Intestinal Adaptation upon Chemotherapy-Induced Intestinal Injury in Mice Depends on GLP-2 Receptor Activation
Abstract
:1. Introduction
2. Results
2.1. Body Weight, Small Intestinal Weight and Morphology
2.2. Inflammatory Markers and Intestinal Permeability
2.3. Proliferative Activity
2.4. Apoptosis
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Protocol
4.3. Histology and Morphology Measurements
4.4. Inflammation
4.5. Intestinal Permeability
4.6. Immunohistochemistry
4.7. Apoptosis
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement.
Conflicts of Interest
Abbreviations
5-FU | 5-Fluorouracil |
ANOVA | Analysis of variance |
BrdU | Bromo-2’-deoxyuridine |
BW | Body weight |
FITC | Fluorescein-5,6-isothiocyanate |
GLP-2 | Glucagon-like peptide-2 |
GLP-2R | Glucagon-like peptide-2 receptor |
GLP-2R(-/-) | Glucagon-like peptide-2 receptor knockout |
i.p. | Intraperitoneal |
MPO | Myeloperoxidase |
SI | Small intestine |
WT | Wild type |
References
- Avritscher, E.B.; Cooksley, C.D.; Elting, L.S. Scope and epidemiology of cancer therapy-induced oral and gastrointestinal mucositis. In Seminars in Oncology Nursing; Elsevier: Amsterdam, The Netherlands, 2004; pp. 3–10. [Google Scholar]
- Elting, L.S.; Cooksley, C.; Chambers, M.; Cantor, S.B.; Manzullo, E.; Rubenstein, E.B. The burdens of cancer therapy. Clinical and economic outcomes of chemotherapy-induced mucositis. Cancer 2003, 98, 1531–1539. [Google Scholar] [CrossRef]
- Al-Dasooqi, N.; Gibson, R.J.; Bowen, J.M.; Logan, R.M.; Stringer, A.M.; Keefe, D.M. Matrix metalloproteinases are possible mediators for the development of alimentary tract mucositis in the dark agouti rat. Exp. Biol. Med. 2010, 235, 1244–1256. [Google Scholar] [CrossRef]
- Sonis, S. Mucositis as a biological process: A new hypothesis for the development of chemotherapy-induced stomatotoxicity. Oral Oncol. 1998, 34, 39–43. [Google Scholar] [CrossRef]
- Hytting-Andreasen, R.; Balk-Møller, E.; Hartmann, B.; Pedersen, J.; Windeløv, J.A.; Holst, J.J.; Kissow, H. Endogenous glucagon-like peptide- 1 and 2 are essential for regeneration after acute intestinal injury in mice. PLoS ONE 2018, 13, e0198046. [Google Scholar] [CrossRef]
- Taminiau, J.; Gall, D.; Hamilton, J. Response of the rat small-intestine epithelium to methotrexate. Gut 1980, 21, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Xian, C.; Howarth, G.; Mardell, C.; Cool, J.; Familari, M.; Read, L.; Giraud, A.S. Temporal changes in TFF3 expression and jejunal morphology during methotrexate-induced damage and repair. Am. J. Physiol. 1999, 277, G785–G795. [Google Scholar] [CrossRef]
- Xian, C.J.; Cool, J.C.; Howarth, G.S.; Read, L.C. Effects of TGF-alpha gene knockout on epithelial cell kinetics and repair of methotrexate-induced damage in mouse small intestine. Cell Physiol. 2002, 191, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J.; Erlich, P.; Asa, S.L.; Brubaker, P.L. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc. Natl. Acad. Sci. USA 1996, 93, 7911–7916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drucker, D.J.; Yusta, B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu. Rev. Physiol. 2014, 76, 561–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brubaker, P.L. Glucagon-like Peptide-2 and the Regulation of Intestinal Growth and Function. Compr. Physiol. 2018, 8, 1185–1210. [Google Scholar] [PubMed]
- Munroe, D.G.; Gupta, A.K.; Kooshesh, F.; Vyas, T.B.; Rizkalla, G.; Wang, H.; Demchyshyn, L.; Yang, Z.J.; Kamboj, R.K.; Chen, H.; et al. Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc. Natl. Acad. Sci. USA 1999, 96, 1569–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Q.; Boushey, R.P.; Cino, M.; Drucker, D.J.; Brubaker, P.L. Circulating levels of glucagon-like peptide-2 in human subjects with inflammatory bowel disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R1057–R1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissow, H.; Viby, N.-E.; Hartmann, B.; Holst, J.J.; Timm, M.; Thim, L.; Poulsen, S.S. Exogenous glucagon-like peptide-2 (GLP-2) prevents chemotherapy-induced mucositis in rat small intestine. Cancer Chemother. Pharmacol. 2012, 70, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.; Hill, M.; Asa, S.L.; Brubaker, P.L.; Drucker, D.J. Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am. J. Physiol. 1997, 273, E77–E84. [Google Scholar] [CrossRef] [Green Version]
- Burrin, D.; Stoll, B.; Jiang, R.; Petersen, Y.; Elnif, J.; Buddington, R.; Schmidt, M.; Holst, J.; Hartmann, B.; Sangild, P. GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, G1249–G1256. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.D.; Estall, J.L.; Izzo, A.; Drucker, D.J.; Brubaker, P.L. Mucosal adaptation to enteral nutrients is dependent on the physiologic actions of glucagon-like peptide-2 in mice. Gastroenterology 2005, 128, 1340–1353. [Google Scholar] [CrossRef] [Green Version]
- Ørskov, C.; Hartmann, B.; Poulsen, S.S.; Thulesen, J.; Hare, K.J.; Holst, J.J. GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors. Regul. Pept. 2005, 124, 105–112. [Google Scholar] [CrossRef]
- Drucker, D.J.; Shi, Q.; Crivici, A.; Sumner-Smith, M.; Tavares, W.; Hill, M.; DeForest, L.; Cooper, S.; Brubaker, P.L. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat. Biotechnol. 1997, 15, 673. [Google Scholar] [CrossRef]
- Litvak, D.A.; Hellmich, M.R.; Evers, B.M.; Banker, N.A.; Townsend, C.M. Glucagon-like peptide 2 is a potent growth factor for small intestine and colon. J. Gastrointest. Surg. 1998, 2, 146–150. [Google Scholar] [CrossRef]
- Hartmann, B.; Thulesen, J.; Kissow, H.; Thulesen, S.; Orskov, C.; Ropke, C.; Poulsen, S.; Holst, J. Dipeptidyl peptidase IV inhibition enhances the intestinotrophic effect of glucagon-like peptide-2 in rats and mice. Endocrinology 2000, 141, 4013–4020. [Google Scholar] [CrossRef]
- Tsai, C.; Hill, M.; Drucker, D.J. Biological determinants of intestinotrophic properties of GLP-2 in vivo. Am. J. Physiol. 1997, 272, G662–G668. [Google Scholar] [CrossRef] [PubMed]
- Kissow, H.; Hartmann, B.; Holst, J.J.; Poulsen, S.S. Glucagon-like peptide-1 as a treatment for chemotherapy-induced mucositis. Gut 2013, 62, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.W.; Murali, S.G.; Liu, X.; Koopmann, M.C.; Holst, J.J.; Ney, D.M. Insulin-like growth factor I and glucagon-like peptide-2 responses to fasting followed by controlled or ad libitum refeeding in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R1175–R1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, B.; Thulesen, J.; Hare, K.J.; Kissow, H.; Orskov, C.; Poulsen, S.S.; Holst, J.J. Immunoneutralization of endogenous glucagon-like peptide-2 reduces adaptive intestinal growth in diabetic rats. Regul. Pept. 2002, 105, 173–179. [Google Scholar] [CrossRef]
- Pritchard, D.M.; Watson, A.J.; Potten, C.S.; Jackman, A.L.; Hickman, J.A. Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: Evidence for the involvement of RNA perturbation. Proc. Natl. Acad. Sci. USA 1997, 94, 1795–1799. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, D.M.; Potten, C.S.; Hickman, J.A. The relationships between p53-dependent apoptosis, inhibition of proliferation, and 5-fluorouracil-induced histopathology in murine intestinal epithelia. Cancer Res. 1998, 58, 5453–5465. [Google Scholar]
- Keefe, D.M.; Brealey, J.; Goland, G.J.; Cummins, A.G. Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut 2000, 47, 632–637. [Google Scholar] [CrossRef] [Green Version]
- Arda-Pirincci, P.; Bolkent, S. The role of glucagon-like peptide-2 on apoptosis, cell proliferation, and oxidant-antioxidant system at a mouse model of intestinal injury induced by tumor necrosis factor-alpha/actinomycin D. Mol. Cell Biochem. 2011, 350, 13–27. [Google Scholar] [CrossRef]
- Gregorieff, A.; Clevers, H. Wnt signaling in the intestinal epithelium: From endoderm to cancer. Genes Dev. 2005, 19, 877–890. [Google Scholar] [CrossRef] [Green Version]
- Kaldis, P.; Pagano, M. Wnt signaling in mitosis. Dev. Cell 2009, 17, 749–750. [Google Scholar] [CrossRef] [Green Version]
- Dube, P.E.; Rowland, K.J.; Brubaker, P.L. Glucagon-like peptide-2 activates beta-catenin signaling in the mouse intestinal crypt: Role of insulin-like growth factor-I. Endocrinology. Endocrinology 2008, 149, 291–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, J.E.; Billeschou, A.; Windelov, J.A.; Hartmann, B.; Ullmer, C.; Holst, J.J.; Kissow, H. Pharmacological activation of TGR5 promotes intestinal growth via a GLP-2-dependent pathway in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G980–G987. [Google Scholar] [CrossRef] [PubMed]
- Billeschou, A.; Hunt, J.; Kissow, H. Important Endpoints and Proliferative Markers to Assess Small Intestinal Injury and Adaptation using a Mouse Model of Chemotherapy-Induced Mucositis. JoVE 2019, 147, e59236. [Google Scholar] [CrossRef]
- Howarth, G.S.; Francis, G.L.; Cool, J.C.; Xu, X.; Byard, R.W.; Read, L.C. Milk growth factors enriched from cheese whey ameliorate intestinal damage by methotrexate when administered orally to rats. J. Nutr. 1996, 126, 2519–2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, P.P.; Priebat, D.A.; Christensen Rothstein, M.D. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. Investig. Dermatol. 1982, 78, 206–209. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billeschou, A.; Hunt, J.E.; Ghimire, A.; Holst, J.J.; Kissow, H. Intestinal Adaptation upon Chemotherapy-Induced Intestinal Injury in Mice Depends on GLP-2 Receptor Activation. Biomedicines 2021, 9, 46. https://doi.org/10.3390/biomedicines9010046
Billeschou A, Hunt JE, Ghimire A, Holst JJ, Kissow H. Intestinal Adaptation upon Chemotherapy-Induced Intestinal Injury in Mice Depends on GLP-2 Receptor Activation. Biomedicines. 2021; 9(1):46. https://doi.org/10.3390/biomedicines9010046
Chicago/Turabian StyleBilleschou, Anna, Jenna Elizabeth Hunt, Aruna Ghimire, Jens J. Holst, and Hannelouise Kissow. 2021. "Intestinal Adaptation upon Chemotherapy-Induced Intestinal Injury in Mice Depends on GLP-2 Receptor Activation" Biomedicines 9, no. 1: 46. https://doi.org/10.3390/biomedicines9010046
APA StyleBilleschou, A., Hunt, J. E., Ghimire, A., Holst, J. J., & Kissow, H. (2021). Intestinal Adaptation upon Chemotherapy-Induced Intestinal Injury in Mice Depends on GLP-2 Receptor Activation. Biomedicines, 9(1), 46. https://doi.org/10.3390/biomedicines9010046