The Role of Type I and Type II NKT Cells in Materno-Fetal Immunity
Abstract
:1. Introduction
2. Immunological Characteristics of Murine Pregnancy
3. NKT Cells in Murine Pregnancy
4. Immunological Characteristics of Human Pregnancy
5. NKT Cells at the Periphery in Human Pregnancy
6. NKT Cells at the Materno-Fetal Interface in Human
7. NKT Cells in Pregnancy Complications in Human
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bendelac, A.; Savage, P.B.; Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 2007, 25, 297–336. [Google Scholar] [CrossRef] [Green Version]
- Kronenberg, M.; Rudensky, A. Regulation of immunity by self-reactive T cells. Nature 2005, 435, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Exley, M.A.; Tahir, S.M.A.; Cheng, O.; Shaulov, A.; Joyce, R.; Avigan, D.; Sackstein, R.; Balk, S.P. Cutting Edge: A Major Fraction of Human Bone Marrow Lymphocytes Are Th2-Like CD1d-Reactive T Cells That Can Suppress Mixed Lymphocyte Responses. J. Immunol. 2001, 167, 5531–5534. [Google Scholar] [CrossRef]
- Godfrey, D.I.; Le Nours, J.; Andrews, D.M.; Uldrich, A.P.; Rossjohn, J. Unconventional T Cell Targets for Cancer Immunotherapy. Immunity 2018, 48, 453–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.K.; Tripathi, P.; Cardell, S.L. Type II NKT Cells: An Elusive Population with Immunoregulatory Properties. Front. Immunol. 2018, 9, 1969. [Google Scholar] [CrossRef] [PubMed]
- Constantinides, M.G.; Bendelac, A. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 2013, 25, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Crosby, C.M.; Kronenberg, M. Tissue specific functions of invariant NKT cells. Physiol. Behav. 2018, 176, 139–148. [Google Scholar] [CrossRef]
- Beckman, E.M.; Porcelli, S.A.; Morita, C.T.; Behar, S.M.; Furlong, S.T.; Brenner, M.B. Recognition of a lipid antigen by GDI-restricted αβ+ T cells. Nature 1994, 372, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Mattner, J.; Cantu, C.; Schrantz, N.; Yin, N.; Gao, Y.; Sagiv, Y.; Hudspeth, K.; Wu, Y.P.; Yamashita, T.; et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 2004, 306, 1786–1789. [Google Scholar] [CrossRef] [Green Version]
- Kain, L.; Webb, B.; Anderson, B.L.; Deng, S.; Holt, M.; Zhao, M.; Self, K.; Teyton, A.; Everett, C.; Kronenberg, M.; et al. The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian α-linked glycosylceramides. Immunity 2015, 41, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Vogt, S.; Mattner, J. NKT Cells Contribute to the Control of Microbial Infections. Front. Cell. Infect. Microbiol. 2021, 11, 718350. [Google Scholar] [CrossRef] [PubMed]
- Kawano, T.; Cui, J.; Koezuka, Y.; Toura, I.; Kaneko, Y.; Motoki, K.; Ueno, H.; Nakagawa, R.; Sato, H.; Kondo, E.; et al. CD1d-restricted and TCR-mediated activation of V(α)14 NKT cells by glycosylceramides. Science 1997, 278, 1626–1629. [Google Scholar] [CrossRef] [PubMed]
- Brennan, P.J.; Brigl, M.; Brenner, M.B. Invariant natural killer T cells: An innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 2013, 13, 101–117. [Google Scholar] [CrossRef]
- Gapin, L. Development of invariant natural killer T cells. Curr. Opin. Immunol. 2016, 39, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, S.; Dhodapkar, M.V. Natural Killer T Cells in Cancer Immunotherapy. Front. Immunol. 2017, 8, 1178. [Google Scholar] [CrossRef] [Green Version]
- Marrero, I.; Ware, R.; Kumar, V. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer. Front. Immunol. 2015, 6, 316. [Google Scholar] [CrossRef] [Green Version]
- Terabe, M.; Berzofsky, J.A. Tissue-Specific Roles of NKT Cells in Tumor Immunity. Front. Immunol. 2018, 9, 1838. [Google Scholar] [CrossRef]
- Arck, P.C.; Hecher, K. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat. Med. 2013, 19, 548–556. [Google Scholar] [CrossRef]
- Krishnan, L.; Nguyen, T.; McComb, S. From mice to women: The conundrum of immunity to infection during pregnancy. J. Reprod. Immunol. 2013, 97, 62–73. [Google Scholar] [CrossRef]
- Malassiné, A.; Frendo, J.L.; Evain-Brion, D. A comparison of placental development and endocrine functions between the human and mouse model. Hum. Reprod. Update 2003, 9, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Croy, B.A.; Wessels, J.; Linton, N.; Tayade, C. Comparison of immune cell recruitment and function in endometrium during development of epitheliochorial (pig) and hemochorial (mouse and human) placentas. Placenta 2009, 30 (Suppl. A), S26–S31. [Google Scholar] [CrossRef]
- Moffett, A.; Loke, C. Immunology of placentation in eutherian mammals. Nat. Rev. Immunol. 2006, 6, 584–594. [Google Scholar] [CrossRef]
- Clark, D.A. Mouse is the new woman? Translational research in reproductive immunology. Semin. Immunopathol. 2016, 38, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Enders, A.C. A comparative study of the fine structure of the trophoblast in several hemochorial placentas. Am. J. Anat. 1965, 116, 29–67. [Google Scholar] [CrossRef]
- Clark, D.A. The use and misuse of animal analog models of human pregnancy disorders. J. Reprod. Immunol. 2014, 103, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Beckers, J.; Wang, C.R.; Heyborne, K.D. Natural killer 1.1(+) alpha beta T cells in the periimplantation uterus. Immunology 2000, 101, 484–491. [Google Scholar] [CrossRef]
- Ito, K.; Karasawa, M.; Kawano, T.; Akasaka, T.; Koseki, H.; Akutsu, Y.; Kondo, E.; Sekiya, S.; Sekikawa, K.; Harada, M.; et al. Involvement of decidual Valpha14 NKT cells in abortion. Proc. Natl. Acad. Sci. USA 2000, 97, 740–744. [Google Scholar] [CrossRef] [Green Version]
- Dang, Y.; Heyborne, K.D. Cutting edge: Regulation of uterine NKT cells by a fetal class I molecule other than CD1. J. Immunol. 2001, 166, 3641–3644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.; Bromfield, J.J.; Jasper, M.J.; Robertson, S.A. Semen activates the female immune response during early pregnancy in mice. Immunology 2004, 112, 290–300. [Google Scholar] [CrossRef]
- Boyson, J.E.; Aktan, I.; Barkhuff, D.A.; Chant, A. NKT Cells at the Maternal-Fetal Interface. Immunol. Investig. 2008, 37, 565–582. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, C.; Kawamura, H.; Watanabe, H.; Abo, T. Unique sensitivity to alpha-galactosylceramide of NKT cells in the uterus. Cell. Immunol. 2002, 215, 98–105. [Google Scholar] [CrossRef]
- St. Louis, D.; Romero, R.; Plazyo, O.; Arenas-Hernandez, M.; Panaitescu, B.; Xu, Y.; Milovic, T.; Xu, Z.; Bhatti, G.; Mi, Q.-S.; et al. Invariant NKT Cell Activation Induces Late Preterm Birth That Is Attenuated by Rosiglitazone. J. Immunol. 2016, 196, 1044–1059. [Google Scholar] [CrossRef]
- Li, L.-P.; Fang, Y.-C.; Dong, G.-F.; Lin, Y.; Saito, S. Depletion of Invariant NKT Cells Reduces Inflammation-Induced Preterm Delivery in Mice. J. Immunol. 2012, 188, 4681–4689. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, J.; Ren, L.; Su, N.; Fang, Y.; Lin, Y. Invariant NKT cells increase lipopolysacchride-induced pregnancy loss by a mechanism involving Th1 and Th17 responses. J. Matern. Neonatal Med. 2013, 26, 1212–1218. [Google Scholar] [CrossRef]
- Li, L.; Yang, J.; Jiang, Y.; Tu, J.; Schust, D.J. Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth. MHR Basic Sci. Reprod. Med. 2015, 21, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, T.; Negishi, Y.; Shimizu, M.; Takeshita, T.; Takahashi, H. α-Galactosylceramide-activated murine NK1.1+ invariant-NKT cells in the myometrium induce miscarriages in mice. Eur. J. Immunol. 2016, 46, 1867–1877. [Google Scholar] [CrossRef] [Green Version]
- Hoya, M.; Nagamatsu, T.; Fujii, T.; Schust, D.J.; Oda, H.; Akiba, N.; Iriyama, T.; Kawana, K.; Osuga, Y.; Fujii, T. Impact of Th1/Th2 cytokine polarity induced by invariant NKT cells on the incidence of pregnancy loss in mice. Am. J. Reprod. Immunol. 2018, 79, e12813. [Google Scholar] [CrossRef]
- Li, L.; Tu, J.; Jiang, Y.; Zhou, J.; Schust, D.J. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice. Mucosal Immunol. 2017, 10, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Red-Horse, K.; Zhou, Y.; Genbacev, O.; Prakobphol, A.; Foulk, R.; McMaster, M.; Fisher, S.J. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J. Clin. Investig. 2004, 114, 744–754. [Google Scholar] [CrossRef]
- Jauniaux, E.; Gulbis, B.; Burton, G.J. The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus—A review. Placenta 2003, 24, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.; Sargent, I.L. Latest advances in understanding preeclampsia. Science 2005, 308, 1592–1594. [Google Scholar] [CrossRef]
- Moffett-King, A. Natural killer cells and pregnancy. Nat. Rev. Immunol. 2002, 2, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Nakashima, A.; Shima, T.; Ito, M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. 2010, 63, 601–610. [Google Scholar] [CrossRef]
- Tsuda, H.; Sakai, M.; Michimata, T.; Tanebe, K.; Hayakawa, S.; Saito, S. Characterization of NKT cells in human peripheral blood and decidual lymphocytes. Am. J. Reprod. Immunol. 2001, 45, 295–302. [Google Scholar] [CrossRef]
- Borzychowski, A.M.; Croy, B.A.; Chan, W.L.; Redman, C.W.G.; Sargent, I.L. Changes in systemic type 1 and type 2 immunity in normal pregnancy and pre-eclampsia may be mediated by natural killer cells. Eur. J. Immunol. 2005, 35, 3054–3063. [Google Scholar] [CrossRef]
- Shi, Y.; Ling, B.; Zhou, Y.; Gao, T.; Feng, D.; Xiao, M.; Feng, L. Interferon-gamma expression in natural killer cells and natural killer T cells is suppressed in early pregnancy. Cell Mol. Immunol. 2007, 4, 389–394. [Google Scholar]
- Orlova, E.G.; Shirshev, S.V. Leptin as an immunocorrecting agent during normal pregnancy. Bull. Exp. Biol. Med. 2009, 148, 75–78. [Google Scholar] [CrossRef]
- Lima, J.; Martins, C.; Nunes, G.; Sousa, M.-J.; Branco, J.C.; Borrego, L.M. Impact of Labor on Peripheral Blood Maternal T-Cell Subsets and on Regulatory T and B Cells. Reprod. Sci. 2017, 24, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Boyson, J.E.; Rybalov, B.; Koopman, L.A.; Exley, M.; Balk, S.P.; Racke, F.K.; Schatz, F.; Masch, R.; Wilson, S.B.; Strominger, J.L. CD1d and invariant NKT cells at the human maternal-fetal interface. Proc. Natl. Acad. Sci. USA 2002, 99, 13741–13746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, J.; Kawana, K.; Nagamatsu, T.; Schust, D.J.; Fujii, T.; Sato, H.; Hyodo, H.; Yasugi, T.; Kozuma, S.; Taketani, Y. Expression of surface CD1d in the extravillous trophoblast cells of early gestational placenta is downregulated in a manner dependent on trophoblast differentiation. Biochem. Biophys. Res. Commun. 2008, 371, 236–241. [Google Scholar] [CrossRef]
- Jenkinson, H.J.; Wainwright, S.D.; Simpson, K.L.; Perry, A.C.; Fotiadou, P.; Holmes, C.H. Expression of CD1D mRNA transcripts in human choriocarcinoma cell lines and placentally derived trophoblast cells. Immunology 1999, 96, 649–655. [Google Scholar] [CrossRef]
- Meggyes, M.; Miko, E.; Szigeti, B.; Farkas, N.; Szereday, L. The importance of the PD-1/PD-L1 pathway at the maternal-fetal interface. BMC Pregnancy Childbirth 2019, 19, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, Y.; Li, M.; Duan, J.; Fan, D.; Jin, L. IL-25 promotes Th2 bias by upregulating IL-4 and IL-10 expression of decidual γδT cells in early pregnancy. Exp. Ther. Med. 2017, 15, 1855–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uemura, Y.; Suzuki, M.; Liu, T.-Y.; Narita, Y.; Hirata, S.; Ohyama, H.; Ishihara, O.; Matsushita, S. Role of human non-invariant NKT lymphocytes in the maintenance of type 2 T helper environment during pregnancy. Int. Immunol. 2008, 20, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Markel, G.; Wolf, D.; Hanna, J.; Gazit, R.; Goldman-Wohl, D.; Lavy, Y.; Yagel, S.; Mandelboim, O. Pivotal role of CEACAM1 protein in the inhibition of activated decidual lymphocyte functions. J. Clin. Investig. 2002, 110, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, X.-Y.; Du, M.-R.; Li, D.-J. Human trophoblasts recruited T lymphocytes and monocytes into decidua by secretion of chemokine CXCL16 and interaction with CXCR6 in the first-trimester pregnancy. J. Immunol. 2008, 180, 2367–2375. [Google Scholar] [CrossRef] [Green Version]
- Van Den Heuvel, M.J.; Hatta, K.; Peralta, C.G.; Han, V.K.; Clark, D.A. ORIGINAL ARTICLE: CD56+ Cells are Recruited to the Uterus in Two Waves: At Ovulation and During the First 2 Weeks after Missed Menses. Am. J. Reprod. Immunol. 2008, 59, 90–98. [Google Scholar] [CrossRef]
- Szereday, L.; Miko, E.; Meggyes, M.; Barakonyi, A.; Farkas, B.; Varnagy, A.; Bodis, J.; Lynch, L.; O’Farrelly, C.; Szekeres-Bartho, J. Commitment of Decidual Haematopoietic Progenitor Cells in First Trimester Pregnancy. Am. J. Reprod. Immunol. 2012, 67, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Feyaerts, D.; Benner, M.; van Cranenbroek, B.; van der Heijden, O.W.H.; Joosten, I.; van der Molen, R.G. Human uterine lymphocytes acquire a more experienced and tolerogenic phenotype during pregnancy. Sci. Rep. 2017, 7, 2884. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, S.F.; Makieva, S.; Saunders, P.T.; Rossi, A.G.; Norman, J.E. Immune cell and transcriptomic analysis of the human decidua in term and preterm parturition. MHR Basic Sci. Reprod. Med. 2017, 23, 708–724. [Google Scholar] [CrossRef] [Green Version]
- Ford, H.B.; Schust, D.J. Recurrent pregnancy loss: Etiology, diagnosis, and therapy. Rev. Obstet. Gynecol. 2009, 2, 76–83. [Google Scholar] [PubMed]
- Shimada, S.; Iwabuchi, K.; Kato, E.H.; Morikawa, M.; Sakuragi, N.; Onoé, K.; Minakami, H.; Yamada, H. No difference in natural-killer-T cell population, but Th2/Tc2 predominance in peripheral blood of recurrent aborters. Am. J. Reprod. Immunol. 2003, 50, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Shimada, S.; Nishida, R.; Takeda, M.; Iwabuchi, K.; Kishi, R.; Onoe, K.; Minakami, H.; Yamada, H. Natural Killer, Natural Killer T, Helper and Cytotoxic T Cells in the Decidua from Sporadic Miscarriage. Am. J. Reprod. Immunol. 2006, 56, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, J.; Huang, S.-Y.; Sun, X. Characterization of the subsets of human NKT-like cells and the expression of Th1/Th2 cytokines in patients with unexplained recurrent spontaneous abortion. J. Reprod. Immunol. 2015, 110, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Lin, D.; Liu, J.; Bao, Y.; Luo, Z.; Fang, J.; Wang, Y.; Zhao, M.; Duan, C. Declined Natural Killer Cells Emerging in Women with Unexplained Recurrent Spontaneous Abortion and Further Reducing after Medical Therapy. Clin. Lab. 2016, 62, 2241–2247. [Google Scholar] [CrossRef]
- Yahata, T.; Kurabayashi, T.; Honda, A.; Takakuwa, K.; Tanaka, K.; Abo, T. Decrease in the proportion of granulated CD56+ T-cells in patients with a history of recurrent abortion. J. Reprod. Immunol. 1998, 38, 63–73. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Jang, B.; Hur, S.; Jung, U.; Kil, K.; Na, B.; Lee, M.; Choi, Y.; Fukui, A.; et al. Fluctuation of Peripheral Blood T, B, and NK Cells during a Menstrual Cycle of Normal Healthy Women. J. Immunol. 2010, 185, 756–762. [Google Scholar] [CrossRef] [Green Version]
- Winger, E.E.; Reed, J.L. Low Circulating CD4+ CD25+ Foxp3+ T Regulatory Cell Levels Predict Miscarriage Risk in Newly Pregnant Women with a History of Failure. Am. J. Reprod. Immunol. 2011, 66, 320–328. [Google Scholar] [CrossRef]
- Liu, J.; Dong, P.; Wang, S.; Li, J. Natural killer, natural killer T, helper and cytotoxic T cells in the decidua from recurrent spontaneous abortion with normal and abnormal chromosome karyotypes. Biochem. Biophys. Res. Commun. 2019, 508, 354–360. [Google Scholar] [CrossRef]
- Dong, P.; Wen, X.; Liu, J.; Yan, C.-Y.; Yuan, J.; Luo, L.-R.; Hu, Q.-F.; Li, J. Simultaneous detection of decidual Th1/Th2 and NK1/NK2 immunophenotyping in unknown recurrent miscarriage using 8-color flow cytometry with FSC/Vt extended strategy. Biosci. Rep. 2017, 37, BSR20170150. [Google Scholar] [CrossRef]
- Hosseini, S.; Shokri, F.; Pour, S.A.; Khoshnoodi, J.; Jeddi-Tehrani, M.; Zarnani, A.-H. Diminished Frequency of Menstrual and Peripheral Blood NKT-Like Cells in Patients with Unexplained Recurrent Spontaneous Abortion and Infertile Women. Reprod. Sci. 2019, 26, 97–108. [Google Scholar] [CrossRef]
- Coughlan, C.; Ledger, W.; Wang, Q.; Liu, F.; Demirol, A.; Gurgan, T.; Cutting, R.; Ong, K.; Sallam, H.; Li, T.C. Recurrent implantation failure: Definition and management. Reprod. Biomed. Online 2014, 28, 14–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Zhao, X.; Wang, Z.; Wang, J.; Sun, H.; Hu, Y. High circulating CD3+ CD56+ CD16+ natural killer-like T cell levels predict a better IVF treatment outcome. J. Reprod. Immunol. 2013, 97, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Miko, E.; Manfai, Z.; Meggyes, M.; Barakonyi, A.; Wilhelm, F.; Varnagy, A.; Bodis, J.; Illes, Z.; Szekeres-Bartho, J.; Szereday, L. Possible role of natural killer and natural killer T-like cells in implantation failure after IVF. Reprod. Biomed. Online 2010, 21, 750–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Zhu, W.; Zhao, Y.; Cheung, W.C.; Liu, Y.; Chen, X.; Du, Y.; Leung, K.T.; Chan, Y.L.; Wang, C.C.; et al. Early transient suppression of immune checkpoint proteins T-cell immunoglobulin mucin-3 and peripheral blood lymphocytes after blastocyst transfer is associated with successful implantation. Fertil. Steril. 2020, 114, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Křížan, J.; Cuchalová, L.; Šíma, P.; Králíčková, M.; Madar, J.; Větvička, V. Altered distribution of NK and NKT cells in follicular fluid is associated with IVF outcome. J. Reprod. Immunol. 2009, 82, 84–88. [Google Scholar] [CrossRef]
- van den Heuvel, M.J.; Peralta, C.G.; Hatta, K.; Han, V.K.; Clark, D.A. Decline in Number of Elevated Blood CD3+ CD56+ NKT Cells in Response to Intravenous Immunoglobulin Treatment Correlates with Successful Pregnancy. Am. J. Reprod. Immunol. 2007, 58, 447–459. [Google Scholar] [CrossRef]
- Ramos-Medina, R.; García-Segovia, A.; Gil, J.; Carbone, J.; Aguarón de la Cruz, A.; Seyfferth, A.; Alonso, B.; Alonso, J.; León, J.A.; Alecsandru, D.; et al. Experience in IVIg Therapy for Selected Women with Recurrent Reproductive Failure and NK Cell Expansion. Am. J. Reprod. Immunol. 2014, 71, 458–466. [Google Scholar] [CrossRef]
- Moraru, M.; Carbone, J.; Alecsandru, D.; Castillo-Rama, M.; García-Segovia, A.; Gil, J.; Alonso, B.; Aguarón, A.; Ramos-Medina, R.; Martínez de María, J.; et al. Intravenous Immunoglobulin Treatment Increased Live Birth Rate in a Spanish Cohort of Women with Recurrent Reproductive Failure and Expanded CD56+ Cells. Am. J. Reprod. Immunol. 2012, 68, 75–84. [Google Scholar] [CrossRef]
- Quinn, J.-A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; et al. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 2016, 34, 6047–6056. [Google Scholar] [CrossRef] [Green Version]
- Kato, M.; Negishi, Y.; Shima, Y.; Kuwabara, Y.; Morita, R.; Takeshita, T. Inappropriate activation of invariant natural killer T cells and antigen-presenting cells with the elevation of HMGB1 in preterm births without acute chorioamnionitis. Am. J. Reprod. Immunol. 2021, 85, e13330. [Google Scholar] [CrossRef] [PubMed]
- Negishi, Y.; Shima, Y.; Takeshita, T.; Takahashi, H. Distribution of invariant natural killer T cells and dendritic cells in late pre-term birth without acute chorioamnionitis. Am. J. Reprod. Immunol. 2017, 77, e12658. [Google Scholar] [CrossRef]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynecol. Obstet. 2019, 145, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.L.; Guo, P.L.; Xue, Y.; Gou, W.L.; Tong, M.; Chen, Q. An analysis of the differences between early and late preeclampsia with severe hypertension. Pregnancy Hypertens. 2016, 6, 47–52. [Google Scholar] [CrossRef]
- Miko, E.; Szereday, L.; Barakonyi, A.; Jarkovich, A.; Varga, P.; Szekeres-Bartho, J. ORIGINAL ARTICLE: The Role of Invariant NKT Cells in Pre-Eclampsia. Am. J. Reprod. Immunol. 2008, 60, 118–126. [Google Scholar] [CrossRef] [PubMed]
HUMAN | Type I NKT Cells | Type II NKT Cells |
---|---|---|
Synonym | Invariant NKT cells (iNKT) | Non-invariant NKT cells |
TCR chain usage | Vα24Jα18-Vβ11 | Various |
CD1d restriction | Yes | Yes |
Proportion | ~95% | ~5% |
α—GalCer reactivity | Yes | No |
Cytokine expression | IFNγ, IL-4 (IL-3) | IFNγ, IL-4 (IL-13, IL-10) |
NK receptor expression | Yes | Yes |
Cytotoxicity | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miko, E.; Barakonyi, A.; Meggyes, M.; Szereday, L. The Role of Type I and Type II NKT Cells in Materno-Fetal Immunity. Biomedicines 2021, 9, 1901. https://doi.org/10.3390/biomedicines9121901
Miko E, Barakonyi A, Meggyes M, Szereday L. The Role of Type I and Type II NKT Cells in Materno-Fetal Immunity. Biomedicines. 2021; 9(12):1901. https://doi.org/10.3390/biomedicines9121901
Chicago/Turabian StyleMiko, Eva, Aliz Barakonyi, Matyas Meggyes, and Laszlo Szereday. 2021. "The Role of Type I and Type II NKT Cells in Materno-Fetal Immunity" Biomedicines 9, no. 12: 1901. https://doi.org/10.3390/biomedicines9121901
APA StyleMiko, E., Barakonyi, A., Meggyes, M., & Szereday, L. (2021). The Role of Type I and Type II NKT Cells in Materno-Fetal Immunity. Biomedicines, 9(12), 1901. https://doi.org/10.3390/biomedicines9121901