Tenofovir Hampers the Efficacy of Sorafenib in Prolonging Overall Survival in Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishing HCC Cell Lines with GalNAc-T14 Overexpression
2.2. Identification of GalNAc-T14 Substrates
2.3. O-Glycosylation Site Prediction
2.4. Connective Map Analysis
2.5. Patients
3. Results
3.1. Identification of Substrates of the GalNAc-T14 Glycosyltransferase
3.2. Tenofovir Is a Leading Drug That Down-Regulates GalNAc-T14 Substrates in a Connective Map Analysis
3.3. Tenofovir But Not Entecavir Hampers the Anti-Tumor Capability of Sorafenib In Vitro
3.4. Patients Simultaneously Treated by Sorafenib and Tenofovir Have Shorter Overall Survival than Those Treated by Sorafenib and Entecavir
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lavanchy, D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J. Viral Hepat. 2004, 11, 97–107. [Google Scholar] [CrossRef]
- Lim, S.G.; Mohammed, R.; Yuen, M.-F.; Kao, J.-H. Prevention of hepatocellular carcinoma in hepatitis B virus infection. J. Gastroenterol. Hepatol. 2009, 24, 1352–1357. [Google Scholar] [CrossRef]
- Lin, S.-M.; Yu, M.-L.; Lee, C.-M.; Chien, R.-N.; Sheen, I.S.; Chu, C.-M.; Liaw, Y.-F. Interferon therapy in HBeAg positive chronic hepatitis reduces progression to cirrhosis and hepatocellular carcinoma. J. Hepatol. 2007, 46, 45–52. [Google Scholar] [CrossRef]
- Lok, A.S.F. Hepatitis B: Liver fibrosis and hepatocellular carcinoma. Gastroentérol. Clin. Biol. 2009, 33, 911–915. [Google Scholar] [CrossRef]
- Lok, A.S.F.; McMahon, B.J. Chronic hepatitis B. Hepatology 2007, 45, 507–539. [Google Scholar] [CrossRef] [Green Version]
- Tsukuma, H.; Hiyama, T.; Tanaka, S.; Nakao, M.; Yabuuchi, T.; Kitamura, T.; Nakanishi, K.; Fujimoto, I.; Inoue, A.; Yamazaki, H.; et al. Risk Factors for Hepatocellular Carcinoma among Patients with Chronic Liver Disease. N. Engl. J. Med. 1993, 328, 1797–1801. [Google Scholar] [CrossRef]
- Elgouhari, H.M.; Abu-Rajab Tamimi, T.I.; Carey, W.D. Hepatitis B virus infection: Understanding its epidemiology, course, and diagnosis. Clevel. Clin. J. Med. 2008, 75, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Ganem, D.; Prince, A.M. Hepatitis B Virus Infection—Natural History and Clinical Consequences. N. Engl. J. Med. 2004, 350, 1118–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liaw, Y.-F.; Chu, C.-M. Hepatitis B virus infection. Lancet 2009, 373, 582–592. [Google Scholar] [CrossRef]
- Pan, C.Q.; Zhang, J.X. Natural History and Clinical Consequences of Hepatitis B Virus Infection. Int. J. Med. Sci. 2005, 2, 36–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, H.J.; Lok, A.S.-F. Natural history of chronic hepatitis B virus infection: What we knew in 1981 and what we know in 2005. Hepatology 2006, 43, S173–S181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.S. Hepatocellular carcinoma in Taiwan. Hepatol. Res. 2007, 37 (Suppl. 2), S101–S105. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-L.; Yuen, M.-F. Prevention of hepatitis B virus-related hepatocellular carcinoma with antiviral therapy. Hepatology 2013, 57, 399–408. [Google Scholar] [CrossRef]
- Liaw, Y.-F.; Sung, J.J.Y.; Chow, W.C.; Farrell, G.; Lee, C.-Z.; Yuen, H.; Tanwandee, T.; Tao, Q.-M.; Shue, K.; Keene, O.N.; et al. Lamivudine for Patients with Chronic Hepatitis B and Advanced Liver Disease. N. Engl. J. Med. 2004, 351, 1521–1531. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Hsu, C.; Chen, L.-T.; Cheng, C.-C.; Hu, F.-C.; Cheng, A.-L. Adjuvant interferon therapy after curative therapy for hepatocellular carcinoma (HCC): A meta-regression approach. J. Hepatol. 2010, 52, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, H.J.; Lee, J.; Cho, S.; Ko, M.J.; Lim, Y.-S. Risk of Hepatocellular Carcinoma in Patients Treated With Entecavir vs Tenofovir for Chronic Hepatitis B. JAMA Oncol. 2019, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Flemming, J.A.; Terrault, N.A. Tenofovir vs Entecavir for Hepatocellular Carcinoma Prevention in Patients With Chronic Hepatitis B. JAMA Oncol. 2019, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Kamal, F.; Khan, M.A.; Ahmed, A.; Nair, S. Tenofovir versus entecavir in prevention of hepatocellular carcinoma and mortality in patients with chronic hepatitis B. Gut 2020, 69, 2054–2056. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Kwon, J.H.; Lee, H.L.; Yoo, S.H.; Nam, H.C.; Sung, P.S.; Nam, S.W.; Bae, S.H.; Choi, J.Y.; Yoon, S.K.; et al. Comparison of tenofovir and entecavir on the risk of hepatocellular carcinoma and mortality in treatment-naïve patients with chronic hepatitis B in Korea: A large-scale, propensity score analysis. Gut 2019, 69, 1301–1308. [Google Scholar] [CrossRef] [Green Version]
- EASL. Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Yang, X.-R.; Chung, W.-Y.; Dennison, A.R.; Zhou, J. Targeted therapy for hepatocellular carcinoma. Signal Transduct. Target. Ther. 2020, 5, 146. [Google Scholar] [CrossRef]
- Liang, K.-H.; Lin, C.-C.; Yeh, C.-T. GALNT14 SNP as a potential predictor of response to combination chemotherapy using 5-FU, mitoxantrone and cisplatin in advanced HCC. Pharmacogenomics 2011, 12, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.-H.; Lin, C.-L.; Chen, S.-F.; Chiu, C.-W.; Yang, P.-C.; Chang, M.-L.; Lin, C.-C.; Sung, K.-F.; Yeh, C.; Hung, C.-F.; et al. GALNT14 genotype effectively predicts the therapeutic response in unresectable hepatocellular carcinoma treated with transcatheter arterial chemoembolization. Pharmacogenomics 2016, 17, 353–366. [Google Scholar] [CrossRef]
- Liang, K.H.; Yang, P.C.; Yeh, C.T. Genotyping the GALNT14 gene by joint analysis of two linked single nucleotide polymorphisms using liver tissues for clinical and geographical comparisons. Oncol. Lett. 2014, 8, 2215–2220. [Google Scholar] [CrossRef]
- Lin, W.R.; Hsu, C.W.; Chen, Y.C.; Chang, M.L.; Liang, K.H.; Huang, Y.H.; Yeh, C.T. GALNT14 genotype, α-fetoprotein and therapeutic side effects predict post-chemotherapy survival in patients with advanced hepatocellular carcinoma. Mol. Clin. Oncol. 2014, 2, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.-T.; Liang, K.-H.; Lin, C.-C.; Chang, M.-L.; Hsu, C.-L.; Hung, C.-F. A single nucleotide polymorphism on the GALNT14 gene as an effective predictor of response to chemotherapy in advanced hepatocellular carcinoma. Int. J. Cancer 2013, 134, 1214–1224. [Google Scholar] [CrossRef]
- Lin, C.-C.; Hsu, C.-W.; Chen, Y.-C.; Chang, M.-L.; Liang, K.-H.; Lai, M.-W.; Lin, C.-L.; Chien, R.-N.; Lin, K.-H.; Yeh, C.-T. A GALNT14 rs9679162 genotype-guided therapeutic strategy for advanced hepatocellular carcinoma: Systemic or hepatic arterial infusion chemotherapy. Pharm. J. 2019, 20, 57–68. [Google Scholar] [CrossRef]
- Liang, K.-H.; Yeh, T.-S.; Wu, R.-C.; Yeh, C.-N.; Yeh, C.-T. GALNT14 genotype is associated with perineural invasion, lymph node metastasis and overall survival in resected cholangiocarcinoma. Oncol. Lett. 2017, 13, 4215–4223. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-R.; Chiang, J.-M.; Liang, K.-H.; Lim, S.-N.; Lai, M.-W.; Tsou, Y.-K.; Hsieh, T.-Y.; Hsu, C.-K.; Yeh, C.-T. GALNT14 Genotype Predicts Postoperative Outcome of Stage III Colorectal Cancer With Oxaliplatin as Adjuvant Chemotherapy. Medicine 2016, 95, e3487. [Google Scholar] [CrossRef] [PubMed]
- Tsou, Y.-K.; Liang, K.-H.; Lin, W.-R.; Chang, H.-K.; Tseng, C.-K.; Yeh, C.-T. GALNT14 genotype as a response predictor for concurrent chemoradiotherapy in advanced esophageal squamous cell carcinoma. Oncotarget 2017, 8, 29151. [Google Scholar] [CrossRef] [Green Version]
- De Mariano, M.; Gallesio, R.; Chierici, M.; Furlanello, C.; Conte, M.; Garaventa, A.; Croce, M.; Ferrini, S.; Paolo Tonini, G.; Longo, L. Identification of GALNT14 as a novel neuroblastoma predisposition gene. Oncotarget 2015, 6, 26335–26346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, O.-S.; Lee, H.; Kong, H.-J.; Kwon, E.-J.; Park, J.E.; Lee, W.; Kang, S.; Kim, M.; Kim, W.; Cha, H.-J. Connectivity map-based drug repositioning of bortezomib to reverse the metastatic effect of GALNT14 in lung cancer. Oncogene 2020, 39, 4567–4580. [Google Scholar] [CrossRef]
- Song, K.-H.; Park, M.S.; Nandu, T.S.; Gadad, S.; Kim, S.-C.; Kim, M.-Y. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat. Commun. 2016, 7, 13796. [Google Scholar] [CrossRef]
- Shamseldin, H.E.; Tulbah, M.; Kurdi, W.; Nemer, M.; Alsahan, N.; Al Mardawi, E.; Khalifa, O.; Hashem, A.; Kurdi, A.; Babay, Z.; et al. Identification of embryonic lethal genes in humans by autozygosity mapping and exome sequencing in consanguineous families. Genome Biol. 2015, 16, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, L.; Lind-Thomsen, A.; Joshi, H.J.; Pedersen, N.B.; Have, C.T.; Kong, Y.; Wang, S.; Sparso, T.; Grarup, N.; Vester-Christensen, M.B.; et al. A glycogene mutation map for discovery of diseases of glycosylation. Glycobiology 2014, 25, 211–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steentoft, C.; Vakhrushev, S.Y.; Joshi, H.J.; Kong, Y.; Vester-Christensen, M.B.; Schjoldager, K.T.B.G.; Lavrsen, K.; Dabelsteen, S.; Pedersen, N.B.; Marcos-Silva, L.; et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013, 32, 1478–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, J. The Connectivity Map: A new tool for biomedical research. Nat. Rev. Cancer 2007, 7, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; et al. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science 2006, 313, 1929–1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017, 171, 1437–1452.e1417. [Google Scholar] [CrossRef] [PubMed]
- Berretta, M.; Di Benedetto, F.; Dal Maso, L.; Cacopardo, B.; Nasti, G.; Facchini, G.; Bearz, A.; Spina, M.; Garlassi, E.; De Re, V.; et al. Sorafenib for the treatment of unresectable hepatocellular carcinoma in HIV-positive patients. Anti-Cancer Drugs 2013, 24, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545. [Google Scholar] [CrossRef] [Green Version]
- Goudarzi, K.M.; LindstrÖM, M.S. Role of ribosomal protein mutations in tumor development (Review). Int. J. Oncol. 2016, 48, 1313–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Liao, W.-J.; Liao, J.-M.; Liao, P.; Lu, H. Ribosomal proteins: Functions beyond the ribosome. J. Mol. Cell Biol. 2015, 7, 92–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Gene Symbol | Chr | UniPort ID | SwissPort ID | Franking Sequence of Glycosylated Amino Acid | Location of Glycosylation | Protein Length | Protein Name |
---|---|---|---|---|---|---|---|---|
1 | EIF3G | 19 | EIF3G_HUMAN | O75821 | 220-GASRRGESMQ-231 | 223 | 320 | Eukaryotic translation initiation factor 3 subunit G |
2 | SRSF8 | 11 | SRSF8_HUMAN | Q9BRL6 | 240-RSRSRSSSMT-251 | 250 | 282 | Serine/arginine-rich splicing factor 8 |
3 | SRP14 | 15 | SRP14_HUMAN | P37108 | 120-ATAPTTAATT-131 | 125 | 136 | Signal recognition particle 14 kDa protein |
4 | ACTB | 7 | ACTB_HUMAN | P60709 | 50-DSYVGDEAQS-61 | 60 | 375 | Actin, cytoplasmic 1 (Beta-actin) |
5 | HNRNPA1L2 | 13 | RA1L2_HUMAN | Q32P51 | 180-LPKQEMASAS-191 | 188 | 320 | Heterogeneous nuclear ribonucleoprotein A1-like 2 |
6 | NAP1L1 | 12 | NP1L1_HUMAN | P55209 | 280-GRGTVRTVTK-291 | 284 | 391 | Nucleosome assembly protein 1-like 1 |
7 | RPL27 | 17 | RL27_HUMAN | P61353 | 50-RKVTAAMGKK-61 | 54 | 136 | 60S ribosomal protein L27 |
8 | CAPZA2 | 7 | CAZA2_HUMAN | P47755 | 120-RTSVETALRA-131 | 123 | 286 | F-actin-capping protein subunit alpha-2 |
9 | YBX2 | 17 | YBOX2_HUMAN | Q9Y2T7 | 300-ETKPSQGPAD-311 | 305 | 364 | Y-box-binding protein 2 |
10 | RPL6 | 12 | RL6_HUMAN | Q02878 | 120-VPRKLLSHGK-131 | 127 | 288 | 60S ribosomal protein L6 |
11 | YWHAE | 17 | 1433E_HUMAN | P62258 | 60-RIISSIEQKE-71 | 65 | 255 | 14-3-3 protein epsilon |
12 | RPL27A | 11 | RL27A_HUMAN | P46776 | 10-LRGHVSHGHG-21 | 16 | 148 | 60S ribosomal protein L27a |
13 | RPLP1 | 15 | RLA1_HUMAN | P05386 | 80-APSTAAAPAE-91 | 83 | 114 | 60S acidic ribosomal protein P1 |
14 | RPL3 | 22 | RL3_HUMAN | P39023 | 20-RSSRHRGKVK-31 | 23 | 403 | 60S ribosomal protein L3 |
15 | TUBA3E | 2 | TBA3E_HUMAN | Q6PEY2 | 360-TVVPGGDLAK-371 | 361 | 450 | Tubulin alpha-3E chain |
16 | RPS26 | 12 | RS26_HUMAN | P62854 | 90-ARKDRTPPPR-101 | 96 | 115 | 40S ribosomal protein S26 |
17 | RPL17 | 18 | RL17_HUMAN | P18621 | 0-MVRYSLDPEN-11 | 5 | 184 | 60S ribosomal protein L17 |
Variables | All Patients | Entecavir Used | Tenofovir Used | No Antiviral Used | p * |
---|---|---|---|---|---|
Number of patients | 181 | 96 | 22 | 63 | |
Age, years, mean ± SD | 60.4 ± 12.3 | 58.7 ± 11.3 | 60.6 ± 12.9 | 63.0 ± 13.2 | 0.104 |
Sex, Male (%) | 160 (88.4%) | 87 (90.6%) | 20 (90.9%) | 53 (84.1%) | 0.423 |
Anti-HCV, positive (%) | 12 (6.6%) | 5 (5.2%) | 1 (4.5%) | 6 (9.5%) | 0.517 |
Alcoholism, Yes (%) | 67 (37.0%) | 37 (38.5%) | 10 (45.5%) | 20 (31.7%) | 0.468 |
ECOG status, “>0” (%) | 43 (23.8%) | 24 (25.0%) | 6 (27.3%) | 13 (20.6%) | 0.752 |
Cirrhosis, Yes (%) | 152 (84.0%) | 85 (88.5%) | 19 (86.4%) | 48 (76.2%) | 0.11 |
Portal vein thrombosis, Yes (%) | 98 (54.1%) | 56 (58.3%) | 14 (63.6%) | 28 (44.4%) | 0.145 |
Distant metastasis, Yes (%) | 73 (40.3%) | 37 (38.5%) | 9 (40.9%) | 27 (42.9%) | 0.862 |
BCLC stage B, Yes (%) ** | 26 (14.4%) | 15(15.6%) | 3 (13.6%) | 8 (12.7%) | 0.871 |
Size, cm, mean ± SD | 5.9 ± 4.3 | 5.6 ± 4.1 | 5.7 ± 4.6 | 6.5 ± 4.6 | 0.411 |
Ascites, Yes (%) | 45 (24.9%) | 27 (28.1%) | 7 (31.8%) | 11 (17.5%) | 0.227 |
AFP, ng/mL, median (range) | 241.8 (0.8 to 831318) | 238.4 (1.7 to 831318) | 216.9 (4.7 to 84144) | 259.0 (0.8 to 510606) | 0.277 |
HBV-DNA, × 106 copies/mL, median (range) # | 0.0 (0.0 to 112.9) | 0.0 (0.0 to 0.0) | 0.0 (0.0 to 0.0) | 0.0 (0.0 to 112.9) | 0.145 |
Albumin, g/dL, mean ± SD | 3.7 ± 0.6 | 3.8 ± 0.5 | 3.8 ± 0.6 | 3.7 ± 0.7 | 0.32 |
Bilirubin, mg/dL, mean ± SD | 1.2 ± 1.7 | 1.1 ± 2.0 | 1.2 ± 0.6 | 1.2 ± 1.4 | 0.934 |
Prothrombin time, sec, mean ± SD | 12.2 ± 1.7 | 12.4 ± 2.0 | 11.9 ± 1.2 | 11.9 ± 1.2 | 0.143 |
Creatinine, mg/dL, mean ± SD | 0.9 ± 0.6 | 0.9 ± 0.7 | 0.9 ± 0.4 | 0.9 ± 0.4 | 0.995 |
AST, U/L, mean ± SD | 74.6 ± 68.4 | 75.9 ± 76.2 | 72.9 ± 44.2 | 73.2 ± 63.2 | 0.966 |
ALT, U/L, mean ± SD | 46.0 ± 38.3 | 45.5 ± 42.0 | 53.2 ± 44.0 | 44.3 ± 29.5 | 0.634 |
White blood cell, 109/L, mean ± SD | 6.3 ± 3.0 | 6.1 ± 2.9 | 5.4 ± 2.0 | 6.9 ± 3.3 | 0.108 |
Neutrophil, percentage, mean ± SD | 66.1 ± 12.9 | 66.1 ± 13.8 | 62.2 ± 11.7 | 67.3 ± 11.7 | 0.271 |
Hemoglobin, g/dL, mean ± SD | 12.4 ± 2.0 | 12.4 ± 2.1 | 12.4 ± 1.5 | 12.3 ± 2.0 | 0.999 |
Platelet, 109/L, mean ± SD | 168.3 ± 93.2 | 162.3 ± 90.2 | 143.5 ± 89.8 | 186.2 ± 97.1 | 0.118 |
Previous treatment, Yes (%) | 161 (89.0%) | 89 (92.7%) | 20 (90.9%) | 52 (82.5%) | 0.129 |
Variables | HR (95% CI) | p |
---|---|---|
Age, per year | 0.992 (0.997, 1.008) | 0.344 |
Sex, Male = 1 | 0.741 (0.405, 1.356) | 0.331 |
Anti-HCV, positive = 1 | 0.736 (0.300, 1.809) | 0.505 |
Alcoholism, positive = 1 | 1.233 (0.842, 1.806) | 0.281 |
ECOG status, “>0” = 1 | 1.324 (0.845, 2.075) | 0.221 |
Cirrhosis, Yes = 1 | 2.160 (1.182, 3.946) | 0.012 |
Portal vein thrombosis, Yes = 1 | 1.098 (0.755, 1.599) | 0.624 |
Distant metastasis, Yes = 1 | 1.488 (1.023, 2.164) | 0.038 |
Size, per cm | 1.020 (0.978, 1.065) | 0.353 |
Ascites, Yes = 1 | 2.535 (1.676, 3.833) | <0.001 |
AFP, per 1000 ng/mL | 1.001 (0.999, 1.003) | 0.234 |
Albumin, per g/dL | 0.532 (0.380, 0.745) | <0.001 |
Bilirubin, per mg/dL | 1.340 (1.175, 1.528) | <0.001 |
Prothrombin time, per sec | 0.995 (0.877, 1.129) | 0.941 |
Creatinine, per mg/dL | 1.176 (0.839, 1.650) | 0.347 |
AST, per U/L | 1.008 (1.005, 1.010) | <0.001 |
ALT, per U/L | 1.006 (1.002, 1.011) | <0.006 |
White blood cell, per × 109/L | 1.069 (0.999, 1.144) | 0.053 |
Neutrophil, per percentage | 1.032 (1.015, 1.050) | <0.001 |
Hemoglobin, per g/dL | 0.863 (0.782, 0.953) | <0.003 |
Platelet, per × 109/L | 0.999 (0.997, 1.002) | 0.611 |
Previous treatment, Yes = 1 | 1.052 (0.596, 1.855) | 0.862 |
Tenofovir used, Yes = 1 | 2.060 (1.256, 3.381) | <0.004 |
Entecavir used, Yes = 1 | 0.798 (0.549, 1.159) | 0.235 |
No antiviral used, Yes = 1 | 0.797 (0.533, 1.191) | 0.268 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, K.-H.; Chen, S.-F.; Lin, Y.-H.; Chu, Y.-D.; Lin, Y.-H.; Lai, M.-W.; Lin, C.-L.; Yeh, C.-T. Tenofovir Hampers the Efficacy of Sorafenib in Prolonging Overall Survival in Hepatocellular Carcinoma. Biomedicines 2021, 9, 1539. https://doi.org/10.3390/biomedicines9111539
Liang K-H, Chen S-F, Lin Y-H, Chu Y-D, Lin Y-H, Lai M-W, Lin C-L, Yeh C-T. Tenofovir Hampers the Efficacy of Sorafenib in Prolonging Overall Survival in Hepatocellular Carcinoma. Biomedicines. 2021; 9(11):1539. https://doi.org/10.3390/biomedicines9111539
Chicago/Turabian StyleLiang, Kung-Hao, Sung-Fang Chen, Yu-Hua Lin, Yu-De Chu, Yang-Hsiang Lin, Ming-Wei Lai, Chih-Lang Lin, and Chau-Ting Yeh. 2021. "Tenofovir Hampers the Efficacy of Sorafenib in Prolonging Overall Survival in Hepatocellular Carcinoma" Biomedicines 9, no. 11: 1539. https://doi.org/10.3390/biomedicines9111539
APA StyleLiang, K.-H., Chen, S.-F., Lin, Y.-H., Chu, Y.-D., Lin, Y.-H., Lai, M.-W., Lin, C.-L., & Yeh, C.-T. (2021). Tenofovir Hampers the Efficacy of Sorafenib in Prolonging Overall Survival in Hepatocellular Carcinoma. Biomedicines, 9(11), 1539. https://doi.org/10.3390/biomedicines9111539