Pustular Psoriasis: From Pathophysiology to Treatment
Abstract
:1. Introduction
2. Nosological Aspects
2.1. Clinical Variants
2.1.1. Von Zumbusch Psoriasis (Acute Generalized Pustular Psoriasis)
2.1.2. Impetigo Herpetiformis (Pustular Psoriasis of Pregnancy)
2.1.3. Annular Pustular Psoriasis
2.1.4. Infantile/Juvenile Pustular Psoriasis
2.1.5. Palmoplantar Pustulosis/Palmoplantar Pustular Psoriasis
2.1.6. Acrodermatitis Continua of Hallopeau
3. Pathogenesis
3.1. Pathophysiology of Generalized Forms
3.2. Pathophysiology of Localized Forms
4. Treatment
4.1. Treatment of Generalized Pustular Psoriasis
4.2. Treatment of Pustular Psoriasis of Pregnancy
4.3. Treatment of Palmoplantar Pustulosis/Palmoplantar Pustular Psoriasis
4.4. Treatment of Acrodermatitis Continua of Hallopeau
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uppala, R.; Tsoi, L.C.; Harms, P.W.; Wang, B.; Billi, A.C.; Maverakis, E.; Michelle Kahlenberg, J.; Ward, N.L.; Gudjonsson, J.E. “Autoinflammatory psoriasis”-genetics and biology of pustular psoriasis. Cell. Mol. Immunol. 2021, 18, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Kardaun, S.-H.; Kuiper, H.; Fidler, V.; Jonkman, M.F. The histopathological spectrum of acute generalized exanthematous pustulosis (AGEP) and its differentiation from generalized pustular psoriasis. J. Cutan. Pathol. 2010, 37, 1220–1229. [Google Scholar] [CrossRef] [Green Version]
- Ferreli, C.; Pinna, A.L.; Pilloni, L.; Tomasini, C.F.; Rongioletti, F. Histopathological aspects of psoriasis and its uncommon variants. G. Ital. Dermatol. Venereol. 2018, 153, 173–184. [Google Scholar] [CrossRef]
- Yamamoto, T. Similarity and difference between palmoplantar pustulosis and pustular psoriasis. J. Dermatol. 2021, 48, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Navarini, A.A.; Burden, A.D.; Capon, F.; Mrowietz, U.; Puig, L.; Köks, S.; Kingo, K.; Smith, C.; Barker, J.N.; ERASPEN Network. European consensus statement on phenotypes of pustular psoriasis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1792–1799. [Google Scholar] [CrossRef] [Green Version]
- Bachelez, H. Pustular Psoriasis: The Dawn of a New Era. Acta Derm. Venereol. 2020, 100, adv00034. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, C.E.; Christophers, E.; Barker, J.N.; Chalmers, R.J.; Chimenti, S.; Krueger, G.G.; Leonardi, C.; Menter, A.; Ortonne, J.P.; Fry, L. A classification of psoriasis vulgaris according to phenotype. Br. J. Dermatol. 2007, 156, 258–262. [Google Scholar] [CrossRef]
- Farley, E.; Masrour, S.; McKey, J.; Menter, A. Palmoplantar psoriasis: A phenotypical and clinical review with introduction of a new quality-of-life assessment tool. J. Am. Acad. Dermatol. 2009, 60, 1024–1031. [Google Scholar] [CrossRef]
- Callis Duffin, K.; Bachelez, H.; Mease, P.J.; Rosen, C.; Garg, A.; Zudak, E.; Elkayam, O.; Merola, J.; Chau, J.; Kishimoto, M.; et al. Pustular Psoriasis and Associated Musculoskeletal Disorders. J. Rheumatol. 2021, 97, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Misiak-Galazka, M.; Zozula, J.; Rudnicka, L. Palmoplantar Pustulosis: Recent Advances in Etiopathogenesis and Emerging Treatments. Am. J. Clin. Dermatol. 2020, 21, 355–370. [Google Scholar] [CrossRef] [Green Version]
- Bissonnette, R.; Suárez-Fariñas, M.; Li, X.; Bonifacio, K.M.; Brodmerkel, C.; Fuentes-Duculan, J.; Krueger, J.G. Based on Molecular Profiling of Gene Expression, Palmoplantar Pustulosis and Palmoplantar Pustular Psoriasis Are Highly Related Diseases that Appear to Be Distinct from Psoriasis Vulgaris. PLoS ONE 2016, 11, e0155215. [Google Scholar]
- Twelves, S.; Mostafa, A.; Dand, N.; Burri, E.; Farkas, K.; Wilson, R.; Cooper, H.L.; Irvine, A.D.; Oon, H.H.; Kingo, K.; et al. Clinical and genetic differences between pustular psoriasis subtypes. J. Allergy Clin. Immunol. 2019, 143, 1021–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naldi, L.; Gambini, D. The clinical spectrum of psoriasis. Clin. Dermatol. 2007, 25, 510–518. [Google Scholar] [CrossRef]
- Ly, K.; Beck, K.M.; Smith, M.P.; Thibodeaux, Q.; Bhutani, T. Diagnosis and screening of patients with generalized pustular psoriasis. Psoriasis Targets Ther. 2019, 9, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Choon, S.E.; Lai, N.M.; Mohammad, N.A.; Nanu, N.M.; Tey, K.E.; Chew, S.F. Clinical profile, morbidity, and outcome of adult-onset generalized pustular psoriasis: Analysis of 102 cases seen in a tertiary hospital in Johor, Malaysia. Int. J. Dermatol. 2014, 53, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Zelickson, B.D.; Muller, S.A. Generalized pustular psoriasis: A review of 63 cases. Arch. Dermatol. 1991, 127, 1339–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Valle, V.; Maggioni, M.; Carrera, C.; Cattaneo, A.; Marzano, A.V.; Damiani, G. A mysterious abdominal pain during active psoriasis. Intern. Emerg. Med. 2018, 13, 889–892. [Google Scholar] [CrossRef]
- Namiki, K.; Kamata, M.; Shimizu, T.; Chijiwa, C.; Uchida, H.; Okinaga, S.; Harafuji, M.; Nagata, M.; Fukaya, S.; Hayashi, K.; et al. Thyroid dysfunction in patients with psoriasis: Higher prevalence of thyroid dysfunction in patients with generalized pustular psoriasis. J. Dermatol. 2020, 47, 133–139. [Google Scholar] [CrossRef]
- Borges-Costa, J.; Silva, R.; Gonçalves, L.; Filipe, P.; Soares de Almeida, L.; Marques Gomes, M. Clinical and laboratory features in acute generalized pustular psoriasis: A retrospective study of 34 patients. Am. J. Clin. Dermatol. 2011, 12, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Setta-Kaffetzi, N.; Navarini, A.A.; Patel, V.M.; Pullabhatla, V.; Pink, A.E.; Choon, S.E.; Allen, M.A.; Burden, A.D.; Griffiths, C.E.; Seyger, M.M.; et al. Rare pathogenic variants in IL36RN underlie a spectrum of psoriasis-associated pustular phenotypes. J. Invest Dermatol. 2013, 133, 1366–1369. [Google Scholar] [CrossRef] [Green Version]
- Roujeau, J.C.; Bioulac-Sage, P.; Bourseau, C.; Guillaume, J.C.; Bernard, P.; Lok, C.; Plantin, P.; Claudy, A.; Delavierre, C.; Vaillant, L.; et al. Acute generalized exanthematous pustulosis. Analysis of 63 cases. Arch. Dermatol. 1991, 127, 1333–1338. [Google Scholar] [CrossRef]
- Halevy, S.; Kardaun, S.H.; Davidovici, B.; Wechsler, J. EuroSCAR and RegiSCAR study group. The spectrum of histopathological features in acute generalized exanthematous pustulosis: A study of 102 cases. Br. J. Dermatol. 2010, 163, 1245–1252. [Google Scholar] [CrossRef]
- Feldmeyer, L.; Heidemeyer, K.; Yawalkar, N. Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. Int. J. Mol. Sci. 2016, 17, 1214. [Google Scholar] [CrossRef] [Green Version]
- Vyas, N.S.; Charifa, A.; Desman, G.T.; McNiff, J.M. Distinguishing pustular psoriasis and acute generalized exanthematous pustulosis on the basis of plasmacytoid dendritic cells and MxA protein. J. Cutan. Pathol. 2019, 46, 317–326. [Google Scholar] [CrossRef]
- Kakeda, M.; Schlapbach, C.; Danelon, G.; Tang, M.M.; Cecchinato, V.; Yawalkar, N.; Uguccioni, M. Innate immune cells express IL-17A/F in acute generalized exanthematous pustulosis and generalized pustular psoriasis. Arch. Dermatol. Res. 2014, 306, 933–938. [Google Scholar] [CrossRef]
- Song, H.S.; Kim, S.J.; Park, T.I.; Jang, Y.H.; Lee, E.S. Immunohistochemical Comparison of IL-36 and the IL-23/Th17 Axis of Generalized Pustular Psoriasis and Acute Generalized Exanthematous Pustulosis. Ann. Dermatol. 2016, 28, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Navarini, A.A.; Valeyrie-Allanore, L.; Setta-Kaffetzi, N.; Barker, J.N.; Capon, F.; Creamer, D.; Roujeau, J.C.; Sekula, P.; Simpson, M.A.; Trembath, R.C.; et al. Rare variations in IL36RN in severe adverse drug reactions manifesting as acute generalized exanthematous pustulosis. J. Invest Dermatol. 2013, 133, 1904–1907. [Google Scholar] [CrossRef] [Green Version]
- Navarini, A.A.; Simpson, M.A.; Borradori, L.; Yawalkar, N.; Schlapbach, C. Homozygous missense mutation in IL36RN in generalized pustular dermatosis with intraoral involvement compatible with both AGEP and generalized pustular psoriasis. JAMA Dermatol. 2015, 151, 452–453. [Google Scholar] [CrossRef] [Green Version]
- Ryan, T.J.; Baker, H. The prognosis of generalized pustular psoriasis. Br. J. Dermatol. 1971, 85, 407–411. [Google Scholar] [CrossRef]
- Fujita, H.; Terui, T.; Hayama, K.; Akiyama, M.; Ikeda, S.; Mabuchi, T.; Ozawa, A.; Kanekura, T.; Kurosawa, M.; Komine, M.; et al. Japanese guidelines for the management and treatment of generalized pustular psoriasis: The new pathogenesis and treatment of GPP. J. Dermatol. 2018, 45, 1235–1270. [Google Scholar] [CrossRef]
- Von Hebra, F. Ueber einzelne, wahrend der Schwangerschaft am Wochenbette und bei Urinalkrankheiten der Frauzen zu beobachtende Hautkrankheiten. Wien. Med. Wochenschr. 1872, 22, 1197–1202. (In German) [Google Scholar]
- Kondo, R.N.; Araujo, F.M.; Pereira, A.M.; Lopes, V.C.; Martins, L.M. Pustular psoriasis of pregnancy (impetigo herpetiformis)–case report. An. Bras. Dermatol. 2013, 88, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Vena, G.A.; Cassano, N.; Bellia, G.; Colombo, D. Psoriasis in pregnancy: Challenges and solutions. Psoriasis Targets Ther. 2015, 5, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Kroumpouzos, G.; Cohen, L.M. Dermatoses of pregnancy. J. Am. Acad. Dermatol. 2001, 45, 1–19. [Google Scholar] [CrossRef]
- Breier-Maly, J.; Ortel, B.; Breier, F.; Schmidt, J.B.; Honigsmann, H. Generalized pustular psoriasis of pregnancy (impetigo herpetiformis). Dermatology 1999, 198, 61–64. [Google Scholar] [CrossRef]
- Namazi, N.; Dadkhahfar, S. Impetigo Herpetiformis: Review of Pathogenesis, Complication, and Treatment. Dermatol. Res. Pract. 2018, 2018, 5801280. [Google Scholar] [CrossRef]
- Oosterling, R.J.; Nobrega, R.E.; Du Boeuff, J.A.; Van Der Meer, J.B. Impetigo herpetiformis or generalized pustular psoriasis? Arch. Dermatol. 1978, 114, 1527–1529. [Google Scholar] [CrossRef]
- Lotem, M.; Katzenelson, V.; Rotem, A.; Hod, M.; Sandbank, M. Impetigo herpetiformis: A variant of pustular psoriasis or a separate entity? J. Am. Acad. Dermatol. 1989, 20, 338–341. [Google Scholar] [CrossRef]
- Oumeish, O.Y.; Farraj, S.E.; Bataineh, A.S. Some aspects of impetigo herpetiformis. Arch. Dermatol. 1982, 118, 103–105. [Google Scholar] [CrossRef]
- Winzer, M.; Wolff, H.H. Impetigo herpetiformis. Hautarzt 1988, 39, 110–113. [Google Scholar]
- Owczarczyk-Saczonek, A.; Znajewska-Pander, A.; Owczarek, W.; Maciejewska-Radomska, A.; Placek, W. Clinicopathologic retrospective analysis of annular pustular psoriasis. Acta Dermatovenerol. Alp. Pannonica Adriat. 2018, 27, 215–219. [Google Scholar] [CrossRef]
- Rogel-Vence, M.; González-Ruiz, L.; Santiago Sánchez-Mateos, J.L. Annular pustular psoriasis. Med. Clin. 2020, 155, 326. [Google Scholar] [CrossRef]
- Farber, E.M.; Nall, L. Childhood psoriasis. Cutis 1999, 64, 309–314. [Google Scholar]
- Fialova, J.; Vojackova, N.; Vanousova, D.; Hercogova, J. Juvenile generalized pustular psoriasis treated with etanercept. Dermatol. Ther. 2014, 27, 105–108. [Google Scholar] [CrossRef]
- Xiao, T.; Li, B.; He, C.D.; Chen, H.D. Juvenile generalized pustular psoriasis. J. Dermatol. 2007, 34, 573–576. [Google Scholar] [CrossRef]
- Zaraa, I.; Fazaa, B.; Zeglaoui, F.; Zermani, R.; Ezzine, N.; Goucha, S.; Ben Jilani, S.; Kamoun, M.R. Pustular psoriasis in childhood in 15 cases. Tunis. Med. 2004, 82, 679–683. [Google Scholar]
- Miyake, T.; Umemura, H.; Doi, H.; Kousogabe, J.; Tsuji, K.; Hamada, T.; Sugiura, K.; Aoyama, Y.; Akiyama, M.; Iwatsuki, K.; et al. Annular pustular psoriasis with a heterozygous IL36RN mutation. Eur. J. Dermatol. 2015, 25, 349–350. [Google Scholar] [CrossRef]
- Wollina, U.; Funfstuck, V. Juvenile generalized circinate pustular psoriasis treated with oral cyclosporin A. Eur. J. Dermatol. 2001, 11, 117–119. [Google Scholar]
- Morales-Munera, C.; Vilarrasa, E.; Puig, L. Efficacy of ustekinumab in refractory palmoplantar pustular psoriasis. Br. J. Dermatol. 2013, 168, 820–824. [Google Scholar] [CrossRef]
- Brunasso, A.M.; Puntoni, M.; Aberer, W.; Delfino, C.; Fancelli, L.; Massone, C. Clinical and epidemiological comparison of patients affected by palmoplantar plaque psoriasis and palmoplantar pustulosis: A case series study. Br. J. Dermatol. 2013, 168, 1243–1251. [Google Scholar] [CrossRef]
- Murakami, M.; Terui, T. Palmoplantar pustulosis: Current understanding of disease definition and pathomechanism. J. Dermatol. Sci. 2020, 98, 13–19. [Google Scholar] [CrossRef]
- Abbas, O.; Itani, S.; Ghosn, S.; Kibbi, A.G.; Fidawi, G.; Farooq, M.; Shimomura, Y.; Kurban, M. Acrodermatitis continua of Hallopeau is a clinical phenotype of DITRA: Evidence that it is a variant of pustular psoriasis. Dermatology 2013, 226, 28–31. [Google Scholar] [CrossRef]
- Smith, M.P.; Ly, K.; Thibodeaux, Q.; Bhutani, T.; Liao, W.; Beck, K.M. Acrodermatitis continua of Hallopeau: Clinical perspectives. Psoriasis Targets Ther. 2019, 9, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Wang, Z.Y.; Ma, L.; Xu, Z.G. Three cases of IL36RN-associated pustulosis: An evolution of acrodermatitis continua of Hallopeau to generalized pustular psoriasis. Indian J. Dermatol. Venereol. Leprol. 2020, 86, 562–565. [Google Scholar]
- Sehgal, V.N.; Verma, P.; Sharma, S.; Srivastava, G.; Aggarwal, A.K.; Rasool, F.; Chatterjee, K. Acrodermatitis continua of Hallopeau: Evolution of treatment options. Int. J. Dermatol. 2011, 50, 1195–1211. [Google Scholar] [CrossRef]
- William, D.; James, T.B.; Elston, D. Andrews’ Diseases of the Skin Clinical Dermatology, 10th ed.; Saunders Elsevier: Philadelphia, PA, USA, 2006. [Google Scholar]
- Roenigk, H. Psoriasis, 3rd ed.; Marcel Dekker Inc.: New York, NY, USA, 1998. [Google Scholar]
- Queen, D.; Ediriweera, C.; Liu, L. Function and Regulation of IL-36 Signaling in Inflammatory Diseases and Cancer Development. Front. Cell Dev. Biol. 2019, 7, 317. [Google Scholar] [CrossRef]
- Bassoy, E.Y.; Towne, J.E.; Gabay, C. Regulation and function of interleukin-36 cytokines. Immunol. Rev. 2018, 281, 169–178. [Google Scholar] [CrossRef]
- Onoufriadis, A.; Simpson, M.A.; Pink, A.E.; Di Meglio, P.; Smith, C.H.; Pullabhatla, V.; Knight, J.; Spain, S.; Nestle, F.O.; Burden, A.D.; et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 2011, 89, 432–437. [Google Scholar] [CrossRef] [Green Version]
- Ainscough, J.S.; Macleod, T.; McGonagle, D.; Brakefield, R.; Baron, J.M.; Alase, A.; Wittmann, M.; Stacey, M. Cathepsin S is the major activator of the psoriasis-associated proinflammatory cytokine IL-36γ. Proc. Natl. Acad. Sci. USA 2017, 114, E2748–E2757. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.; Xing, X.; Wolterink, L.; Barnes, D.H.; Yin, Z.; Reingold, L.; Kahlenberg, J.M.; Harms, P.W.; Gudjonsson, J.E. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J. Allergy Clin. Immunol. 2017, 140, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Haskamp, S.; Bruns, H.; Hahn, M.; Hoffmann, M.; Gregor, A.; Löhr, S.; Hahn, J.; Schauer, C.; Ringer, M.; Flamann, C.; et al. Myeloperoxidase Modulates Inflammation in Generalized Pustular Psoriasis and Additional Rare Pustular Skin Diseases. Am. J. Hum. Genet. 2020, 107, 527–538. [Google Scholar] [CrossRef]
- Iznardo, H.; Puig, L. Exploring the Role of IL-36 Cytokines as a New Target in Psoriatic Disease. Int. J. Mol. Sci. 2021, 22, 4344. [Google Scholar] [CrossRef]
- Dietrich, D.; Gabay, C. Inflammation: IL-36 has proinflammatory effects in skin but not in joints. Nat. Rev. Rheumatol. 2014, 10, 639–640. [Google Scholar] [CrossRef]
- Hussain, S.; Berki, D.M.; Choon, S.E.; Burden, A.D.; Allen, M.H.; Arostegui, J.I.; Chaves, A.; Duckworth, M.; Irvine, A.D.; Mockenhaupt, M.; et al. IL36RN mutations define a severe autoinflammatory phenotype of generalized pustular psoriasis. J. Allergy Clin. Immunol. 2015, 135, 1067–1070. [Google Scholar] [CrossRef]
- Han, Y.; Huard, A.; Mora, J.; da Silva, P.; Brüne, B.; Weigert, A. IL-36 family cytokines in protective versus destructive inflammation. Cell. Signal. 2020, 75, 109773. [Google Scholar] [CrossRef]
- Arakawa, A.; Vollmer, S.; Besgen, P.; Galinski, A.; Summer, B.; Kawakami, Y.; Wollenberg, A.; Dornmair, K.; Spannagl, M.; Ruzicka, T.; et al. Unopposed IL-36 Activity Promotes Clonal CD4+ T-Cell Responses with IL-17A Production in Generalized Pustular Psoriasis. J. Invest Dermatol. 2018, 138, 1338–1347. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Luo, Q.; Cheng, Y.; Wen, X.; Liu, J. An update on genetic basis of generalized pustular psoriasis (Review). Int. J. Mol. Med. 2021, 47, 118. [Google Scholar] [CrossRef]
- Karamfilov, T.; Wollina, U. Juvenile generalized pustular psoriasis. Acta Derm. Venereol. 1998, 78, 220. [Google Scholar]
- Brenner, M.; Molin, S.; Ruebsam, K.; Weisenseel, P.; Ruzicka, T.; Prinz, J.C. Generalized pustular psoriasis induced by systemic glucocorticosteroids: Four cases and recommendations for treatment. Br. J. Dermatol. 2009, 16, 964–966. [Google Scholar] [CrossRef]
- Iizuka, H.; Takahashi, H.; Ishida-Yamamoto, A. Pathophysiology of generalized pustular psoriasis. Arch. Dermatol. Res. 2003, 295, S55–S59. [Google Scholar] [CrossRef]
- Bachelez, H. Pustular psoriasis and related pustular skin diseases. Br. J. Dermatol. 2018, 178, 614–618. [Google Scholar] [CrossRef]
- Lau, B.W.; Lim, D.Z.; Capon, F.; Barker, J.N.; Choon, S.E. Juvenile generalized pustular psoriasis is a chronic recalcitrant disease: An analysis of 27 patients seen in a tertiary hospital in Johor, Malaysia. Int. J. Dermatol. 2017, 56, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, R.J.; Cobb, C.B.C.; Telang, G.H.; Firoz, E.F. New-onset pustular psoriasis in the setting of severe acute respiratory syndrome coronavirus 2 infection causing coronavirus disease 2019. JAAD Case Rep. 2020, 6, 1360–1362. [Google Scholar] [CrossRef]
- Onsun, N.; Kaya, G.; Işık, B.G.; Güneş, B. A generalized pustular psoriasis flare after CoronaVac COVID-19 vaccination: Case report. Health Promot. Perspect. 2021, 11, 261–262. [Google Scholar] [CrossRef]
- Guerreiro de Moura, C.A.; de Assis, L.H.; Góes, P.; Rosa, F.; Nunes, V.; Gusmão, Í.M.; Cruz, C.M. A Case of Acute Generalized Pustular Psoriasis of von Zumbusch Triggered by Hypocalcemia. Case Rep. Dermatol. 2015, 7, 345–351. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Vaughn, A.R.; Murase, J.E. Pustular psoriasis of pregnancy: Current perspectives. Int. J. Women’s Health 2018, 10, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Hay, R.A.; Pan, J.Y. Paradoxical flare of pustular psoriasis triggered by ustekinumab, which responded to adalimumab therapy. Clin. Exp. Dermatol. 2014, 39, 751–752. [Google Scholar] [CrossRef]
- Dogra, S.; Bishnoi, A.; Narang, T.; Handa, S. Secukinumab-induced paradoxical pustular psoriasis. Clin. Exp. Dermatol. 2019, 44, 72–73. [Google Scholar] [CrossRef] [Green Version]
- Keerthi, S.; Rangaraj, M.; Karthikeyan, K. Telmisartan aggravates pustular psoriasis. J. Pharmacol. Pharmacother. 2015, 6, 107–109. [Google Scholar]
- Brunasso, A.M.; Laimer, M.; Massone, C. Paradoxical reactions to targeted biological treatments: A way to treat and trigger? Acta Derm. Venereol. 2010, 90, 183–185. [Google Scholar] [CrossRef]
- Puig, L. Paradoxical Reactions: Anti-Tumor Necrosis Factor Alpha Agents, Ustekinumab, Secukinumab, Ixekizumab, and Others. Curr. Probl. Dermatol. 2018, 53, 49–63. [Google Scholar]
- Akiyama, T.; Seishima, M.; Watanabe, H.; Nakatani, A.; Mori, S.; Kitajima, Y. The relationships of onset and exacerbation of pustulosis palmaris et plantaris to smoking and focal infections. J. Dermatol. 1995, 22, 930–934. [Google Scholar] [CrossRef]
- Ammoury, A.; El Sayed, F.; Dhaybi, R.; Bazex, J. Palmoplantar pustulosis should not be considered as a variant of psoriasis. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 392–393. [Google Scholar] [CrossRef]
- Yamamoto, T. Extra-palmoplantar lesions associated with palmoplantar pustulosis. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 1227–1232. [Google Scholar] [CrossRef]
- Saez-Rodriguez, M.; Noda-Cabrera, A.; Alvarez-Tejera, S.; Guimerá-Martín-Neda, F.; Dorta-Alom, S.; Escoda-García, M.; Fagundo-González, E.; Sánchez-González, R.; García-Montelongo, R.; García-Bustínduy, M. The role of psychological factors in palmoplantar pustulosis. J. Eur. Acad. Dermatol. Venereol. 2002, 16, 325–327. [Google Scholar] [CrossRef]
- Yerushalmi, J.; Grunwald, M.H.; Hallel-Halevy, D.; Avinoach, I.; Halevy, S. Chronic pustular eruption of the thumbs. Diagnosis: Acrodermatitis continua of Hallopeau (ACH). Arch. Dermatol. 2000, 136, 925–930. [Google Scholar] [CrossRef]
- Rosenberg, B.E.; Strober, B.E. Acrodermatitis continua. Dermatol. Online J. 2004, 10, 9. [Google Scholar] [CrossRef]
- Boehner, A.; Navarini, A.A.; Eyerich, K. Generalized pustular psoriasis—a model disease for specific targeted immunotherapy, systematic review. Exp. Dermatol. 2018, 27, 1067–1077. [Google Scholar] [CrossRef]
- Roth, M.M. Pregnancy dermatoses: Diagnosis, management, and controversies. Am. J. Clin. Dermatol. 2011, 12, 25–41. [Google Scholar] [CrossRef]
- Chang, S.E.; Kim, H.H.; Choi, J.H.; Sung, K.J.; Moon, K.C.; Koh, J.K. Impetigo herpetiformis followed by generalized pustular psoriasis: More evidence of same disease entity. Int. J. Dermatol. 2003, 42, 754–755. [Google Scholar]
- Murrieta-Coxca, J.M.; Rodríguez-Martínez, S.; Cancino-Diaz, M.E.; Markert, U.R.; Favaro, R.R.; Morales-Prieto, D.M. IL-36 Cytokines: Regulators of Inflammatory Responses and Their Emerging Role in Immunology of Reproduction. Int. J. Mol. Sci. 2019, 20, 1649. [Google Scholar] [CrossRef] [Green Version]
- Takeo, N.; Fujiwara, S.; Sakai, T.; Saito-Shono, T.; Ishikawa, K.; Hatano, Y. Hereditary lactate dehydrogenase M-subunit deficiency with late-developing pustular psoriasis-like lesions. J. Dermatol. 2016, 43, 1429–1432. [Google Scholar] [CrossRef] [Green Version]
- Catharino, A.; Daiha, E.; Carvalho, C.; Martinez, D.; Lima, R.B.; D’Acri, A.; Martins, C.J.; Lupi, O. Possible correlations between annular pustular psoriasis and Noonan syndrome. J. Eur. Acad. Dermatol. Venereol. 2016, 30, e195–e196. [Google Scholar] [CrossRef]
- Van Nuffel, E.; Schmitt, A.; Afonina, I.S.; Schulze-Osthoff, K.; Beyaert, R.; Hailfinger, S. CARD14-Mediated Activation of Paracaspase MALT1 in Keratinocytes: Implications for Psoriasis. J. Invest Dermatol. 2017, 137, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Neuhauser, R.; Eyerich, K.; Boehner, A. Generalized pustular psoriasis-Dawn of a new era in targeted immunotherapy. Exp. Dermatol. 2020, 29, 1088–1096. [Google Scholar] [CrossRef]
- Mahil, S.K.; Twelves, S.; Farkas, K.; Setta-Kaffetzi, N.; Burden, A.D.; Gach, J.E.; Irvine, A.D.; Képíró, L.; Mockenhaupt, M.; Oon, H.H.; et al. AP1S3 Mutations Cause Skin Autoinflammation by Disrupting Keratinocyte Autophagy and Up-Regulating IL-36 Production. J. Invest Dermatol. 2016, 136, 2251–2259. [Google Scholar] [CrossRef]
- Gurevich, I.; Zhang, C.; Francis, N.; Aneskievich, B.J. TNIP1, a retinoic acid receptor corepressor and A20-binding inhibitor of NF-κB, distributes to both nuclear and cytoplasmic locations. J. Histochem. Cytochem. 2011, 59, 1101–1112. [Google Scholar] [CrossRef] [Green Version]
- Kargapolova, Y.; Geißen, S.; Zheng, R.; Baldus, S.; Winkels, H.; Adam, M. The Enzymatic and Non-Enzymatic Function of Myeloperoxidase (MPO) in Inflammatory Communication. Antioxidants 2021, 10, 562. [Google Scholar] [CrossRef]
- Liu, Z.J.; Tian, Y.T.; Shi, B.Y.; Zhou, Y.; Jia, X.S. Association between mutation of interleukin 36 receptor antagonist and generalized pustular psoriasis: A PRISMA-compliant systematic review and meta-analysis. Medicine 2020, 99, e23068. [Google Scholar] [CrossRef]
- Mössner, R.; Wilsmann-Theis, D.; Oji, V.; Gkogkolou, P.; Löhr, S.; Schulz, P.; Körber, A.; Prinz, J.C.; Renner, R.; Schäkel, K.; et al. The genetic basis for most patients with pustular skin disease remains elusive. Br. J. Dermatol. 2018, 178, 740–748. [Google Scholar] [CrossRef] [Green Version]
- Marrakchi, S.; Guigue, P.; Renshaw, B.R.; Puel, A.; Pei, X.Y.; Fraitag, S.; Zribi, J.; Bal, E.; Cluzeau, C.; Chrabieh, M.; et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 2011, 365, 620–628. [Google Scholar] [CrossRef]
- Liang, J.; Huang, P.; Li, H.; Zhang, J.; Ni, C.; Wang, Y.; Shen, J.; Li, C.; Kang, L.; Chen, J.; et al. Mutations in IL36RN are associated with geographic tongue. Hum. Genet. 2017, 136, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, M.; Rokunohe, D.; Kimura, A.; Takahashi, M.; Korekawa, A.; Nakajima, K.; Nakano, H.; Yokoyama, M.; Tanaka, K.; Yokoyama, Y.; et al. Significance of IL36RN mutation analyses in the management of impetigo herpetiformis: A case report and review of published cases. J. Dermatol. 2021, 48, 699–702. [Google Scholar] [CrossRef]
- Fujii, K.; Takahashi, T.; Matsuyama, K.; Takahashi, M.; Korekawa, A.; Nakajima, K.; Nakano, H.; Yokoyama, M.; Tanaka, K.; Yokoyama, Y.; et al. Impetigo herpetiformis with a CARD14 Thr79Ile variant successfully treated with granulocyte and monocyte adsorption apheresis. J. Dermatol. 2020, 47, e84–e85. [Google Scholar] [CrossRef]
- Akiyama, M.; Takeichi, T.; McGrath, J.A.; Sugiura, K. Autoinflammatory keratinization diseases: An emerging concept encompassing various inflammatory keratinization disorders of the skin. J. Dermatol. Sci. 2018, 90, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Setta-Kaffetzi, N.; Simpson, M.A.; Navarini, A.A.; Patel, V.M.; Lu, H.C.; Allen, M.H.; Duckworth, M.; Bachelez, H.; Burden, A.D.; Choon, S.E.; et al. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking. Am. J. Hum. Genet. 2014, 94, 790–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, S.; Sticht, H.; Wilsmann-Theis, D.; Gerschütz, A.; Wolf, K.; Löhr, S.; Haskamp, S.; Frey, B.; Hahn, M.; Ekici, A.B.; et al. Rare Loss-of-Function Mutation in SERPINA3 in Generalized Pustular Psoriasis. J. Invest Dermatol. 2020, 140, 1451–1455. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, Y.; Zhang, Z.; Lin, J.; Chen, G.; Han, L.; Fang, X.U.; Huang, Q.; Xu, J. Identification of Two Loci Associated with Generalized Pustular Psoriasis. J. Invest Dermatol. 2015, 135, 2132–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.W.; Wang, Y.; Alateng, C.; Li, H.B.; Bai, Y.H.; Lyu, X.X.; Wu, R. Tumor Necrosis Factor-alpha Induced Protein 3 Interacting Protein 1 Gene Polymorphisms and Pustular Psoriasis in Chinese Han Population. Chin. Med. J. 2016, 129, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Vergnano, M.; Mockenhaupt, M.; Benzian-Olsson, N.; Paulmann, M.; Grys, K.; Mahil, S.K.; Chaloner, C.; Barbosa, I.A.; August, S.; Burden, A.D.; et al. Loss-of-Function Myeloperoxidase Mutations Are Associated with Increased Neutrophil Counts and Pustular Skin Disease. Am. J. Hum. Genet. 2020, 107, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Guo, X.; Hu, B.; Liu, J.; Zhao, S.; Xu, Z.; Zhang, N.; He, L.; Liu, Y.; Liu, L.; et al. Generalized Pustular Psoriasis in Patients with Interferon Gamma (IFN-γ) Receptor Deficiency and Mycobacterial Infection. J. Clin. Immunol. 2021, 41, 829–833. [Google Scholar] [CrossRef]
- Asumalahti, K.; Ameen, M.; Suomela, S.; Hagforsen, E.; Michaëlsson, G.; Evans, J.; Munro, M.; Veal, C.; Allen, M.; Leman, J.; et al. Genetic analysis of PSORS1 distinguishes guttate psoriasis and palmoplantar pustulosis. J. Invest Dermatol. 2003, 120, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Mössner, R.; Kingo, K.; Kleensang, A.; Krüger, U.; König, I.R.; Silm, H.; Westphal, G.A.; Reich, K. Association of TNF -238 and -308 promoter polymorphisms with psoriasis vulgaris and psoriatic arthritis but not with pustulosis palmoplantaris. J. Invest Dermatol. 2005, 124, 282–284. [Google Scholar] [CrossRef] [Green Version]
- Mössner, R.; Frambach, Y.; Wilsmann-Theis, D.; Löhr, S.; Jacobi, A.; Weyergraf, A.; Müller, M.; Philipp, S.; Renner, R.; Traupe, H.; et al. Palmoplantar Pustular Psoriasis Is Associated with Missense Variants in CARD14, but Not with Loss-of-Function Mutations in IL36RN in European Patients. J. Invest Dermatol. 2015, 135, 2538–2541. [Google Scholar] [CrossRef] [Green Version]
- Bissonnette, R.; Nigen, S.; Langley, R.G.; Lynde, C.W.; Tan, J.; Fuentes-Duculan, J.; Krueger, J.G. Increased expression of IL-17A and limited involvement of IL-23 in patients with palmo-plantar (PP) pustular psoriasis or PP pustulosis; results from a randomised controlled trial. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1298–1305. [Google Scholar] [CrossRef]
- Hagforsen, E.; Hedstrand, H.; Nyberg, F.; Michaelsson, G. Novel findings of Langerhans cells and interleukin-17 expression in relation to the acrosyringium and pustule in palmoplantar pustulosis. Br. J. Dermatol. 2010, 163, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Kaneko, T.; Nakatsuji, T.; Kameda, K.; Okazaki, H.; Dai, X.; Hanakawa, Y.; Tohyama, M.; Ishida-Yamamoto, A.; Sayama, K. Vesicular LL-37 contributes to inflammation of the lesional skin of palmoplantar pustulosis. PLoS ONE 2014, 9, e110677. [Google Scholar]
- Eriksson, M.O.; Hagforsen, E.; Lundin, I.P.; Michaelsson, G. Palmoplantar pustulosis: A clinical and immunohistological study. Br. J. Dermatol. 1998, 138, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Hagforsen, E.; Morhenn, V.; Ishida-Yamamoto, A.; Iizuka, H. Patients with palmoplantar pustulosis have increased IL-17 and IL-22 levels both in the lesion and serum. Exp. Dermatol. 2011, 20, 845–847. [Google Scholar] [CrossRef]
- Hagforsen, E.; Edvinsson, M.; Nordlind, K.; Michaelsson, G. Expression of nicotinic receptors in the skin of patients with palmoplantar pustulosis. Br. J. Dermatol. 2002, 146, 383–391. [Google Scholar] [CrossRef]
- Michaelsson, G.; Gustafsson, K.; Hagforsen, E. The psoriasis variant palmoplantar pustulosis can be improved after cessation of smoking. J. Am. Acad. Dermatol. 2006, 54, 737–738. [Google Scholar] [CrossRef]
- Menter, A.; Van Voorhees, A.S.; Hsu, S. Pustular Psoriasis: A Narrative Review of Recent Developments in Pathophysiology and Therapeutic Options. Dermatol. Ther. 2021, 1–13. [Google Scholar] [CrossRef]
- Robinson, A.; Van Voorhees, A.S.; Hsu, S.; Korman, N.J.; Lebwohl, M.G.; Bebo, B.F., Jr.; Kalb, R.E. Treatment of pustular psoriasis: From the Medical Board of the National Psoriasis Foundation. J. Am. Acad. Dermatol. 2012, 67, 279–288. [Google Scholar] [CrossRef]
- Bachelez, H.; Choon, S.E.; Marrakchi, S.; Burden, A.D.; Tsai, T.F.; Morita, A.; Turki, H.; Hall, D.B.; Shear, M.; Baum, P.; et al. Inhibition of the Interleukin-36 Pathway for the Treatment of Generalized Pustular Psoriasis. N. Engl. J. Med. 2019, 380, 981–983. [Google Scholar] [CrossRef]
- Mrowietz, U.; Burden, A.D.; Pinter, A.; Reich, K.; Schäkel, K.; Baum, P.; Datsenko, Y.; Deng, H.; Padula, S.J.; Thoma, C.; et al. Spesolimab, an Anti-Interleukin-36 Receptor Antibody, in Patients with Palmoplantar Pustulosis: Results of a Phase IIa, Multicenter, Double-Blind, Randomized, Placebo-Controlled Pilot Study. Dermatol. Ther. 2021, 11, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Morita, A.; Yamazaki, F.; Matsuyama, T.; Takahashi, K.; Arai, S.; Asahina, A.; Imafuku, S.; Nakagawa, H.; Hasegawa, Y.; Williams, D.; et al. Adalimumab treatment in Japanese patients with generalized pustular psoriasis: Results of an open-label phase 3 study. J. Dermatol. 2018, 45, 1371–1380. [Google Scholar] [CrossRef] [Green Version]
- Torii, H.; Nakano, M.; Yano, T.; Kondo, K.; Nakagawa, H.; SPREAD Study Group. Efficacy and safety of dose escalation of infliximab therapy in Japanese patients with psoriasis: Results of the SPREAD study. J. Dermatol. 2017, 44, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Imafuku, S.; Honma, M.; Okubo, Y.; Komine, M.; Ohtsuki, M.; Morita, A.; Seko, N.; Kawashima, N.; Ito, S.; Shima, T.; et al. Efficacy and safety of secukinumab in patients with generalized pustular psoriasis: A 52-week analysis from phase III open-label multicenter Japanese study. J. Dermatol. 2016, 43, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Mrowietz, U.; Bachelez, H.; Burden, A.D.; Rissler, M.; Sieder, C.; Orsenigo, R.; Jagiello, P. Secukinumab for moderate-to-severe palmoplantar pustular psoriasis: Results of the 2PRECISE study. J. Am. Acad. Dermatol. 2019, 80, 1344–1352. [Google Scholar] [CrossRef] [Green Version]
- Mrowietz, U.; Bachelez, H.; Burden, A.D.; Rissler, M.; Sieder, C.; Orsenigo, R.; Jagiello, P. Efficacy and safety of secukinumab in moderate to severe palmoplantar pustular psoriasis over 148 weeks: Extension of the 2PRECISE study. J. Am. Acad. Dermatol. 2021, 84, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Saeki, H.; Nakagawa, H.; Nakajo, K.; Ishii, T.; Morisaki, Y.; Aoki, T.; Cameron, G.S.; Osuntokun, O.O.; Japanese Ixekizumab Study Group. Efficacy and safety of ixekizumab treatment for Japanese patients with moderate to severe plaque psoriasis, erythrodermic psoriasis and generalized pustular psoriasis: Results from a 52-week, open-label, phase 3 study (UNCOVER-J). J. Dermatol. 2017, 44, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okubo, Y.; Mabuchi, T.; Iwatsuki, K.; Elmaraghy, H.; Torisu-Itakura, H.; Morisaki, Y.; Nakajo, K. Long-term efficacy and safety of ixekizumab in Japanese patients with erythrodermic or generalized pustular psoriasis: Subgroup analyses of an open-label, phase 3 study (UNCOVER-J). J. Eur. Acad. Dermatol. Venereol. 2019, 33, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, K.; Nakagawa, H.; Kubo, Y.; Ootaki, K. Japanese Brodalumab Study Group. Efficacy and safety of brodalumab in patients with generalized pustular psoriasis and psoriatic erythroderma: Results from a 52-week, open-label study. Br. J. Dermatol. 2017, 176, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Sano, S.; Kubo, H.; Morishima, H.; Goto, R.; Zheng, R.; Nakagawa, H. Guselkumab, a human interleukin-23 monoclonal antibody in Japanese patients with generalized pustular psoriasis and erythrodermic psoriasis: Efficacy and safety analyses of a 52-week, phase 3, multicenter, open-label study. J. Dermatol. 2018, 45, 529–539. [Google Scholar] [CrossRef]
- Terui, T.; Kobayashi, S.; Okubo, Y.; Murakami, M.; Hirose, K.; Kubo, H. Efficacy and Safety of Guselkumab, an Anti-interleukin 23 Monoclonal Antibody, for Palmoplantar Pustulosis: A Randomized Clinical Trial. JAMA Dermatol. 2018, 154, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Terui, T.; Kobayashi, S.; Okubo, Y.; Murakami, M.; Zheng, R.; Morishima, H.; Goto, R.; Kimura, T. Efficacy and Safety of Guselkumab in Japanese Patients With Palmoplantar Pustulosis: A Phase 3 Randomized Clinical Trial. JAMA Dermatol. 2019, 155, 1153–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okubo, Y.; Morishima, H.; Zheng, R.; Terui, T. Sustained efficacy and safety of guselkumab in patients with palmoplantar pustulosis through 1.5 years in a randomized phase 3 study. J. Dermatol. 2021. [Google Scholar] [CrossRef]
- Cro, S.; Cornelius, V.R.; Pink, A.E.; Wilson, R.; Pushpa-Rajah, A.; Patel, P.; Abdul-Wahab, A.; August, S.; Azad, J.; APRICOT Study Group. Anakinra for palmoplantar pustulosis: Results from a randomized, double-blind, multicentre, two-staged, adaptive placebo-controlled trial (APRICOT). Br. J. Dermatol. 2021. [Google Scholar] [CrossRef]
- Peng, C.; Hu, Y.; Chen, W.; Ding, Y.; Li, X.; Yu, N.; Lu, J.; Shi, Y. A randomized prospective study of different dose regimens using the 308-nm excimer laser in the treatment of palmoplantar pustulosis. Dermatol Ther. 2021, 34, e15079. [Google Scholar] [CrossRef]
- Su, L.N.; Xu, X.; Tang, L.; Yu, N.; Ding, Y.F. UVA1 phototherapy in the treatment of palmoplantar pustulosis: A pilot prospective study. Lasers Med. Sci. 2016, 31, 1641–1643. [Google Scholar] [CrossRef]
- Su, L.N.; Ren, J.; Cheng, S.M.; Liu, J.L.; Ding, Y.F.; Zhu, N.W. UVA1 vs. narrowband UVB phototherapy in the treatment of palmoplantar pustulosis: A pilot randomized controlled study. Lasers Med. Sci. 2017, 32, 1819–1823. [Google Scholar] [CrossRef] [PubMed]
- Aichelburg, M.C.; Pinkowicz, A.; Holzer, G.; Radakovic, S.; Sator, P.G.; Tanew, A. Short-and long-term efficacy of fumaric acid esters or acitretin in combination with a 12-week course of PUVA in the treatment of palmoplantar pustulosis: Results from a prospective randomized trial. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e198–e200. [Google Scholar] [CrossRef]
- Reich, K.; Graff, O.; Mehta, N. Oral alitretinoin treatment in patients with palmoplantar pustulosis inadequately responding to standard topical treatment: A randomized phase II study. Br. J. Dermatol. 2016, 174, 1277–1281. [Google Scholar] [CrossRef]
- Wilsmann-Theis, D.; Kromer, C.; Gerdes, S.; Linker, C.; Magnolo, N.; Sabat, R.; Reich, K.; Mössner, R. A multicentre open-label study of apremilast in palmoplantar pustulosis (APLANTUS). J. Eur. Acad. Dermatol. Venereol. 2021, 35, 2045–2050. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Cao, Y.; Li, L.; Li, F.; Li, Y.; Xiong, D.; Wu, X.; Zhang, W.; Zeng, X. Tofacitinib for the Treatment of Nail Lesions and Palmoplantar Pustulosis in Synovitis, Acne, Pustulosis, Hyperostosis, and Osteitis Syndrome. JAMA Dermatol. 2021, 157, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhao, Y.; Tao, W.; Wu, Z.; Li, C.; Li, L. A single cohort, open-label study of the efficacy of pamidronate for palmoplantar pustulosis in synovitis, acne, pustulosis, hyperostosis and osteitis (SAPHO) syndrome. Clin. Exp. Rheumatol. 2020, 38, 1263–1264. [Google Scholar]
- Umezawa, Y.; Nakagawa, H.; Tamaki, K. Phase III clinical study of maxacalcitol ointment in patients with palmoplantar pustulosis: A randomized, double-blind, placebo-controlled trial. J. Dermatol. 2016, 43, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Muro, M.; Kawakami, H.; Matsumoto, Y.; Abe, N.; Tsuboi, R.; Okubo, Y. Topical combination therapy with vitamin D3 and corticosteroid ointment for palmoplantar pustulosis: A prospective, randomized, left-right comparison study. J. Dermatolog. Treat. 2016, 27, 51–53. [Google Scholar] [CrossRef]
- Kearns, D.G.; Chat, V.S.; Zang, P.D.; Han, G.; Wu, J.J. Review of treatments for generalized pustular psoriasis. J. Dermatolog. Treat. 2021, 32, 492–494. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.L.; Georgakopoulos, J.R.; Ighani, A.; Yeung, J. Systemic Monotherapy Treatments for Generalized Pustular Psoriasis: A Systematic Review. J. Cutan. Med. Surg. 2018, 22, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Falto-Aizpurua, L.A.; Martin-Garcia, R.F.; Carrasquillo, O.Y.; Nevares-Pomales, O.W.; Sánchez-Flores, X.; Lorenzo-Rios, D. Biological therapy for pustular psoriasis: A systematic review. Int. J. Dermatol. 2020, 59, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Sheu, J.S.; Divito, S.J.; Enamandram, M.; Merola, J.F. Dapsone therapy for pustular psoriasis: Case series and review of the literature. Dermatology 2016, 232, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, H.; Konishi, T.; Kumazawa, R.; Matsui, H.; Shimizu, S.; Fushimi, K.; Matsue, H.; Yasunaga, H. Treatments and outcomes of generalized pustular psoriasis: A cohort of 1516 patients in a nationwide inpatient database in Japan. J. Am. Acad. Dermatol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, A.R.F.; DeRuyter, B.K.; Stratman, E.J. Psoriasis Flares Following Systemic Glucocorticoid Exposure in Patients with a History of Psoriasis. JAMA Dermatol. 2021, 157, 198–201. [Google Scholar] [CrossRef]
- Viguier, M.; Aubin, F.; Delaporte, E.; Pagès, C.; Paul, C.; Beylot-Barry, M.; Goujon, C.; Rybojad, M.; Bachelez, H.; Groupe de Recherche sur le Psoriasis de la Société Française de Dermatologie. Efficacy and safety of tumor necrosis factor inhibitors in acute generalized pustular psoriasis. Arch. Dermatol. 2012, 148, 1423–1425. [Google Scholar] [CrossRef] [Green Version]
- Skendros, P.; Papagoras, C.; Lefaki, I.; Giatromanolaki, A.; Kotsianidis, I.; Speletas, M.; Bocly, V.; Theodorou, I.; Dalla, V.; Ritis, K. Successful response in a case of severe pustular psoriasis after interleukin-1beta inhibition. Br. J. Dermatol. 2017, 176, 212–215. [Google Scholar] [CrossRef]
- Hüffmeier, U.; Wätzold, M.; Mohr, J.; Schön, M.P.; Mössner, R. Successful therapy with anakinra in a patient with generalized pustular psoriasis carrying IL36RN mutations. Br. J. Dermatol. 2014, 170, 202–204. [Google Scholar] [CrossRef]
- Mansouri, B.; Richards, L.; Menter, A. Treatment of two patients with generalized pustular psoriasis with the interleukin-1β inhibitor gevokizumab. Br. J. Dermatol. 2015, 173, 239–241. [Google Scholar] [CrossRef]
- Plachouri, K.M.; Chourdakis, V.; Georgiou, S. The role of IL-17 and IL-17 receptor inhibitors in the management of generalized pustular psoriasis. Drugs Today 2019, 55, 587–593. [Google Scholar] [CrossRef]
- Wang, W.M.; Jin, H.Z. Biologics in the treatment of pustular psoriasis. Expert Opin. Drug Saf. 2020, 19, 969–980. [Google Scholar] [CrossRef]
- Kromer, C.; Loewe, E.; Schaarschmidt, M.L.; Pinter, A.; Gerdes, S.; Herr, R.; Poortinga, S.; Moessner, R.; Wilsmann-Theis, D. Drug survival in the treatment of generalized pustular psoriasis: A retrospective multicenter study. Dermatol. Ther. 2021, 34, e14814. [Google Scholar] [CrossRef]
- Ratnarajah, K.; Jfri, A.; Litvinov, I.V.; Netchiporouk, E. Spesolimab: A Novel Treatment for Pustular Psoriasis. J. Cutan. Med. Surg. 2020, 24, 199–200. [Google Scholar] [CrossRef] [PubMed]
- Choon, S.E.; Lebwohl, M.G.; Marrakchi, S.; Burden, A.D.; Tsai, T.F.; Morita, A.; Navarini, A.A.; Zheng, M.; Xu, J.; Turki, H.; et al. Study protocol of the global Effisayil 1 Phase II, multicentre, randomised, double-blind, placebo-controlled trial of spesolimab in patients with generalized pustular psoriasis presenting with an acute flare. BMJ Open 2021, 11, e043666. [Google Scholar] [CrossRef]
- Mizutani, Y.; Fujii, K.; Kawamura, M.; Inoue, M.; Mizutani, Y.H.; Matsuyama, K.; Doi, T.; Nagaya, S.; Seishima, M. Intensive granulocyte and monocyte adsorption apheresis for generalized pustular psoriasis. J. Dermatol. 2020, 47, 1326–1329. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.W.; Tsai, T.F. Pharmacological Management of Pediatric Pustular Psoriasis. Paediatr. Drugs 2020, 22, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Zhang, X.; Peng, M.; Wang, H.; Meng, Y.; Chen, Y. A case of impetigo herpetiformis in which termination of pregnancy was required. J. Int. Med. Res. 2020, 48, 300060520933811. [Google Scholar] [CrossRef]
- Fukushima, H.; Iwata, Y.; Arima, M.; Tanaka, Y.; Sugiura, K. Efficacy and safety of treatment with anti-tumor necrosis factor-α drugs for severe impetigo herpetiformis. J. Dermatol. 2021, 48, 207–210. [Google Scholar] [CrossRef]
- Benjegerdes, K.E.; Hyde, K.; Kivelevitch, D.; Mansouri, B. Pustular psoriasis: Pathophysiology and current treatment perspectives. Psoriasis: Targets Ther. 2016, 6, 131–144. [Google Scholar]
- Obeid, G.; Do, G.; Kirby, L.; Hughes, C.; Sbidian, E.; Le Cleach, L. Interventions for chronic palmoplantar pustulosis: Abridged Cochrane systematic review and GRADE assessments. Br. J. Dermatol. 2021, 184, 1023–1032. [Google Scholar] [CrossRef]
- Ständer, S.; Syring, F.; Ludwig, R.J.; Thaçi, D. Successful Treatment of Refractory Palmoplantar Pustular Psoriasis with Apremilast: A Case Series. Front. Med. 2020, 7, 543944. [Google Scholar] [CrossRef]
- Pinter, A.; Wilsmann-Theis, D.; Peitsch, W.K.; Mössner, R. Interleukin-17 receptor a blockade with brodalumab in palmoplantar pustular psoriasis: Report on four cases. J. Dermatol. 2019, 46, 426–430. [Google Scholar] [CrossRef] [PubMed]
- AnaptysBio Reports Imsidolimab POPLAR Phase 2 Clinical Trial in Moderate-to-Severe Palmoplantar Pustulosis (PPP) Did Not Meet Primary Endpoint. Available online: https://ir.anaptysbio.com/news-releases/news-release-details/anaptysbio-reports-imsidolimab-poplar-phase-2-clinical-trial (accessed on 1 October 2021).
- Kurihara, Y.; Nakano, K.; Eto, A.; Furue, M. Successful treatment of acrodermatitis continua of Hallopeau with apremilast. J. Dermatol. 2019, 46, e370–e371. [Google Scholar] [CrossRef] [PubMed]
- Han, G.M.; Yang, W.S.; Yang, B. Inhibition of Progression of Acrodermatitis Continua of Hallopeau with Baricitinib. JAMA Dermatol. 2021, 157, 466–468. [Google Scholar] [CrossRef]
- Kromer, C.; Loewe, E.; Schaarschmidt, M.L.; Pinter, A.; Gerdes, S.; Celis, D.; Poortinga, S.; Wilsmann-Theis, D.; Mössner, R. Treatment of acrodermatitis continua of Hallopeau: A case series of 39 patients. J. Dermatol. 2020, 47, 989–997. [Google Scholar] [CrossRef] [PubMed]
Main features of AGEP | Rare disorder attributed mostly to drugs (infections, hypersensitivity to mercury and spider bite have sporadically been implicated) Sudden occurrence of a generalized skin rash with sterile nonfollicular pinhead-sized pustules on an oedematous erythema, often associated with systemic symptoms, including fever, leucocytosis and neutrophilia Spontaneous resolution of pustules within a few days followed by pin-point desquamation Mild, nonerosive mucous membrane involvement (mostly oral) in about 20% of cases |
Factors favoring the diagnosis of AGEP over GPP | Absence of family/personal history of psoriasis (however, history of psoriasis possible in AGEP) Recent drug administration (very frequent in AGEP, possible but less frequent in GPP, that can also be drug-elicited) Predominance of lesions in the folds, especially at the onset Shorter duration of fever and pustules Spontaneous rapid resolution (within 15 days after withdrawal of the culprit drugs) and nonrecurrent tendency Arthritis (rare in AGEP, affecting about 30% of cases in GPP) Peripheral eosinophilia (present in about one-third of cases and usually mild) Histopathological features:
|
Gene Involved | Protein Encoded | Main Functions of the Protein |
---|---|---|
IL-36RN | IL-36Ra | Inhibition of the proinflammatory effects of IL-36, competing with the agonistic IL-36 cytokines for the attachment to IL-36R |
CARD14 | CARD14 (CARMA2) Membrane-associated guanylate kinase scaffolding protein, predominantly expressed in keratinocytes | NF-kB and MAPK activation through the formation of a signaling complex with BCL10 and MALT1 |
AP1S3 | σ1C subunit of the AP-1 complex | AP-1 complex is involved in clathrin-mediated vesicular trafficking between the trans-Golgi and the endosomes, autophagosome formation, Toll-like receptor homeostasis and keratinocyte autophagy |
MPO | Myeloperoxidase Cationic heme-containing enzyme found in neutrophil azurophil granules | Essential to the antimicrobial activity of neutrophils, it is involved in reactive oxygen species production and phagocytosis, as well as in the generation of neutrophil extracellular traps |
SERPINA3 | Serpin A3 Serine protease inhibitor | Interaction with the neutrophil protease cathepsin G and other proteases to inhibit their activity |
TNIP1 | Tumor necrosis factor-alpha induced protein 3 interacting protein 1 | Interaction with zinc finger protein A20 to inhibit NF-κB signalling (other targets include the RARs-α and -γ, and peroxisome proliferator-activated receptors) |
Drug | References | Study Type (Randomization Ratio, If Applicable) | Identifier Number, If Applicable | Participants * | Details of Treatment (AT in Placebo-Controlled Studies) | Main Efficacy Results (Primary Outcome, If Applicable) |
---|---|---|---|---|---|---|
Spesolimab (anti-IL-36 receptor mAb) | [126] | Phase 1, proof-of-concept, OL, SA | ClinicalTrials.gov NCT02978690 | 7 patients with GPP flare | Single intravenous dose at 10 mg/kg | At week 4, GPPGA score of 0 or 1 (“clear” or “almost clear”) in all patients, and mean GPPASI improvement from baseline of 79.8% |
[127] | Phase 2a, DB, RPC (1:1:1) | ClinicalTrials.gov NCT03135548 | 59 PPP patients | 900 mg or 300 mg intravenously every 4 weeks at Day 1, 29, 57 and 85 | PPPASI50 response at week 16 in 31.6% in each of the two AT groups vs. 23.8% in the placebo group (N.S.) | |
Adalimumab (anti-TNF-alpha mAb) | [128] | Phase 3, OL, SA | ClinicalTrials.gov NCT02533375 | 10 Japanese GPP patients | 80 mg s.c. at week 0 followed by 40 mg every other week: last dose at week 50 (escalation to 80 mg every other week at week 8 or later, if necessary) | Clinical response [remission (TSS 0) or improvement (reduction of ≥1 point from a baseline TSS of 3 or ≥2 points from a baseline TSS of ≥4)] at week 16 in 70% (n = 10) |
Infliximab (anti-TNF-alpha mAb) | [129] | Phase 3, OL, SA SPREAD study | ClinicalTrials.gov NCT01680159 | 7 Japanese GPP patients with loss of efficacy to standard-dose maintenance therapy | Escalation to 10 mg/kg (intravenous infusion) every 8 weeks | Severity graded as mild in 71% and moderate in 29% at week 0, and mild in all patients at weeks 24 and 40 |
Secukinumab (anti-IL-17A mAb) | [130] | Phase 3, OL, SA | ClinicalTrials.gov NCT01952015 | 12 Japanese GPP patients | 150 mg s.c. at week 0, 1, 2, 3 and 4, and then every 4 weeks until week 52 (300 mg in 2 non-responders) | At week 16, treatment success in 83.3% (n = 10) [CGI of “very much improved” (n = 9) or “much improved” (n = 1)] |
[131] | Phase 3b, DB, RPC (1:1:1) 2PRECISE study | ClinicalTrials.gov NCT02008890 | 237 patients with moderate-to-severe PPPP | 300 mg or 150 mg s.c. at weeks 0, 1, 2, 3, and 4, and then every 4 weeks until week 52 | At week 16, PPPASI75 response in 26.6% of patients with high-dose AT, 17.5% with low-dose AT and 14.1% of patients who received placebo (N.S.) | |
[132] | Extension period for patients with meaningful clinical response after completion of the 2PRECISE study | ClinicalTrials.gov NCT02008890 | 94 PPPP patients in total | Extension of AT after week 52 up to 148 weeks | At week 148, PPPASI75 response rates increased in all groups, with similar levels for placebo/low-dose AT (75%), placebo/high-dose AT (77.8%), and initial high-dose AT (78.3%), and 100% responders in the initial low-dose AT group | |
Ixekizumab (anti-IL-17A mAb) | [133,134] | Phase 3, OL, SA UNCOVER-J study | ClinicalTrials.gov: NCT01624233 | 5 Japanese GPP patients | 160 mg at week 0, 80 mg every 2 weeks from week 2 to week 12, 80 mg every 4 weeks thereafter up to week 244 | GIS of “resolved” or “improved” in all patients from week 12 onward |
Brodalumab (anti-IL-17 receptor A mAb) | [135] | Phase 3, OL, SA | ClinicalTrials.gov NCT01782937 | 12 Japanese GPP patients | 140 mg s.c. at weeks 0, 1 and 2, and then every 2 weeks until week 52 (escalation to 210 mg at week 4 and beyond, if necessary) | CGI of “improved’ or ‘remission’ in 83.3% at week 12 and 91.7% at week 52 |
Guselkumab (anti-IL-23p19 mAb) | [136] | Phase 3, OL, SA | ClinicalTrials.gov NCT02343744 | 10 Japanese GPP patients (9 evaluable) | 50 mg s.c. at weeks 0, 4 and every 8 weeks until week 52 (beginning at week 20, escalation to 100 mg every 8 weeks, if necessary) | At week 16, treatment success in 77.8% [CGI of “very much improved” in 2 patients, “much improved” in 2, and “minimally improved” in 3 subjects) |
[137] | Phase 2, proof-of-concept, DB, RPC (1:1) | ClinicalTrials.gov NCT01845987 | 49 Japanese PPP patients | 200 mg s.c. at weeks 0 and 4 | Reduction in mean PPSI total score from baseline at week 16 −3.3 in the AT group vs. −1.8 in the placebo group (difference in LS mean, −1.5; 95% CI, −2.9 to −0.2; p = 0.03) | |
[138] | Phase 3, DB, RPC (1:1:1) | ClinicalTrials.gov NCT02641730 | 159 Japanese patients with refractory PPP | 100 mg or 200 mg s.c. at weeks 0, 4, and 12, and every 8 weeks thereafter | At week 16, LS mean change in PPPASI score from baseline −15.3 (p < 0.001) for the low-dose AT group and −11.7 (p = 0.02) for high-dose AT group vs. −7.6 for the placebo group | |
[139] | Extension period | ClinicalTrials.gov NCT02641730 | 133 patients completed the study at week 84 | Treatment until week 60. At week 16, re-randomization from the placebo group to AT 100 or 200 mg (1:1 ratio) | Continuous improvements in the PPPASI and PPSI total scores through week 60 and sustained in the observational phase across all treatment groups, including the placebo-crossover groups | |
Anakinra (recombinant IL-1 receptor antagonist) | [140] | Phase IV DB, RPC (1:1) APRICOT study | EudraCT 2015-003600-23 | 64 PPP patients | 100 mg/0.67 mL s.c. daily for 8 weeks | At week 8, mean difference in PPPASI -1.65 (95% CI −4.77 to 1.47) in favour of AT (but N.S.) |
308-nm Excimer laser | [141] | Randomized, comparative | - | 77 Chinese PPP patients | Three times weekly for 8 weeks, with different doses: low, medium or high (2-fold, 4-fold, or 6-fold of MED as initial dose, respectively) | Significant reduction of PPPASI score compared with the baseline in all groups, with a greater reduction in the high dose group |
UVA1 | [142] | Assessor-blinded, SA | - | 62 Chinese PPP patients | Three times weekly for up to 30 sessions | At 30 sessions, PPPASI50 and PPPASI75 responses in 90.3% and 72.6% of patients, respectively |
UVA1 or NB-UVB | [143] | Assessor-blinded, RC (random assignment according to a left-right randomization table) | - | 66 Chinese PPP patients | Three times weekly for up to 30 sessions | At the end of the treatment period, significant improvement of the PPPASI score compared with baseline in both groups (p < 0.05), and mean PPPASI reduction of 6.0 (SD 2.4) in the UVA1-treated group vs. 4.4 (SD 1.4) for NB-UVB (p < 0.05) |
FAE-PUVA or Re-PUVA | [144] | Assessor-blinded, RC (1:1) | Clinicaltrials.gov NCT00811005 | 21 PPP patients | Dimethylfumarate up to a 720 mg/day or acitretin 50 mg/day for 2 weeks, then addition of PUVA thrice weekly for 12 weeks or after achievement of the PPPASI90. In the maintenance 24-week phase, use of half of the last drug dose or until significant relapse, followed by another 24 weeks without any treatment | At the end of clearing phase, PPPASI90 response rates of 81.8% in the FAE-PUVA group and 90% in the Re-PUVA group (N.S.). After the maintenance phase, PPPASI90 rates of 90.9% in the FAE-PUVA arm and 70% in the Re-PUVA group (N.S.). During the follow-up period, PPPASI90 rates of 90.9% in the FAE-PUVA group and 50% in the Re-PUVA group (p = 0.038) |
Alitretinoin | [145] | Phase 2, DB, RPC (2:1) | Clinicaltrials.gov NCT01245140 | 33 patients with PPP refractory to topical therapy and standard skin care | 30 mg once daily for up to 24 weeks | Mean percentage change from baseline in PPPASI at week 24 (or last visit): −45.2 (SD 32.8) in the AT group vs. −44.6 (SD 45.9) in the placebo group (N.S.) |
Apremilast | [146] | Phase 2, OL, SA APLANTUS study | Clinicaltrials.gov NCT04572997 | 21 subjects with moderate-to-severe PPP | Treatment for 20 weeks (final dose of 30 mg twice daily, gradually increased from 10 mg/day) | Median PPPASI improvement at week 20 compared to baseline of 57.1% (p < 0.001) |
Tofacitinib | [147] | OL, SA, pilot study (primary endpoint: response of nail lesions) | ChiCTR1900025941 | 13 Asian patients with SAPHO syndrome accompanied by nail lesions and active PPP | 5 mg, twice daily, for 12 weeks | At week 12, median improvement in PPPASI score of 71% (p < 0 .001) |
Pamidronate disodium | [148] | OL, SA Assessment of PPP in a cohort of 30 patients with SAPHO syndrome | Clinicaltrials.gov NCT02544659 (original study in SAPHO syndrome) | 25 Chinese PPP patients with SAPHO syndrome | 1 mg/kg/day intravenously for 3 days at baseline and again 3 months later | PPPASI reduction > 50% in a total of 13 and 11 patients after the first and second treatment, respectively |
Maxacalcitol ointment | [149] | Phase 3, DB, RPC (1:1) | - | 188 Japanese patients with moderate-to-severe PPP | 2 applications per day for 8 weeks | Significant decrease in the total score of skin findings in the AT group vs. placebo at week 8 or at the last visit (p < 0.0001) |
Betamethasone butyrate propionate ointment alone or combined with maxacalcitol ointment | [150] | RC (left-right comparison) | - | 29 patients with PPP (27 evaluable) | Betamethasone ointment applied once daily or betamethasone ointment + maxalcitol ointment (both applied once daily) for 8 weeks | Improvement rates in skin symptoms at week 8 significantly higher with the combination therapy than with the monotherapy |
Status | Condition | Interventions | Phase | Participants | Study Type | Identifier Number |
---|---|---|---|---|---|---|
Recruiting | GPP | Spesolimab Placebo | 2 | 120 | RDB | NCT04399837 |
Recruiting | GPP | Spesolimab | 2 | 171 | OL | NCT03886246 |
Completed | GPP | Spesolimab Placebo | 2 | 53 | RDB | NCT03782792 |
Recruiting | PPP | Spesolimab | 2 | 500 | OL | NCT04493424 |
Completed | PPP | Spesolimab Placebo | 2 | 152 | RDB | NCT04015518 |
Active, not recruiting | PPP | Brodalumab Placebo | 3 | 120 | RDB | NCT04061252 |
Completed | GPP and various forms of psoriasis | Brodalumab | 3 | 155 | OL | NCT02052609 |
Completed | GPP and various forms of psoriasis | Brodalumab | 4 | 138 | OL | NCT04183881 |
Completed | GPP or EP | Risankizumab | 3 | 18 | OL | NCT03022045 |
Active, not recruiting | PPP | Risankizumab Placebo | 3 | 116 | RDB | NCT04451720 |
Active, not recruiting | PPP | Imsidolimab Placebo | 2 | 59 | RDB | NCT03633396 |
Completed | GPP | Imsidolimab | 2 | 8 | OL | NCT03619902 |
Completed | GPP or EP | Ixekizumab | 4 | 12 | OL | NCT03942042 |
Terminated | PPP or PPPP | Ustekinumab Placebo | 3 | 33 | RDB | NCT01091051 |
Completed | Pustular disorders, including PP | Anakinra | 2 | 18 | OL | NCT01794117 |
Completed | PPP | Alefacept | 2 | 15 | OL | NCT00301002 |
Completed | Palmoplantar psoriasis and PPPP | Infliximab | 3 | 23 | OL | NCT00686686 |
Recruiting | PP and various forms of psoriasis | Infliximab [infliximab biosimilar 3] | - | 100 | Observational | NCT03885089 |
Completed | Plaque psoriasis, GPP or EP | Certolizumab pegol Placebo | 2/3 | 127 | RDB | NCT03051217 |
Completed | PPP | Etanercept Placebo | 3 | 15 | RDB | NCT00353119 |
Recruiting | PPP and hidradenitis suppurativa | Recombinant anti-G-CSF receptor monoclonal antibody | 1 | 40 | OL | NCT03972280 |
Completed | PPP | RIST4721 Placebo | 2 | 35 | RDB | NCT03988335 |
Completed | PPP | Apremilast Placebo | 2 | 90 | RDB | NCT04057937 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genovese, G.; Moltrasio, C.; Cassano, N.; Maronese, C.A.; Vena, G.A.; Marzano, A.V. Pustular Psoriasis: From Pathophysiology to Treatment. Biomedicines 2021, 9, 1746. https://doi.org/10.3390/biomedicines9121746
Genovese G, Moltrasio C, Cassano N, Maronese CA, Vena GA, Marzano AV. Pustular Psoriasis: From Pathophysiology to Treatment. Biomedicines. 2021; 9(12):1746. https://doi.org/10.3390/biomedicines9121746
Chicago/Turabian StyleGenovese, Giovanni, Chiara Moltrasio, Nicoletta Cassano, Carlo Alberto Maronese, Gino Antonio Vena, and Angelo Valerio Marzano. 2021. "Pustular Psoriasis: From Pathophysiology to Treatment" Biomedicines 9, no. 12: 1746. https://doi.org/10.3390/biomedicines9121746
APA StyleGenovese, G., Moltrasio, C., Cassano, N., Maronese, C. A., Vena, G. A., & Marzano, A. V. (2021). Pustular Psoriasis: From Pathophysiology to Treatment. Biomedicines, 9(12), 1746. https://doi.org/10.3390/biomedicines9121746