Dynamic Changes in Central and Peripheral Neuro-Injury vs. Neuroprotective Serum Markers in COVID-19 Are Modulated by Different Types of Anti-Viral Treatments but Do Not Affect the Incidence of Late and Early Strokes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Enrollment
2.2. Clinical Data
2.3. Assessment of Biomarkers
2.4. Assessment of SARS-CoV-2 Disease Burden
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Cohort
3.2. The Dynamics of Neurodegeneration and Neuroinflammation after COVID-19 and Their Relationship to Inflammation and Viral Burden
3.3. The Dynamics of Neurovasculitis Markers during COVID-19
3.4. Effect of COVID-19 Directed Therapies on Neurodegeneration, Neuroinflammation, and Inflammatory Markers
3.5. Relationship between Stroke and Clinical Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Veldhuis, A.; Malhotra, T. Neuropsychiatric and Cognitive Sequelae of COVID-19. Front. Psychol. 2021, 12, 577529. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, X.; Shen, J.; Chan, M.T.V.; Wu, W.K.K. Miller Fisher syndrome associated with COVID-19, an up-to-date systematic review. Environ. Sci. Pollut. Res. Int. 2021, 28, 20939–20944. [Google Scholar] [CrossRef] [PubMed]
- Stoian, A.; Bălașa, R.; Grigorescu, B.L.; Maier, S.; Andone, S.; Cocuz, I.G.; Bajko, Z.; Filep, C.R.; Stoian, M. Guillain-Barré syndrome associated with Covid-19, A close relationship or just a coincidence? (Review). Exp. Med. 2021, 22, 916. [Google Scholar] [CrossRef]
- Jung, M.; Rujescu, D. Immune cell puzzle COVID-19, how do SARS-CoV infections contribute to psychiatric diseases? Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 643–644. [Google Scholar] [CrossRef]
- Romagnolo, A.; Imbalzano, G.; Artusi, C.A.; Balestrino, R.; Ledda, C.; De Rosa, F.G.; Riccardini, F.; Montanaro, E.; Bozzali, M.; Rizzone, M.G.; et al. Neurological comorbidities and COVID-19-related case fatality: A cohort study. J. Neurol. Sci. 2021, 428, 117610. [Google Scholar] [CrossRef] [PubMed]
- Espíndola, O.M.; Brandão, C.O.; Gomes, Y.C.P.; Siqueira, M.; Soares, C.N.; Lima, M.; Leite, A.; Torezani, G.; Araujo, A.Q.C.; Silva, M.T.T. Cerebrospinal fluid findings in neurological diseases associated with COVID-19 and insights into mechanisms of disease development. Int. J. Infect. Dis. 2021, 102, 155–162. [Google Scholar] [CrossRef]
- Lambrecq, V.; Hanin, A.; Munoz-Musat, E.; Chougar, L.; Gassama, S.; Delorme, C.; Cousyn, L.; Borden, A.; Damiano, M.; Frazzini, V.; et al. Association of Clinical, Biological, and Brain Magnetic Resonance Imaging Findings With Electroencephalographic Findings for Patients With COVID-19. JAMA Netw. Open 2021, 4, e211489. [Google Scholar] [CrossRef]
- LaHue, S.C.; Douglas, V.C.; Miller, B.L. The One-Two Punch of Delirium and Dementia During the COVID-19 Pandemic and Beyond. Front. Neurol. 2020, 11, 596218. [Google Scholar] [CrossRef]
- Delorme, C.; Houot, M.; Rosso, C.; Carvalho, S.; Nedelec, T.; Maatoug, R.; Pitron, V.; Gassama, S.; Sambin, S.; Bombois, S.; et al. The wide spectrum of COVID-19 neuropsychiatric complications within a multidisciplinary centre. Brain Commun. 2021, 3, fcab135. [Google Scholar] [CrossRef]
- Damiano, R.F.; Guedes, B.F.; de Rocca, C.C.; de Pádua Serafim, A.; Castro, L.H.M.; Munhoz, C.D.; Nitrini, R.; Filho, G.B.; Miguel, E.C.; Lucchetti, G.; et al. Cognitive decline following acute viral infections: Literature review and projections for post-COVID-19. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 1–16. [Google Scholar] [CrossRef]
- McLoughlin, B.C.; Miles, A.; Webb, T.E.; Knopp, P.; Eyres, C.; Fabbri, A.; Humphries, F.; Davis, D. Functional and cognitive outcomes after COVID-19 delirium. Eur. Geriatr. Med. 2020, 11, 857–862. [Google Scholar] [CrossRef]
- Sun, B.; Tang, N.; Peluso, M.J.; Iyer, N.S.; Torres, L.; Donatelli, J.L.; Munter, S.E.; Nixon, C.C.; Rutishauser, R.L.; Rodriguez-Barraquer, I.; et al. Characterization and Biomarker Analyses of Post-COVID-19 Complications and Neurological Manifestations. Cells 2021, 10, 386. [Google Scholar] [CrossRef]
- Yong, E. Long-Haulers Are Redefining COVID-19. Atlantic. 2020. Available online: https://www.theatlantic.com/health/archive/2020/08/long-haulers-covid-19-recognition-support-groups-symptoms/615382/ (accessed on 15 October 2021).
- Carbajal, E. CDC Releases Framework for Treating COVID-19 Long-Haulers, Becker’s Hospitla Review; CDC, Bethesda: Rockville, MD, USA, 2021. [Google Scholar]
- Ibanez, A.; Santamaria-Garcia, H.; Guerrero Barragan, A.; Kornhuber, A.; Ton, A.M.M.; Slachevsky, A.; Teixeira, A.L.; Mar Meza, B.M.; Serrano, C.M.; Cano, C.; et al. The impact of SARS-CoV-2 in dementia across Latin America: A call for an urgent regional plan and coordinated response. Alzheimers Dement. 2020, 6, e12092. [Google Scholar] [CrossRef] [PubMed]
- Meier, I.B.; Vieira Ligo Teixeira, C.; Tarnanas, I.; Mirza, F.; Rajendran, L. Neurological and mental health consequences of COVID-19, potential implications for well-being and labour force. Brain Commun. 2021, 3, fcab012. [Google Scholar] [CrossRef]
- Crunfli, F.; Carregari, V.C.; Veras, F.P.; Vendramini, P.H.; Valença, A.G.F.; Marcelo Antunes, A.S.L.; Brandão-Teles, C.; Zuccoli, G.d.S.; Reis-de-Oliveira, G.; Silva-Costa, L.C.; et al. SARS-CoV-2 infects brain astrocytes of COVID-19 patients and impairs neuronal viability. medRxiv 2021. [Google Scholar] [CrossRef]
- Klingenstein, M.; Klingenstein, S.; Neckel, P.H.; Mack, A.F.; Wagner, A.P.; Kleger, A.; Liebau, S.; Milazzo, A. Evidence of SARS-CoV2 Entry Protein ACE2 in the Human Nose and Olfactory Bulb. Cells Tissues Organs 2020, 209, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Netland, J.; Meyerholz, D.K.; Moore, S.; Cassell, M.; Perlman, S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 2008, 82, 7264–7275. [Google Scholar] [CrossRef] [Green Version]
- Virhammar, J.; Kumlien, E.; Fällmar, D.; Frithiof, R.; Jackmann, S.; Sköld, M.K.; Kadir, M.; Frick, J.; Lindeberg, J.; Olivero-Reinius, H.; et al. Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid. Neurology 2020, 95, 445–449. [Google Scholar] [CrossRef]
- Ramani, A.; Müller, L.; Ostermann, P.N.; Gabriel, E.; Abida-Islam, P.; Müller-Schiffmann, A.; Mariappan, A.; Goureau, O.; Gruell, H.; Walker, A.; et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 2020, 39, e106230. [Google Scholar] [CrossRef]
- Idrees, D.; Kumar, V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochem. Biophys. Res. Commun. 2021, 554, 94–98. [Google Scholar] [CrossRef]
- Hsu, J.T.; Tien, C.F.; Yu, G.Y.; Shen, S.; Lee, Y.H.; Hsu, P.C.; Wang, Y.; Chao, P.K.; Tsay, H.J.; Shie, F.S. The Effects of Aβ(1-42) Binding to the SARS-CoV-2 Spike Protein S1 Subunit and Angiotensin-Converting Enzyme 2. Int. J. Mol. Sci. 2021, 22, 8226. [Google Scholar] [CrossRef]
- Cascarina, S.M.; Ross, E.D. A proposed role for the SARS-CoV-2 nucleocapsid protein in the formation and regulation of biomolecular condensates. Faseb J. 2020, 34, 9832–9842. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.E.; Hiatt, J.; Bouhaddou, M.; Rezelj, V.V.; Ulferts, S.; Braberg, H.; Jureka, A.S.; Obernier, K.; Guo, J.Z.; Batra, J.; et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science 2020, 370. [Google Scholar] [CrossRef] [PubMed]
- DiMeglio, M.; Furey, W.; Hajj, J.; Lindekens, J.; Patel, S.; Acker, M.; Bavaria, J.; Szeto, W.Y.; Atluri, P.; Haber, M.; et al. Observational study of long-term persistent elevation of neurodegeneration markers after cardiac surgery. Sci. Rep. 2019, 9, 7177. [Google Scholar] [CrossRef]
- Teeters, D.A.; Moua, T.; Li, G.; Kashyap, R.; Biehl, M.; Kaur, R.; Gajic, O.; Boeve, B.F.; St Louis, E.K.; Petersen, R.C.; et al. Mild Cognitive Impairment and Risk of Critical Illness. Crit Care Med. 2016, 44, 2045–2051. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, J.; Castillo, M. Dementia resulting from traumatic brain injury. Dement. NeuroPsychol. 2015, 9, 356–368. [Google Scholar] [CrossRef]
- Hasliza, A.H.; Tohid, H.; Loh, K.Y.; Santhi, P. Post dengue neurological complication. Malays. Fam Physician 2015, 10, 49–51. [Google Scholar]
- Yiannopoulou, K.G.; Anastasiou, I.P.; Ganetsos, T.K.; Efthimiopoulos, P.; Papageorgiou, S.G. Prevalence of dementia in elderly patients with hip fracture. Hip. Int. 2012, 22, 209–213. [Google Scholar] [CrossRef]
- Pilotto, A.; Masciocchi, S.; Volonghi, I.; De Giuli, V.; Caprioli, F.; Mariotto, S.; Ferrari, S.; Bozzetti, S.; Imarisio, A.; Risi, B.; et al. SARS-CoV-2 encephalitis is a cytokine release syndrome: Evidences from cerebrospinal fluid analyses. Clin. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Virhammar, J.; Nääs, A.; Fällmar, D.; Cunningham, J.L.; Klang, A.; Ashton, N.J.; Jackmann, S.; Westman, G.; Frithiof, R.; Blennow, K.; et al. Biomarkers for central nervous system injury in cerebrospinal fluid are elevated in COVID-19 and associated with neurological symptoms and disease severity. Eur. J. Neurol. 2020. [Google Scholar] [CrossRef]
- Ameres, M.; Brandstetter, S.; Toncheva, A.A.; Kabesch, M.; Leppert, D.; Kuhle, J.; Wellmann, S. Association of neuronal injury blood marker neurofilament light chain with mild-to-moderate COVID-19. J. Neurol. 2020, 267, 3476–3478. [Google Scholar] [CrossRef] [PubMed]
- Kanberg, N.; Simrén, J.; Edén, A.; Andersson, L.M.; Nilsson, S.; Ashton, N.J.; Sundvall, P.D.; Nellgård, B.; Blennow, K.; Zetterberg, H.; et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine 2021, 70, 103512. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, R.; Loré, N.I.; Finardi, A.; Mandelli, A.; Cirillo, D.M.; Tresoldi, C.; Benedetti, F.; Ciceri, F.; Rovere-Querini, P.; Comi, G.; et al. Blood neurofilament light chain and total tau levels at admission predict death in COVID-19 patients. J. Neurol. 2021, 268, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Morsy, S. NCAM protein and SARS-COV-2 surface proteins: In-silico hypothetical evidence for the immunopathogenesis of Guillain-Barré syndrome. Med. Hypotheses 2020, 145, 110342. [Google Scholar] [CrossRef] [PubMed]
- Leis, A.A.; Stokic, D.S. Zika Virus and Guillain-Barre Syndrome: Is There Sufficient Evidence for Causality? Front. Neurol. 2016, 7, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umahara, T.; Uchihara, T.; Hirao, K.; Shimizu, S.; Hanyu, H. Phosphorylated TDP-43 localizes to chronic cerebral infarctions in human brains. Histol. Histopathol. 2020, 35, 1023–1028. [Google Scholar]
- Pereira, J.B.; Janelidze, S.; Ossenkoppele, R.; Kvartsberg, H.; Brinkmalm, A.; Mattsson-Carlgren, N.; Stomrud, E.; Smith, R.; Zetterberg, H.; Blennow, K.; et al. Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimer’s disease. Brain 2021, 144, 310–324. [Google Scholar] [CrossRef]
- Blennow, K. A Review of Fluid Biomarkers for Alzheimer’s Disease: Moving from CSF to Blood. Neurol. Ther. 2017, 6, 15–24. [Google Scholar] [CrossRef]
- Mattsson, N.; Insel, P.S.; Palmqvist, S.; Portelius, E.; Zetterberg, H.; Weiner, M.; Blennow, K.; Hansson, O. Alzheimer’s Disease Neuroimaging I: Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer’s disease. EMBO Mol. Med. 2016, 8, 1184–1196. [Google Scholar] [CrossRef]
- Cicognola, C.; Janelidze, S.; Hertze, J.; Zetterberg, H.; Blennow, K.; Mattsson-Carlgren, N.; Hansson, O. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res. 2021, 13, 68. [Google Scholar] [CrossRef]
- Hellwig, K.; Kvartsberg, H.; Portelius, E.; Andreasson, U.; Oberstein, T.J.; Lewczuk, P.; Blennow, K.; Kornhuber, J.; Maler, J.M.; Zetterberg, H.; et al. Neurogranin and YKL-40, independent markers of synaptic degeneration and neuroinflammation in Alzheimer’s disease. Alzheimers Res. 2015, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Craig-Schapiro, R.; Perrin, R.J.; Roe, C.M.; Xiong, C.; Carter, D.; Cairns, N.J.; Mintun, M.A.; Peskind, E.R.; Li, G.; Galasko, D.R.; et al. YKL-40, a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol. Psychiatry 2010, 68, 903–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, B.D.; Wilson, R.S.; Boyle, P.A.; Trojanowski, J.Q.; Bennett, D.A.; Schneider, J.A. TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain 2016, 139, 2983–2993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Boer, E.M.J.; Orie, V.K.; Williams, T.; Baker, M.R.; De Oliveira, H.M.; Polvikoski, T.; Silsby, M.; Menon, P.; van den Bos, M.; Halliday, G.M.; et al. TDP-43 proteinopathies: A new wave of neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 2021, 92, 86. [Google Scholar] [CrossRef] [PubMed]
- Patra, K.; Soosaipillai, A.; Sando, S.B.; Lauridsen, C.; Berge, G.; Møller, I.; Grøntvedt, G.R.; Bråthen, G.; Begcevic, I.; Moussaud, S.; et al. Assessment of kallikrein 6 as a cross-sectional and longitudinal biomarker for Alzheimer’s disease. Alzheimers Res. 2018, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dukic, L.; Simundic, A.M.; Martinic-Popovic, I.; Kackov, S.; Diamandis, A.; Begcevic, I.; Diamandis, E.P. The role of human kallikrein 6, clusterin and adiponectin as potential blood biomarkers of dementia. Clin. Biochem. 2016, 49, 213–218. [Google Scholar] [CrossRef]
- Wilson, R.S.; Yu, L.; Trojanowski, J.Q.; Chen, E.-Y.; Boyle, P.A.; Bennett, D.A.; Schneider, J.A. TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol. 2013, 70, 1418–1424. [Google Scholar] [CrossRef]
- Mattsson, N.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol. 2017, 74, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Thammisetty, S.S.; Pedragosa, J.; Weng, Y.C.; Calon, F.; Planas, A.; Kriz, J. Age-related deregulation of TDP-43 after stroke enhances NF-κB-mediated inflammation and neuronal damage. J. Neuroinflamm. 2018, 15, 312. [Google Scholar] [CrossRef]
- Lee, E.B.; Lee, V.M.Y.; Trojanowski, J.Q.; Neumann, M. TDP-43 immunoreactivity in anoxic, ischemic and neoplastic lesions of the central nervous system. Acta Neuropathol. 2008, 115, 305–311. [Google Scholar] [CrossRef]
- Scarisbrick, I.A.; Yoon, H.; Panos, M.; Larson, N.; Blaber, S.I.; Blaber, M.; Rodriguez, M. Kallikrein 6 regulates early CNS demyelination in a viral model of multiple sclerosis. Brain Pathol. 2012, 22, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Morillo, E.; Diamandis, A.; Romaschin, A.D.; Diamandis, E.P. Kallikrein 6 as a serum prognostic marker in patients with aneurysmal subarachnoid hemorrhage. PLoS ONE 2012, 7, e45676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bando, Y.; Hagiwara, Y.; Suzuki, Y.; Yoshida, K.; Aburakawa, Y.; Kimura, T.; Murakami, C.; Ono, M.; Tanaka, T.; Jiang, Y.P.; et al. Kallikrein 6 secreted by oligodendrocytes regulates the progression of experimental autoimmune encephalomyelitis. Glia 2018, 66, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Sutphen, C.L.; Jasielec, M.S.; Shah, A.R.; Macy, E.M.; Xiong, C.; Vlassenko, A.G.; Benzinger, T.L.; Stoops, E.E.; Vanderstichele, H.M.; Brix, B.; et al. Longitudinal Cerebrospinal Fluid Biomarker Changes in Preclinical Alzheimer Disease During Middle Age. JAMA Neurol. 2015, 72, 1029–1042. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, N.; Cullen, N.C.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol. 2019, 76, 791–799. [Google Scholar] [CrossRef]
- Ryabkova, V.A.; Churilov, L.P.; Shoenfeld, Y. Influenza infection, SARS, MERS and COVID-19, Cytokine storm—The common denominator and the lessons to be learned. Clin. Immunol. 2021, 223, 108652. [Google Scholar] [CrossRef]
- Minagar, A.; Shapshak, P.; Fujimura, R.; Ownby, R.; Heyes, M.; Eisdorfer, C. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J. Neurol. Sci. 2002, 202, 13–23. [Google Scholar] [CrossRef]
- Xiang, Z.; Haroutunian, V.; Ho, L.; Purohit, D.; Pasinetti, G.M. Microglia activation in the brain as inflammatory biomarker of Alzheimer’s disease neuropathology and clinical dementia. Dis. Markers 2006, 22, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Garwood, C.J.; Ratcliffe, L.E.; Simpson, J.E.; Heath, P.R.; Ince, P.G.; Wharton, S.B. Review: Astrocytes in Alzheimer’s disease and other age-associated dementias: A supporting player with a central role. Neuropathol. Appl. Neurobiol. 2017, 43, 281–298. [Google Scholar] [CrossRef]
- Zhan, X.; Stamova, B.; Sharp, F.R. Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer’s Disease Brain: A Review. Front. Aging Neurosci. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, I.R.A. Activated microglia in dementia with Lewy bodies. Neurology 2000, 55, 132–134. [Google Scholar] [CrossRef]
- Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell 2017, 169, 1276–1290.e17. [Google Scholar] [CrossRef] [PubMed]
- Torres, K.C.; Araujo Pereira, P.; Lima, G.S.; Bozzi, I.C.; Rezende, V.B.; Bicalho, M.A.; Moraes, E.N.; Miranda, D.M.; Romano-Silva, M.A. Increased frequency of T cells expressing IL-10 in Alzheimer disease but not in late-onset depression patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 47, 40–45. [Google Scholar] [CrossRef]
- Takeda, S.; Sato, N.; Morishita, R. Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: Relevance to pathogenesis and therapy. Front. Aging Neurosci. 2014, 6, 171. [Google Scholar] [CrossRef] [PubMed]
- Vaschetto, R.; Cena, T.; Sainaghi, P.P.; Meneghetti, G.; Bazzano, S.; Vecchio, D.; Pirisi, M.; Brustia, D.; Barini, M.; Cammarota, G.; et al. Cerebral nervous system vasculitis in a COVID-19 patient with pneumonia. J. Clin. Neurosci. 2020, 79, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Y.; Zhao, Z.; Li, P.; Ma, C.; Zhu, B. Diagnostic Value of Serum MIF and CCL23 in the Patients with Acute Cerebral Infarction. Clin. Lab. 2020, 66. [Google Scholar] [CrossRef]
- Simats, A.; García-Berrocoso, T.; Penalba, A.; Giralt, D.; Llovera, G.; Jiang, Y.; Ramiro, L.; Bustamante, A.; Martinez-Saez, E.; Canals, F.; et al. CCL23, a new CC chemokine involved in human brain damage. J. Intern. Med. 2018, 283, 461–475. [Google Scholar] [CrossRef]
- Faura, J.; Bustamante, A.; Penalba, A.; Giralt, D.; Simats, A.; Martínez-Sáez, E.; Alcolea, D.; Fortea, J.; Lleó, A.; Teunissen, C.E.; et al. CCL23, A Chemokine Associated with Progression from Mild Cognitive Impairment to Alzheimer’s Disease. J. Alzheimers Dis. 2020, 73, 1585–1595. [Google Scholar] [CrossRef]
- Bielekova, B.; Komori, M.; Xu, Q.; Reich, D.S.; Wu, T. Cerebrospinal fluid IL-12p40, CXCL13 and IL-8 as a combinatorial biomarker of active intrathecal inflammation. PLoS ONE 2012, 7, e48370. [Google Scholar]
- Sokolova, A.; Hill, M.D.; Rahimi, F.; Warden, L.A.; Halliday, G.M.; Shepherd, C.E. Monocyte Chemoattractant Protein-1 Plays a Dominant Role in the Chronic Inflammation Observed in Alzheimer’s Disease. Brain Pathol. 2009, 19, 392–398. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, Y.-Y.; Zhang, X.-P.; Gui, L.; Cai, M.; Peng, G.-P.; Pan, X.-D.; Zhang, J.; Gan, D.; Li, B.; et al. Diagnostic potential of urinary monocyte chemoattractant protein-1 for Alzheimer’s disease and amnestic mild cognitive impairment. Eur. J. Neurol. 2020, 27, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Uemura, M.T.; Maki, T.; Ihara, M.; Lee, V.M.Y.; Trojanowski, J.Q. Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Front. Aging Neurosci. 2020, 12, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprung, J.; Warner, D.O.; Knopman, D.S.; Petersen, R.C.; Mielke, M.M.; Jack, C.R.; Jr Martin, D.P.; Hanson, A.C.; Schroeder, D.R.; Przybelski, S.A.; et al. Brain MRI after critical care admission: A longitudinal imaging study. J. Crit Care 2021, 62, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, X.; Geng, D.; Mei, N.; Wu, P.Y.; Huang, C.C.; Jia, T.; Zhao, Y.; Wang, D.; Xiao, A.; et al. Cerebral Micro-Structural Changes in COVID-19 Patients—An MRI-based 3-month Follow-up Study. EClinicalMedicine 2020, 25, 100484. [Google Scholar] [CrossRef] [PubMed]
- Kandemirli, S.G.; Dogan, L.; Sarikaya, Z.T.; Kara, S.; Akinci, C.; Kaya, D.; Kaya, Y.; Yildirim, D.; Tuzuner, F.; Yildirim, M.S.; et al. Brain MRI Findings in Patients in the Intensive Care Unit with COVID-19 Infection. Radiology 2020, 297, E232–E235. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, S.; Chen, J.; Wei, N.; Wang, D.; Lyu, H.; Shi, C.; Hu, S. The landscape of cognitive function in recovered COVID-19 patients. J. Psychiatr. Res. 2020, 129, 98–102. [Google Scholar] [CrossRef]
- Almeria, M.; Cejudo, J.C.; Sotoca, J.; Deus, J.; Krupinski, J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav. Immun. Health 2020, 9, 100163. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Liu, C.; Su, L.; Zhang, D.; Fan, J.; Yang, Y.; Xiao, M.; Xie, J.; Xu, Y.; et al. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Mol. Med. 2020, 26, 97. [Google Scholar] [CrossRef]
- Laudanski, K.; Jihane, H.; Antalosky, B.; Ghani, D.; Phan, U.; Hernandez, R.; Okeke, T.; Wu, J.; Rader, D.; Susztak, K. Unbiased Analysis of Temporal Changes in Immune Serum Markers in Acute COVID-19 Infection With Emphasis on Organ Failure, Anti-Viral Treatment, and Demographic Characteristics. Front. Immunol. 2021, 12, 650465. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.; Juranek, J.K.; Rai, V. RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neurosci. Biobehav. Rev. 2016, 62, 48–55. [Google Scholar] [CrossRef]
- Collins-Praino, L.E.; Corrigan, F. Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury? Brain Behav. Immun. 2017, 60, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Sita, G.; Graziosi, A.; Hrelia, P.; Morroni, F. NLRP3 and Infections: β-Amyloid in Inflammasome beyond Neurodegeneration. Int. J. Mol. Sci. 2021, 22, 6984. [Google Scholar] [CrossRef]
- Monllor, P.; Giraldo, E.; Badia, M.C.; de la Asuncion, J.G.; Alonso, M.D.; Lloret, A.; Vina, J. Serum Levels of Clusterin, PKR, and RAGE Correlate with Amyloid Burden in Alzheimer’s Disease. J. Alzheimers Dis. 2021, 80, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.R.; Nilforooshan, R.; Weaving, G.; Tabet, N. Plasma fetuin-A is associated with the severity of cognitive impairment in mild-to-moderate Alzheimer’s disease. J. Alzheimers Dis. 2011, 24, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Poloni, T.E.; Medici, V.; Moretti, M.; Visonà, S.D.; Cirrincione, A.; Carlos, A.F.; Davin, A.; Gagliardi, S.; Pansarasa, O.; Cereda, C.; et al. COVID-19-related neuropathology and microglial activation in elderly with and without dementia. Brain Pathol. 2021, 31, e12997. [Google Scholar] [CrossRef]
- Perunicic-Pekovic, G.; Pljesa, S.; Rasic-Milutinovic, Z.; Stankovic, S.; Ilic, M.; Maletic, R. Inflammatory cytokines and malnutrition as related to risk for cardiovascular disease in hemodialysis patients. Can. J. Physiol. Pharm. 2008, 86, 205–209. [Google Scholar] [CrossRef]
- Izquierdo Delgado, E.; Gutiérrez Ríos, R.; Andrés Calvo, M.; Repiso Gento, I.; Castrillo Sanz, A.; Rodríguez Herrero, R.; Rodríguez Sanz, M.F.; Tola-Arribas, M.A. Nutritional status assessment in Alzheimer disease and its influence on disease progression. Neurologia 2021. [Google Scholar] [CrossRef]
- Koh, S.S.; Ooi, S.C.; Lui, N.M.; Qiong, C.; Ho, L.T.; Cheah, I.K.; Halliwell, B.; Herr, D.R.; Ong, W.Y. Effect of Ergothioneine on 7-Ketocholesterol-Induced Endothelial Injury. Neuromol. Med. 2021, 23, 184–198. [Google Scholar] [CrossRef]
- Jirak, P.; Stechemesser, L.; Moré, E.; Franzen, M.; Topf, A.; Mirna, M.; Paar, V.; Pistulli, R.; Kretzschmar, D.; Wernly, B.; et al. Chapter Three—Clinical Implications of Fetuin-A, Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: New York, NY, USA, 2019; pp. 79–130. [Google Scholar]
- Gratuze, M.; Leyns, C.E.G.; Holtzman, D.M. New insights into the role of TREM2 in Alzheimer’s disease. Mol. Neurodegener. 2018, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Raha, A.A.; Henderson, J.W.; Stott, S.R.; Vuono, R.; Foscarin, S.; Friedland, R.P.; Zaman, S.H.; Raha-Chowdhury, R. Neuroprotective Effect of TREM-2 in Aging and Alzheimer’s Disease Model. J. Alzheimers Dis. 2017, 55, 199–217. [Google Scholar] [CrossRef] [Green Version]
- Romero, J.R.; Demissie, S.; Beiser, A.; Himali, J.J.; DeCarli, C.; Levy, D.; Seshadri, S. Relation of plasma β-amyloid, clusterin, and tau with cerebral microbleeds: Framingham Heart Study. Ann. Clin. Transl. Neurol. 2020, 7, 1083–1091. [Google Scholar] [CrossRef]
- Rodríguez-Rivera, C.; Garcia, M.M.; Molina-Álvarez, M.; González-Martín, C.; Goicoechea, C. Clusterin: Always protecting. Synthesis, function and potential issues. Biomed. Pharmacother. 2021, 134, 111174. [Google Scholar] [CrossRef] [PubMed]
- Falgarone, G.; Chiocchia, G. Chapter 8 Clusterin: A Multifacet Protein at the Crossroad of Inflammation and Autoimmunity, Advances in Cancer Research; Academic Press: Cambridge, UK, 2009; pp. 139–170. [Google Scholar]
- Hassan, A.M.; Saleh, E.S.; Strak, S.K. Evaluation of Fetuin-A Protein and Some Inflammatory Biomarkers in Patients with Coronary Artery Disease. Am. J. Pharmacol. Sci. 2014, 2, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Xiong, N.; Schiller, M.R.; Li, J.; Chen, X.; Lin, Z. Severe COVID-19 in Alzheimer’s disease: APOE4’s fault again? Alzheimers Res. 2021, 13, 111. [Google Scholar] [CrossRef]
- Khullar, S.; Wang, D. Integrative analysis of multi-omics reveals gene regulatory networks across brain regions from risk variants to phenotypes of Alzheimer’s disease and Covid-19. bioRxiv 2021. [Google Scholar] [CrossRef]
- Roback, J.D.; Guarner, J. Convalescent Plasma to Treat COVID-19, Possibilities and Challenges. JAMA 2020, 323, 1561–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezagholizadeh, A.; Khiali, S.; Sarbakhsh, P.; Entezari-Maleki, T. Remdesivir for treatment of COVID-19; an updated systematic review and meta-analysis. Eur. J. Pharm. 2021, 897, 173926. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Hou, D.; Du, C.; Cai, Y.; Zheng, J.; Xu, J.; Chen, X.; Chen, C.; Hu, X.; Zhang, Y.; et al. Corticosteroid therapy for coronavirus disease 2019-related acute respiratory distress syndrome: A cohort study with propensity score analysis. Crit Care 2020, 24, 643. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Bian, Y.; Zhang, P.; Xiong, Y.; Xu, F.; Zhu, S.; Tang, Z.; Xue, Z. Application of the APACHE II score to assess the condition of patients with critical neurological diseases. Acta Neurol. Belg. 2015, 115, 651–656. [Google Scholar] [CrossRef]
- Cleves, M.A.; Sanchez, N.; Draheim, M. Evaluation of two competing methods for calculating Charlson’s comorbidity index when analyzing short-term mortality using administrative data. J. Clin. Epidemiol. 1997, 50, 903–908. [Google Scholar] [CrossRef]
- Peres Bota, D.; Melot, C.; Lopes Ferreira, F.; Nguyen Ba, V.; Vincent, J.L. The Multiple Organ Dysfunction Score (MODS) versus the Sequential Organ Failure Assessment (SOFA) score in outcome prediction. Intensive Care Med. 2002, 28, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Davidson, Y.S.; Raby, S.; Foulds, P.G.; Robinson, A.; Thompson, J.C.; Sikkink, S.; Yusuf, I.; Amin, H.; DuPlessis, D.; Troakes, C.; et al. TDP-43 pathological changes in early onset familial and sporadic Alzheimer’s disease, late onset Alzheimer’s disease and Down’s syndrome: Association with age, hippocampal sclerosis and clinical phenotype. Acta Neuropathol. 2011, 122, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Duits, F.H.; Wesenhagen, K.E.J.; Ekblad, L.; Wolters, E.; Willemse, E.A.J.; Scheltens, P.; van der Flier, W.M.; Teunissen, C.E.; Visser, P.J.; Tijms, B.M. Four subgroups based on tau levels in Alzheimer’s disease observed in two independent cohorts. Alzheimers Res. 2021, 13, 2. [Google Scholar] [CrossRef]
- Yelin, D.; Wirtheim, E.; Vetter, P.; Kalil, A.C.; Bruchfeld, J.; Runold, M.; Guaraldi, G.; Mussini, C.; Gudiol, C.; Pujol, M.; et al. Long-term consequences of COVID-19, research needs. Lancet Infect. Dis. 2020, 20, 1115–1117. [Google Scholar] [CrossRef]
- He, T.; Zuo, Y.; Ai-Zakwani, K.; Luo, J.; Zhu, H.; Yan, X.X.; Liu, F. Subarachnoid hemorrhage enhances the expression of TDP-43 in the brain of experimental rats and human subjects. Exp. Med. 2018, 16, 3363–3368. [Google Scholar] [CrossRef] [Green Version]
- Hatsuta, H.; Takao, M.; Nogami, A.; Uchino, A.; Sumikura, H.; Takata, T.; Morimoto, S.; Kanemaru, K.; Adachi, T.; Arai, T.; et al. Tau and TDP-43 accumulation of the basal nucleus of Meynert in individuals with cerebral lobar infarcts or hemorrhage. Acta Neuropathol. Commun. 2019, 7, 49. [Google Scholar] [CrossRef]
- Sharma, A.; Chunduri, A.; Gopu, A.; Shatrowsky, C.; Crusio, W.E.; Delprato, A. Common genetic signatures of Alzheimer’s disease in Down Syndrome. F1000Res 2020, 9, 1299. [Google Scholar] [CrossRef]
- Mella, C.; Figueroa, C.D.; Otth, C.; Ehrenfeld, P. Involvement of Kallikrein-Related Peptidases in Nervous System Disorders. Front. Cell Neurosci. 2020, 14, 166. [Google Scholar] [CrossRef]
- Drucker, K.L.; Gianinni, C.; Decker, P.A.; Diamandis, E.P.; Scarisbrick, I.A. Prognostic significance of multiple kallikreins in high-grade astrocytoma. BMC Cancer 2015, 15, 565. [Google Scholar] [CrossRef] [Green Version]
- Phipps, H.W.; Longo, L.M.; Blaber, S.I.; Blaber, M.; Vanlandingham, J.W. Kallikrein-related peptidase 6, a biomarker for traumatic brain injury in the rat. Brain Inj. 2013, 27, 1698–1706. [Google Scholar] [CrossRef] [PubMed]
- Gaetani, L.; Blennow, K.; Calabresi, P.; Di Filippo, M.; Parnetti, L.; Zetterberg, H. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry 2019, 90, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Evered, L.; Silbert, B.; Scott, D.A.; Zetterberg, H.; Blennow, K. Association of Changes in Plasma Neurofilament Light and Tau Levels With Anesthesia and Surgery: Results From the CAPACITY and ARCADIAN Studies. JAMA Neurol. 2018, 75, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Bacioglu, M.; Maia Luis, F.; Preische, O.; Schelle, J.; Apel, A.; Kaeser Stephan, A.; Schweighauser, M.; Eninger, T.; Lambert, M.; Pilotto, A.; et al. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases. Neuron 2016, 91, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutter, R.; Hert, L.; De Marchis, G.M.; Twerenbold, R.; Kappos, L.; Naegelin, Y.; Kuster, G.M.; Benkert, P.; Jost, J.; Maceski, A.M.; et al. Serum Neurofilament Light Chain Levels in the Intensive Care Unit: Comparison between Severely Ill Patients with and without Coronavirus Disease 2019. Ann. Neurol. 2020, 89, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.A.; Barreras, P.V.; Lewis, A.; Pinilla, G.; Sokoll, L.J.; Kickler, T.; Mostafa, H.; Caturegli, M.; Moghekar, A.; Fitzgerald, K.C.; et al. Cerebrospinal fluid in COVID-19 neurological complications: Neuroaxonal damage, anti-SARS-Cov2 antibodies but no evidence of cytokine storm. J. Neurol. Sci. 2021, 427, 117517. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.W.; Benjamin, L.A.; Mehta, P.R.; Brown, R.L.; Athauda, D.; Ashton, N.J.; Leckey, C.A.; Ziff, O.J.; Heaney, J.; Heslegrave, A.J.; et al. Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes. Brain Commun. 2021, 3, fcab099. [Google Scholar] [CrossRef]
- Ceylan, U.; Haupeltshofer, S.; Kämper, L.; Dann, J.; Ambrosius, B.; Gold, R.; Faissner, S. Clozapine Regulates Microglia and Is Effective in Chronic Experimental Autoimmune Encephalomyelitis. Front. Immunol. 2021, 12, 656941. [Google Scholar] [CrossRef]
- Ehlenbach, W.J.; Gilmore-Bykovskyi, A.; Repplinger, M.D.; Westergaard, R.P.; Jacobs, E.A.; Kind, A.J.H.; Smith, M. Sepsis Survivors Admitted to Skilled Nursing Facilities: Cognitive Impairment, Activities of Daily Living Dependence, and Survival. Crit Care Med. 2018, 46, 37–44. [Google Scholar] [CrossRef]
- De Melo, G.D.; Lazarini, F.; Levallois, S.; Hautefort, C.; Michel, V.; Larrous, F.; Verillaud, B.; Aparicio, C.; Wagner, S.; Gheusi, G.; et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl Med. 2021, 13. [Google Scholar] [CrossRef]
- Von Bahr Greenwood, T.; Palmkvist-Kaijser, K.; Chiang, S.C.; Tesi, B.; Bryceson, Y.T.; Hjelmqvist, H.; Henter, J.I. Elevated ferritin and soluble CD25 in critically ill patients are associated with parameters of (hyper) inflammation and lymphocyte cytotoxicity. Minerva Anestesiol. 2019, 85, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Namaste, S.M.; Rohner, F.; Huang, J.; Bhushan, N.L.; Flores-Ayala, R.; Kupka, R.; Mei, Z.; Rawat, R.; Williams, A.M.; Raiten, D.J.; et al. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106, 359s–371s. [Google Scholar]
- Cheng, L.; Li, H.; Li, L.; Liu, C.; Yan, S.; Chen, H.; Li, Y. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J. Clin. Lab. Anal. 2020, 34, e23618. [Google Scholar] [CrossRef]
- Singh, R.; Hemati, H.; Bajpai, M.; Yadav, P.; Maheshwari, A.; Kumar, S.; Agrawal, S.; Sevak, J.K.; Islam, M.; Mars, J.S.; et al. Sustained expression of inflammatory monocytes and activated T cells in COVID-19 patients and recovered convalescent plasma donors. Immun Inflamm Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoaty, M.; Yeapuri, P.; Machhi, J.; Olson, K.; Shahjin, F.; Zhou, Y.; Jingjing, L.; Pandey, K.; Acharya, A.; Byrareddy, S.; et al. Defining the Immune Responses for SARS-CoV-2-Human Macrophage Interactions. bioRxiv 2021. [Google Scholar] [CrossRef]
- Trombetta, A.C.; Farias, G.B.; Gomes, A.M.C.; Godinho-Santos, A.; Rosmaninho, P.; Conceição, C.M.; Laia, J.; Santos, D.F.; Almeida, A.R.M.; Mota, C.; et al. Severe COVID-19 Recovery Is Associated with Timely Acquisition of a Myeloid Cell Immune-Regulatory Phenotype. Front. Immunol. 2021, 12, 691725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-Q.; Wang, R.; Li, T.; Zhou, J.-P.; Chang, G.-Q.; Zhao, N.; Yang, L.-N.; Zhai, H.; Yang, L. Reduced soluble RAGE is associated with disease severity of axonal Guillain-Barré syndrome. Sci. Rep. 2016, 6, 21890. [Google Scholar] [CrossRef]
- Shang, P.; Feng, J.; Wu, W.; Zhang, H.-L. Intensive Care and Treatment of Severe Guillain-Barré Syndrome. Front. Pharmacol. 2021, 12, 608130. [Google Scholar] [CrossRef]
- Lu, M.O.; Zhu, J. The role of cytokines in Guillain-Barré syndrome. J. Neurol. 2011, 258, 533–548. [Google Scholar] [CrossRef]
- Plummer, S.; Van den Heuvel, C.; Thornton, E.; Corrigan, F.; Cappai, R. The Neuroprotective Properties of the Amyloid Precursor Protein Following Traumatic Brain Injury. Aging Dis. 2016, 7, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Lue, L.-F.; Guerra, A.; Walker, D.G. Amyloid Beta and Tau as Alzheimer’s Disease Blood Biomarkers: Promise from New Technologies. Neurol. Ther. 2017, 6, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, D.T.; Carver, J.A.; Easterbrook-Smith, S.B.; Wilson, M.R. Clusterin Has Chaperone-like Activity Similar to That of Small Heat Shock Proteins. J. Biol. Chem. 1999, 274, 6875–6881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desikan, R.S.; Thompson, W.K.; Holland, D.; Hess, C.P.; Brewer, J.B.; Zetterberg, H.; Blennow, K.; Andreassen, O.A.; McEvoy, L.K.; Hyman, B.T.; et al. The Role of Clusterin in Amyloid-β–Associated Neurodegeneration. JAMA Neurol. 2014, 71, 180–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Götte, M. Remdesivir for the treatment of Covid-19, the value of biochemical studies. Curr. Opin. Virol. 2021, 49, 81–85. [Google Scholar] [CrossRef]
- Acosta-Ampudia, Y.; Monsalve, D.M.; Rojas, M.; Rodríguez, Y.; Gallo, J.E.; Salazar-Uribe, J.C.; Santander, M.J.; Cala, M.P.; Zapata, W.; Zapata, M.I.; et al. COVID-19 convalescent plasma composition and immunological effects in severe patients. J. Autoimmun. 2021, 118, 102598. [Google Scholar] [CrossRef]
- Quintas-Neves, M. COVID-19 Related Central Nervous System Vasculopathy: Beyond Vasculitis. AJNR Am. J. Neuroradiol. 2021. [Google Scholar] [CrossRef]
- Rathcke, C.N.; Vestergaard, H. YKL-40—An emerging biomarker in cardiovascular disease and diabetes. Cardiovasc. Diabetol. 2009, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Kjaergaard, A.D.; Johansen, J.S.; Bojesen, S.E.; Nordestgaard, B.G. Elevated Plasma YKL-40, Lipids and Lipoproteins, and Ischemic Vascular Disease in the General Population. Stroke 2015, 46, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Qiu, W.; Garcia-Milian, R.; Lin, X.; Zhang, Y.; Cao, Y.; Tan, Y.; Wang, Z.; Shi, J.; Wang, J.; et al. Genome-wide significant, replicated and functional risk variants for Alzheimer’s disease. J. Neural Transm. 2017, 124, 1455–1471. [Google Scholar] [CrossRef]
- Zavala, S.; Larson, J.; O’Mahony, M.; Rech, M.A. Impact of insufficient admission vitamin D serum concentrations on sepsis incidence and clinical outcomes in patients with thermal injury. Burns 2020, 46, 172–177. [Google Scholar] [CrossRef]
- Yoo, J.W.; Kim, R.B.; Ju, S.; Lee, S.J.; Cho, Y.J.; Jeong, Y.Y.; Lee, J.D.; Kim, H.C. Clinical Impact of Supplementation of Vitamins B1 and C on Patients with Sepsis-Related Acute Respiratory Distress Syndrome. Tuberc. Respir. Dis. 2020, 83, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Mao, S.; Wu, L.; Yu, J. Association Between Vitamin D Status and Sepsis. Clin. Lab. 2018, 64, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Laudanski, K. Persistence of alterations in lipoproteins and cholesterol during and after septic episode—Review of current evidence of long-term post septic lipid profile aberrations and their impli-cation for allostasis. Int. J. Mol. Sci. 2021, 22, 10517. [Google Scholar] [CrossRef] [PubMed]
All Patients Recruited vs. Patients Available to Follow-Up at 6 Months. | Comparison of All Patients Recruited Who Experienced a Cerebrovascular Event (CVA) by the 6 Month Follow-Up vs. Patients with No Post-COVID-19 CVA. | ||||||
---|---|---|---|---|---|---|---|
All (n = 105) | 6 months (n = 51) | No Stroke (n = 95) | Stroke (n = 10) | ||||
Age [X ± SD] | 62.4 ± 15.52 | 58.4 + 18.50 | 64.1 ± 15.07 | ||||
Age | Below 60 [%] | 43.4 | 33.9 | 44.2 | 40.0 | ||
Over 60 [%] | 56.6 | 66.1 | 55.8 | 60.0 | |||
Gender | Male [%] | 60.0 | 62.7 | 57.9 | 80.0 | ||
Female [%] | 40.0 | 37.3 | 42.1 | 20.0 | |||
Height | Meters [X ± SD] | 1.71 ± 0.08 | 1.72 ± 0.10 | 1.70 ± 0.10 * | 1.74 ± 0.12 * | ||
Weight | Kilograms [X ± SD] | 93.1 ± 20.11 | 88.9 ± 24.44 | 93.4 ± 27.72 | 90.6 ± 21.85 | ||
Race | Hispanic Latino [%] | 27.6 | 8.5 | 26.3 | 40.0 | ||
Black [%] | 62.9 | 61.0 | 64.2 | 50.0 | |||
Other/UNK/Asian [%] | 9.5 | 30.5 | 9.5 | 10.0 | |||
Clinical characteristics | All (n = 105) | 6 months (n = 51) | No Stroke (n = 95) | Stroke (n = 10) | |||
Mortality [%] | 21.9 | 32.2 | 20.0 | 40.0 | |||
Length of Stay [days; X ± SD] | 16.6 ± 14.18 # | 38.0 ± 31.21 # | 15.5 ± 22.88 | 17.4 ± 24.21 | |||
ICU [%] | 50.0 | 71.2 | 49.5 | 63.6 | |||
Intubated [%] | 33.0 | 50.8 | 33.7 | 30.0 | |||
ECMO [%] | 9.4 | 15.3 | 7.4 | 30.0 | |||
APACHE + 1 h [X ± SD] | 11.0 ± 6.26 | 12.6 ± 7.88 | 10.8 ± 8.01 | 14.1 ± 4.79 | |||
APACHE + 24 h [X ± SD] | 11.0 ± 5.83 | 12.9 ± 7.05 | 10.5 ± 7.45 * | 16.1 ± 2.69 * | |||
MOF | All (n = 105) | No Stroke (n = 95) | Stroke (n = 10) | ||||
Admission | 48 h | Admission | 48 h | Admission | 48 h | ||
MODS [X ± SD] | 3.0 ± 2.72 | 3.2 ± 2.96 | 2.9 ± 2.71 | 3.3 ± 3.06 | 4.7 ± 2.31 ** | 2.3 ± 1.64 ** |
Admission—48 h | 2d–4d | 5d–7d | 8–25 Days | ||
---|---|---|---|---|---|
CCL23 | All | 434.4 ± 578.05 | 594.1 ± 717.13 | 886 ± 1001.68 | 1069.1 = ±1165.81 * |
Stroke | 880.1 ± 1232.56 | 466.5 ± 696.57 | 644 ± 1113.75 | 1640.4 ± 2198.53 | |
No Stroke | 413.2 ± 874.78 | 610.4 ± 1169.72 | 917.6 ± 1348.26 | 905.8 ± 1302.94 | |
Admission—48 h | 2d–4d | 5d–7d | 8–25 days | ||
MCP-1 | All | 449.4 ± 499.09 | 458.4 ± 743.52 | 291.4 ± 304.24 * | 601.8 ± 619.20 |
Stroke | 374.6 ± 0.0 | 420.4 ± 415.73 | 145.1 ± 126.60 | 324.2 ± 334.15 | |
No Stroke | 451.4 ± 505.82 | 463.7 ± 781.66 | 317.2 ± 321.24 | 681.1 ± 663.93 | |
Admission—48 h | 2d–4d | 5d–7d | 8–25 days | ||
MIF | All | 258.4 ± 313.07 | 187.6 ± 186.1 * | 182.3 ± 124.89 * | 372.9 ± 1101.91 |
Stroke | 214.6 ± 173.22 | 169.32 ± 135.59 | 152.6 ± 93.10 | 270.3699 ± 399.22 | |
No Stroke | 260.5 ± 322.97 | 190.1 ± 194.87 # | 185.8 ± 129.10 # | 399.4 ± 12223.63 | |
Admission—48 h | 2d–4d | 5d–7d | 7–28 days | ||
IL-6 | All | 10.9 ± 11.98 | 13.1 ± 13.81 | 11.9 ± 11.98 | 11.2 ± 10.27 |
Stroke | 2.8 ± 0.15 | 10.4 ± 23.07 | 21.6 ± 35.56 & | 23.6 ± 32.61 & | |
No Stroke | 11.4 ± 16.88 | 13.5 ± 21.12 | 10.9 ± 14.95 & | 8.4 ± 11.43 & | |
Admission—48 h | 2d–4d | 5d–7d | 8–25 days | ||
IL-8 | All | 22.2 ± 30.7 | 10.4 ± 10.36 * | 16.9 ± 12.60 | 11 ± 6.82 * |
Stroke | 12.7 ± N/A | 5.2 ± 2.70 ## | 2.6 ± N/A | 8.2 ± 5.10 | |
No Stroke | 22.5 ± 57.15 | 10.8 ± 19.89 # | 17.9 ± 20.96 | 11.7 ± 10.36 # | |
Admission—48 h | 2d–4d | 5d–7d | 8–25 days | ||
TNFα | All | 0.6 ± 0.42 | 1.1 ± 0.98 * | 1.2 ± 1.07 | 0.7 ± 0.40 |
Stroke | 0.5 ± 0.55 | 1.7 ± 2.36 | 0.7 ± 0.23 | 0.9 ± 0.92 | |
No Stroke | 0.6 ± 0.54 | 1 ± 1.69 | 1.2 ± 2.74 | 0.7 ± 0.52 | |
Admission—48 h | 2d–4d | 5d–7d | 8–25 days | ||
Platelet Count | All | 218.7 ± 68.17 | 252.8 ± 93.7 * | 280.8 ± 108.02 * | 239.2 ± 78.71 |
Stroke | 232.8 ± 81.61 | 264.4 ± 122.43 | 321.4 ± 119.03 | 254.5 ± 137.97 | |
No Stroke | 217.1 ± 87.37 | 251.5 ± 125 # | 277.4 ± 146.61 # | 237.8 ± 98.69 | |
Admission—48 h | 2d–4d | 5d–7d | 8–25 days | ||
WBC Count | All | 8.2 ± 3.41 | 9 ± 3.65 | 11 ± 4.23 * | 11.4 ± 4.95 * |
Stroke | 7.1 ± 2.99 | 7.1 ± 3.09 | 11.9 ± 4.3 | 17.6 ± 17.07 & | |
No Stroke | 8.3 ± 4.39 | 9.2 ± 4.78 | 10.9 ± 6.99 # | 10.8 ± 5.73 #,& |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laudanski, K.; Hajj, J.; Restrepo, M.; Siddiq, K.; Okeke, T.; Rader, D.J. Dynamic Changes in Central and Peripheral Neuro-Injury vs. Neuroprotective Serum Markers in COVID-19 Are Modulated by Different Types of Anti-Viral Treatments but Do Not Affect the Incidence of Late and Early Strokes. Biomedicines 2021, 9, 1791. https://doi.org/10.3390/biomedicines9121791
Laudanski K, Hajj J, Restrepo M, Siddiq K, Okeke T, Rader DJ. Dynamic Changes in Central and Peripheral Neuro-Injury vs. Neuroprotective Serum Markers in COVID-19 Are Modulated by Different Types of Anti-Viral Treatments but Do Not Affect the Incidence of Late and Early Strokes. Biomedicines. 2021; 9(12):1791. https://doi.org/10.3390/biomedicines9121791
Chicago/Turabian StyleLaudanski, Krzysztof, Jihane Hajj, Mariana Restrepo, Kumal Siddiq, Tony Okeke, and Daniel J. Rader. 2021. "Dynamic Changes in Central and Peripheral Neuro-Injury vs. Neuroprotective Serum Markers in COVID-19 Are Modulated by Different Types of Anti-Viral Treatments but Do Not Affect the Incidence of Late and Early Strokes" Biomedicines 9, no. 12: 1791. https://doi.org/10.3390/biomedicines9121791
APA StyleLaudanski, K., Hajj, J., Restrepo, M., Siddiq, K., Okeke, T., & Rader, D. J. (2021). Dynamic Changes in Central and Peripheral Neuro-Injury vs. Neuroprotective Serum Markers in COVID-19 Are Modulated by Different Types of Anti-Viral Treatments but Do Not Affect the Incidence of Late and Early Strokes. Biomedicines, 9(12), 1791. https://doi.org/10.3390/biomedicines9121791