2; mode = CW | No. of irradiations = 1 for proliferation. 1 + 1 irradiation after 24 h for other experiments. Investigation setup: Western blotting, phospho-ERK, ERK, phosphop38, p38, phospho-JNK, JNK, NF-κB, iNOS, and cleaved caspase 3/8/7/9, PARP | Protection against TNF/CHX-induced apoptosis by inhibition of p38 MAPK and NF-κB signals |
HMVEC-d [43] | 670 nm Laser | Power = 0.025 W, 0.05 W or 0.1 W; power density = 0.025, 0.05 or 0.1 W/cm2; time = 30, 60 or 120 s; spot area = 1 cm2; energy = 0.75, 1.5, 3, 6, or 12 J; fluence = 0.75, 1.5, 3, 6, 12 J/cm2; mode = CW | No. of irradiations = 1. Investigation setup, NO production | Increment of NO release from bound substances in healthy and diabetic model |
HECV-d [44] | 808 nm Laser | Power = 0.95 W; power density = 0.95 W/cm2; time = 60 s; spot area = 1 cm2; energy = 57 J; fluence = 57 J/cm2; mode = CW | No. of irradiations = 1 irradiation. Investigation setup: cell viability, lipid peroxidation, scratch-wound healing assay; nitrite/nitrate quantification; Western blotting, NF-kB p65; oxygen consumption measurements; ATP synthase activity assay | Increment of proliferation and migration; moderate increase in ROS productionm no increment in oxidative or nitrosative stress and NF-kB p65; shift from anaerobic to aerobic metabolism and increment of ATP |
Animal Model | Wavelength | Parameters Irradiated | Methods | Effect of PBM |
---|---|---|---|---|
Rabbit (ischemia, cardiac disease) [45] | 660 nm LED | Power = 0.003 or 0.06 W; power density = 0.003 or 0.06 W/cm2; time = 180 s; spot area = 1 cm2, energy = 10.8 or 0.54 J; fluence = 10.8 or 0.54 J/cm2; mode = continuous wave (CW) | No. of irradiations and mode = 1 irradiation and 3 or 5 cycles on 1 point with probe at 25 cm from target. Investigation setup: release of NO from nitrosyl heme proteins | Increment of NO release and cardioprotective effects |
Rat (ischemia, long flaps) [46] | 810 nm Laser | Power = 0.1 W; power density = 0.0314 W/cm2; time = 360 s; spot area = 5.28 cm2; energy = 59.66 J; fluence = 11.30 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation for 4, 7, 10, or 14 days, on 1 point with the probe in contact mode. Investigation setup: immuno- and histochemical staining, VEGF, smooth muscle actin, factor VIII | Reduction of inflammation; increment of ischemic flap revascularization and flap viability; decrement of VEGF; increment of smooth muscle actin and factor VIII |
Rat (ischemia, infarction) [47] | 804 nm Laser | Power = 0.0157, 0.025, 0.037, 0.053 W; power density = 0.005, 0.008, 0.012, 0.017 W/cm2; time = 120 s; spot area = 3.14 cm2, energy = 1.88, 3, 4.52, 6.40 J; fluence = 0.6, 0.96, 1.44, 2.04 J/cm2; mode = CW | No. of irradiations and mode = 1irradiation on 1 point on infarcted heart area. Investigation setup: infarct size and angiogenesis determination; immunoblot analysis, VEGF, iNOS | Increment of angiogenesis and cardioprotection; increment of VEGF and iNOS |
Rat (ischemia, coronary) [48] | 635 nm Laser | Power = 0.005 W; power density = 0.006 W/cm2; time = 150 s; spot area = 0.8 cm2; energy = 0.8 J, fluence = 1 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation at 26 mm above the myocardium. Investigation setup: antibody array analysis for cytokines; ELISA, cytokine antibody; echocardiographic assessments | Improvement in ischemic heart disease; modulation of granulocyte-macrophage colony stimulating factor and fractalkine |
Rat (ischemia, coronary) [49] | 660 nm Laser | Power = 0.015 W, power density = 0.019 W/cm2, time = 60 s, spot area = 0.785 cm2, energy = 17.66 J, fluence = 22.5 J/cm2, mode = CW | No. of irradiations and mode = 1 irradiation at 3 cm from target on 1 point. Investigation setup: biometric data and myocardial size; qRT-PCR and Western blot analysis, interleukins, Mas, kinin B2, and plasma kallikrein; plasma nitric oxide metabolites measurement. | Decrement of myocardium inflammation and infarct size; attenuation of left ventricle dysfunction; decrement of myocardial interleukin-1 beta, interleukin-6 and Mas receptor; increment of kinin B2 and plasma kallikrein; increment of NO derivates. |
Hamster (angiogenesis, mucositis) [50] | 660 nm Laser | Power = 0.0328 or 0.0962 W; power density = 10.9 or 32 W/cm2; time = 16 or 6 s; spot area = 0.003 cm2; energy = 0.52 or 0.56 J; fluence = 173 or 187 J/cm2; mode = continuous wave (CW) | No. of irradiations and mode = 1 irradiation on 5 points at days 3, 4, 5, and 6 of the experiment. Investigation setup: immunohistochemistry, COX-2, VEGF, factor VIII | Reduction of mucositis severity. 0.52 J decreased COX-2 and 0.56 J decreased VEGF |
Mice HRS/J (angiogenesis, muscle) [51] | 780 nm Laser | Power = 0.04 W; power density = 1 W/cm2; time = 20 s; spot area = 0.04 cm2; energy = 0.8 J; fluence = 20 J/cm2; mode = continuous wave (CW) | No. of irradiations and mode = 1 irradiation on 1 point, for 3, 6, or 10 times, on alternate days. Contact mode. Investigation setup: immunoblot, MMP; immunoistochemistry, VEGF, VEGFR-2. | No effect on MMP; decrement of VEGF and VEGFR-2; the effects are visible only after the 10th irradiation |
Rat (angiogenesis, muscle) [52] | 660 nm Laser | Power = 0.02 or 0.04 W; power density = 0.05 or 0.1 W/cm2; time = 20 s or 50; spot area = 0.4 cm2; energy = 0.4 or 2 J; fluence = 1 or 5 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 1 point. Treatments started 48 h post-surgery and were performed five times/week (each 24 h). Contact mode. Investigation setup: histopathological analysis; qRT-PCR, VEGF, COX-2, MyoD, myogenin | Improvement of muscle regeneration; decrement of COX-2; increment of VEGF, MyoD. Myogenin increased with 2 J |
Rat (angiogenesis, muscle) [53] | 904 nm Laser | Repetition rate = 9.500 Hz; output powe r = 0.04 W; pulse width = 60 ns; peak power = 50 W; spot area = 0.1 cm2; energy = 0.3 J or 0.5 J; fluence = 3 J/cm2 or 5 J/cm2 | No. of irradiations and mode = 1 irradiation on 5 points, 2, 12, and 24 h after trauma. Probe at 0.5 cm from target. Investigation setup: Griess nitrite, lipid peroxidation, protein carbonylation, glutathione peroxidase, and catalase activity assay; dityrosine autofluorescence determination; qRT-PCR, VEGF, BDNF, IL-6, IL-10 | Accelerated recovery; decrement of inflammation; decrement of IL-6; increment of IL-10; 0.3 J prevents thiobarbituric acid-reactive substance, carbonyl, superoxide dismutase, glutathione peroxidase, and catalase increment; BDNF and VEGF are prevented by irradiation |
Rat (angiogenesis, skin) [54] | 660 nm Laser | Power = 0.03 W; power density = 1.07 W/cm2; time = 67 s; spot area = 0.028 cm2; energy = 2 J; fluence = 72 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 1 point. Alternate days for 14 days. Contact mode. Investigation setup: immunohistochemistry, VEGF, TIMP-2, MMP-3 and -9, collagen I, and III; qRT-PCR: IL-6; ELISA, CINC-1 | Accelerated recovery in early stages of tissue repair; modulation of IL-6, CINC-1, VEGF, MMP-3, MMP-9 and TIMP-2; increment of collagen |
Rat (angiogenesis, skin) [55] | 670 nm Laser | Power = 0.03 W; power density = 0.476 W/cm2; time = 30 s; spot area = 0.063 cm2; energy = 0.9 J; fluence = 14.28 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiatio on 1 point. 15 consecutive days of treatment. Contact mode. Investigation setup: histological analysis; immunohistochemistry, collagen I, TNF-α, VEGF | Accelerated recovery of the cutaneous wound healing; decrement of inflammatory infiltrate and TNF-α; increment of VEGF and collagen type 1. |
Rat (angiogenesis - skin) [56] | 904 nm Laser | Repetition rate = 100 Hz; output power = 0.00078 W; pulse width = 200 ns; spot area = 1.77 cm2; time = 600 s; energy = 0.4 J; fluence = 0.2 J/cm2 | No. of irradiations and mode = 1 irradiation on 1 point. Daily for seven days post-burn injury. Contact mode. Investigation setup: assays for oxidative stress and antioxidants markers, ROS, NO, lipid peroxidation, GSH, SOD, catalase, GPx, advanced oxidation protein products; immunoblot, Nrf2, HO-1, Txnrd2 | Accelerated recovery of the burn wound healing; decrement of ROS, NO, lipid peroxidation, protein carbonylation, advanced oxidation protein product levels, GSH, and thiol (T-SH, Np-SH, P-SH); increment of endogenous antioxidants levels of SOD, catalase, GPx |
Rat (angiogenesis, skin) [57] | 660, 780 nm Laser | 780 nm: Power = 0.07 W; power density = 1.75 W/cm2; time = 20 s; spot area = 0.04 cm2; energy = 1.4 J; fluence = 35 J/cm2; mode = CW 606 nm: Power = 0.04 W; power density = 1 W/cm2; time = 20 s; spot are a = 0.04 cm2; energy = 0.8 J; fluence = 20 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 2 points for two days. Probe at 1 mm from target. Investigation setup: qRT-PCR, VEGF | Accelerated recovery of wound healing; modulation of expression of VEGF |
Rat (angiogenesis, skin) [58] | 660 nm Laser 635 nm LED | Power = 0.04 W; power density = 0.32 W/cm2; time = 62 s; spot area = 0.125 cm2; energy = 2.5 J; fluence = 19.74 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 4 points for 2, 4, or 6 days. Contact mode. Investigation setup: histology, collagen; immunohistology, TGF-β | Stimulation of angiogenesis; increment of collagen expression; increment of blood vessels formation; TGF-β no stimulated |
Rats (angiogenesis, skin) [59] | 660 nm Laser | Laser: Power = 0.04 W; power density = 1 W/cm2; time = 31 or 126 s; spot area = 0.04 cm2; energy = 0.2 or 0.8 J; fluence = 5 or 20 J/cm2; mode = CW LED: Power = 0.09 W; power density = 1.06 W/cm2; time = 17 or 56 s; spot area = 0.085 cm2; energy = 0.42 or 1.7 J; fluence = 5 or 20 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 7 points for 2, 6, 13, or 20 days. Contact mode. Investigation setup: histology | Improvement of angiogenesis; light coherence was shown not to be essential to angiogenesis |
Rats (angiogenesis, skin) [60] | 660 nm Laser | Power = 0.04 W; power density = 1 W/cm2; time = 4 or 20 s; spot area = 0.04 cm2; energy = 0.16 or 0.8 J; fluence = 4 or 20 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 2 points for 14 days. Contact mode. Investigation setup: ELISA, IL-1ß and TNF-α; image analysis for micro-vessel density | Improvement of oral wound repair and angiogenesis; increment of IL-1ß and TNF-α |
Rats (angiogenesis, skin) [61] | 660, 780 nm Lasers | Power = 0.04 W; power density = 0.32 W/cm2; time = 30 or 40 s; spot area = 0.125 cm2; energy = 1.2 or 1.6 J; fluence = 9.6 or 12.8 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 24 points for 4 days. Contact mode. Investigation setup: image analysis for micro-vessel density; immunoblotting, HIF-1α; qRT-PCR, VEGF, gelatin zymography, MMP-2 activity | Increment of new vessels formation; Increment of HIF-1α and VEGF; decrement of MMP-2 |
Rats (angiogenesis, skin) [62] | 670 nm Laser | Power = 0.009 W; power density = 0.031 W/cm2; time = 31 s; spot area = 0.28 cm2; energy = 0.28 J; fluence = 1 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 4 points for 4 days. Contact mode. Investigation setup: histomorphometry; immunohistochemistry, VEGF and CD31. | Improvement of late course of healing; increment of collagens and blood vessel; no effect on VEGF |
Rats (angiogenesis, skin) [63] | 670 nm Laser | Power = 0.009 W; power density = 0.031 W/cm2; time = 31 s; spot area = 0.28 cm2; energy = 0.28 J; fluence = 1 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 4 points for 4 days. Contact mode. Investigation setup: histomorphometry; immunohistochemistry: CD31, NG2, smooth muscle alpha actin, CD8, CD68, Ptch, Gli-2, and Ihh. | Stimulation of later stages of wound healing and angiogenesis; decrement of CD68; increment of CD8 |
Rats (angiogenesis, tendon rupture) [64] | 660 nm Laser | Power = 0.01 or 0.04 W; power density = 0.25 or 1 W/cm2; time = 10 s; spot area = 0.04 cm2; energy = 0.1 or 0.4 J; fluence = 2.5 or 10 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 1 point for 3, 5 and 7 days. Contact mode. Investigation setup: India ink injection | Promotion of neovascularization |
Aged rats (angiogenesis) [65] | 830 nm Laser | Power = 0.05 W; power density = 1.8 W/cm2; time = 60 s; spot area = 0.028 cm2; energy = 3 J; fluence = 107 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 1 point, daily for seven days post injury. Contact mode. Investigation setup: Immunohistochemistry: VEGF, MMP-3, and MMP-9; histochemistry, collagen type I and III | Increment of collagen type I and III, production; downregulation of MMP-3 and MMP-9 expression; upregulation of VEGF |
SHR rats (blood pressure) [66] | 660 nm Laser | Power = 0.1 W; power density = 1.71 W/cm2; time = 56 s; spot area = 0.058 cm2; energy = 5.6 J; fluence = 96 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 6 different points. Transcutaneously, with skin contact at 90° angle. Investigation setup: systolic arterial pressure; NO levels evaluation | Reduction of systolic arterial pressure; increment of nitric oxide levels; no changement in heart rate |
2K rats (blood pressure) [67] | 660-nm Laser | Power = 0.1 W, power density = 3.57 W/cm2, time = 56 s, spot area = 0.028 cm2, energy = 5.6 J, fluence = 200 J/cm2, mode = CW | (abdominal region) No. of irradiations and mode = 1 irradiation on 6 points. Transcutaneously, with skin contact at 90° angle. Investigation setup: systolic arterial, diastolic arterial, mean arterial pressure, and heart rate were measured; NO levels evaluation | Induction of long lasting hypotensive effect; vasodilation by a NO dependent mechanism |
2K-1C rats (blood pressure) [68] | 660 nm Laser | Power = 0.1 W; power density = 0.14 W/cm2; time = from 1 to 186 s; spot area = 0.722 cm2; energy = 0.1, 0.3, 0.6, 1.2, 2.3, 4.7, 9.3, and 18.6 J; fluence = from 0.14 to 25.76 J/cm2; mode = CW | No. of irradiations and mode = 1 irradiation on 6 simultaneous points. Transcutaneously, with skin contact at 90° angle. Investigation setup: systolic arterial, diastolic, arterial pressure and heart rate were measured | 7.2–55.8 J is the effective therapeutic window to reduce pressure and heart rate and induce a long-lasting hypotensive effect |
Study/Disease | Wavelength | Parameters Irradiated | Methods | Effect of PBM |
---|---|---|---|---|
91 Patiens (RCT) (angioplasty) [69] | 808 nm Laser | Power = 0.2 W, power density = 0.1 W/cm2, time = 90 s, average spot area = 2.05 cm2, energy = 18 J, fluence = ~9 J/cm2, mode = continuous wave (CW) | No. of irradiations and mode = 1 intracoronary irradiation during percutaneous coronary interventions. Investigation setup: serum levels of IGF-1, VEGF, TGF and FGF-2 were measured before angioplasty, then, 6 and 12 h and 1 month after the procedure | Smaller neointima formation; IGF-1 and VEGF = no-effect; decrement fo FGF-2; increment of TGF-b1 |
101 Patients (RP) (angioplasty) [70] | 808 nm Laser | Power = 0.2 W, power density = 0.1 W/cm2, time = 90 s, average spot area = 2.05 cm2, energy = 18 J, fluence = ~9 J/cm2, mode = CW | No. of irradiations and mode = 1 intracoronary irradiation during percutaneous coronary interventions. Investigation setup: serum levels of NO derivates and endothelin-1 were measured before angioplasty, then, 6 and 12 h and 1 month after the procedure | Improvement of restenosis process; increment of NO derivates; endothelin-1 increased after 6 h but decreased later |
14 Patients (PS) (saphenectomy) [71] | 780 nm laser | Power = 0.025 W, power density = 0.625 W/cm2, time = 30 s, average spot area = 0.04 cm2, energy = 0.75 J, fluence = 19 J/cm2, mode = CW | No. of irradiations and mode = 1 irradiation surrounding the entire surgical perimeter wound edge. Investigation setup: evaluation of erythema, edema, blister, hematoma, transudation, dehiscence, and pain | Prevention of prodromal complications in saphenectomy post myocardial revascularization |
27 Patients (PS) (cerebral ischemia) [75] | 633 nm laser | Power = 0.025 or 0.045 W, power density = 0.14 or 0.045 W/cm2, time = 1200 or 2400 s, average spot area = 0.18 cm2, energy = 29, 54, 60 or 106 J, fluence = from 161 to 589 J/cm2, mode = CW | No. of irradiations and mode = 1 intracerebral transcatheter laser irradiation. Investigation setup: restoration of mental and motor functions was detected; rheoencephalography, scintigraphy, computed tomography and magnetic resonance imaging was performed | Restoration of cerebral collateral and capillary blood supply; improvement of microcirculation; restoration of cellular and tissue metabolism; stimulation of neurogenesis and regenerative processes |
21 aged Patients (PS) (cerebral ischemia) [73] | 1064 nm Laser | Power = 3.4 W, power density = 0.25 W/cm2, time = 240 s, spot area = 13.6 cm2, energy = 816 J, fluence = 60 J/cm2, mode = CW | No. of irradiations and mode = 1 irradiation at the right forehead on 2 points. Investigation setup: prefrontal cortex measures of attention PVT and memory, carotid artery intima-media thickness, electroencephalography, and functional magnetic resonance imaging | Improvement of cognitive performance and both carotid artery and intima-media thickness; increment and improvement of resting-state EEG alpha, beta, and gamma power as well as prefrontal bloodoxygen- evel |
7 diabetic Patients (PS) (angiogenesis/healing) [72] | 660 nm Laser | Power = 0.1 W, power density = 0.16 W/cm2, time = 12 s, spot area = 0.6 cm2, energy = 1.2 J, fluence = 2 J/cm2, mode = CW | No. of irradiations and mode = 1 irradiation around lesion area; 0.5 cm distant from tissue; points were 2 cm far from each other. Investigation setup: qRT-PCR, IL6, TNF, VEGF, and TGF | IL6 not changed; decrement of TNF; increment of VEFG and TGF-ß |
40 Patients (PS) (angiogenesis/healing) [73] | 645 nm Laser | Power = 0.25 W, power density = 0.125 W/cm2, time = 80 s, spot area = 2 cm2, energy = 20 J, fluence = 10 J/cm2, mode = CW | No. of irradiations and mode = 1 irradiation on 2 points at baseline and after 1, 3, and 7 days. Investigation setup: ELISA on crevicular fluid, bradykinin, VEGF and EGF | Improvement of the early phases of the healing and agiogenesis; reduction of bradykinin and VEGF; increment of EGF. |
10 Patients (PS) (angiogenesis/healing) [74] | 808 nm Laser | Power = 0.05 W, power density = 1.6 W/cm2, time = 400 s, spot area = 0.031 cm2, energy = 20 J, fluence = 645 J/cm2, mode = CW | No. of irradiations and mode = 1 irradiation once a day for three consecutive days. Investigation setup: blood analysis for VEGF, FGF, angiostatin, GSH, symmetric dimethyl-arginine, asymmetric dimethylarginine and L-arginine | No change in VEGF, FGF, SDMA, NO, and ADMA levels; increment of antioxidant and angiogenic potential. |
30 Patients (PS) (hypertension) [76] | 635 nm Laser | Power = 0.0015 W, Power density = 0.2 W/cm2, Time = 900 s, spot area = 0.0075 cm2, Energy = 1.35 J, Fluence = 180 J/cm2, Mode = CW | No. of irradiations and mode = 1 intravein irradiation for 10 procedures. Investigation setup: endothelium function was evaluated by test with reactive hyperemia | Decrement of cardiac risk; decrement of DayDBP in hyperuricemia group and both DaySBP and DayDBP in the group of patients with AH combined with hyperuricemia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombo, E.; Signore, A.; Aicardi, S.; Zekiy, A.; Utyuzh, A.; Benedicenti, S.; Amaroli, A. Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review. Biomedicines 2021, 9, 274. https://doi.org/10.3390/biomedicines9030274
Colombo E, Signore A, Aicardi S, Zekiy A, Utyuzh A, Benedicenti S, Amaroli A. Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review. Biomedicines. 2021; 9(3):274. https://doi.org/10.3390/biomedicines9030274
Chicago/Turabian StyleColombo, Esteban, Antonio Signore, Stefano Aicardi, Angelina Zekiy, Anatoliy Utyuzh, Stefano Benedicenti, and Andrea Amaroli. 2021. "Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review" Biomedicines 9, no. 3: 274. https://doi.org/10.3390/biomedicines9030274
APA StyleColombo, E., Signore, A., Aicardi, S., Zekiy, A., Utyuzh, A., Benedicenti, S., & Amaroli, A. (2021). Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review. Biomedicines, 9(3), 274. https://doi.org/10.3390/biomedicines9030274