# Epithelial-Mesenchymal Transition in Metastatic Cancer Cell Populations Affects Tumor Dormancy in a Simple Mathematical Model

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Results

#### 2.1. Deterministic Population Dynamics of Dormant Metastatic Tumors

**Figure 1.**Tumor population dynamics in models of cancers derived from pioneering stem cells. (

**A**) Diagrammatic description of the basic model with M (mesenchymal cells), E (epithelial cells) and their rate parameters; (

**B**) trajectories for M (grey lines) and E (black lines), for the two model variations and two different values of ${\beta}_{3}$ (senescence of E).

**Table 1.**The parameters that describe the linear and saturated feedback model. The values given are those used for the simulation of the saturated feedback model. The units of all of the α and β are $[1/div]$, where $div$ is the time for one cell division in days. The unit of k is $[1/Ndiv]$, and the unit of m is $[1/N]$, where N is the number of cells of species E at time t. EMT, epithelial-mesenchymal transition.

Parameter | Value | Definition |
---|---|---|

${\alpha}_{1}$ | 0.32 | Proliferative capacity of M |

${\alpha}_{2}$ | 0.32 | Differentiation of $M\to E$ |

${\alpha}_{3}$ | 0.02 | Cell death of M |

${\beta}_{1}$ | 0.87 | Proliferative capacity of E |

${\beta}_{2}$ | 0.25 | Senescence of E |

${\beta}_{3}$ | 0.4 | Cell death of E |

${\beta}_{4}$ | 0.0025 | Rate of EMT |

k | 0.0026 | Defines carrying capacity of E |

m | 0.0036 | Defines maximum per-capita growth rate |

#### 2.2. EMT Dramatically Alters Population Dynamics in the Deterministic Model

**Figure 2.**Effect of EMT on the size of metastatic tumors. (

**A**) Modified model diagram, including EMT; (

**B**) each plot shows the trajectories of M and E for different values of ${\beta}_{4}$ (rate of EMT). As ${\beta}_{4}$ is increased, the dynamics change from close-to-equilibrium to exponential growth, where eventually, the size of M will overtake E.

**Table 2.**Sensitivity in model output (steady-state level of M) to changes in parameters by ±5%. We see that the parameters with the greatest effect on output are ${\beta}_{4}$ (the rate of EMT) and ${\alpha}_{1}$ (the proliferative capacity of M).

Parameter (p) | Sensitivity Coefficient ($\frac{\partial M}{\partial p}$) |
---|---|

${\alpha}_{1}$ | 10,200 |

${\alpha}_{2}$ | 1,840 |

${\alpha}_{3}$ | 3,260 |

${\beta}_{1}$ | 449 |

${\beta}_{2}$ | 355 |

${\beta}_{3}$ | 358 |

${\beta}_{4}$ | 29,700 |

#### 2.3. Modeling Chemotherapeutic Treatment of Dormant Tumors

**Figure 3.**Population dynamics in response to chemotherapy. Modeling chemotherapeutic treatment and recurrence; tumor population dynamics before, during and after a treatment regime (denoted by the dashed vertical lines). (

**A**) Treatment consisting of an agent that increased cell death (${\beta}_{3}$) in the E cell population. At the end of treatment, ${\beta}_{3}$ returns to its pre-treatment level; (

**B**) The E cell population acquires resistance mutations following treatment (${\beta}_{3}$ is lower than before treatment); (

**C**) Treatment consisting of an agent that prevents EMT; (

**D**) Treatment consisting of both ${\beta}_{3}$ reduction and EMT prevention in combined therapy. In (C) and (D), recovery was to original pre-treatment parameter values; (

**E**) The phase plane plot shows the behavior of the system around the fixed Point A (pre-treatment parameter values) and nullclines. Point B marks the system state after treatment; (

**F**) Phase plane plot around the fixed Point C; parameter values after E cells have acquired mutations. In both (E) and (F), the fixed points shown are the only stable fixed points for the system in this state.

**Figure 4.**Model sensitivity to changes in cell death. We study the effect of increasing the cell death rate of M (${\alpha}_{3}$) and E (${\beta}_{3}$) simultaneously. The output is colored by the extent to which the steady state for E is shifted ($\Delta E$). Increasing the rate of M cell death has a much more dramatic effect than increasing the rate of E cell death alone.

**Figure 5.**Transition from tumor to tumor-free state by induction of cell death. (

**A**) Theoretical dose response curve of stable solutions of E and M as ${\beta}_{3}$ is varied; (

**B**) solution curves of E at two different rates of cell death (by chemotherapy) with different initial numbers of cells. Red curves represent the solution of E for ${\beta}_{3}<{\beta}^{*}$; blue curves represent the solution of E for ${\beta}_{3}>{\beta}^{*}$.

#### 2.4. Defining a Stochastic Model of Dormant Metastatic Tumors

**Figure 6.**Generational capacity affects dormant tumor steady-state population sizes in a stochastic model. (

**A**) The diagram represents the basic model, where mesenchymal stem cells M divide asymmetrically to generate differentiated epithelial cells E with a generational capacity (g) that measures the number of possible cell divisions that these cells can undergo prior to senescence; (

**B**) steady-state population of tumors derived from a single pioneering M cell with varying g; (

**C**) steady-state population sizes over time for tumors derived from a single M cell.

#### 2.5. A Stochastic Model of EMT for Small Differentiated Cell Populations

**Figure 7.**EMT in a stochastic model of dormant tumor recurrence. (

**A**) The fraction of tumors in which EMT events occur with a fixed generational capacity of 18 and for different probabilities of EMT; (

**B**) the fraction of tumors in which EMT events occur with a varied generational capacity and fixed probability of EMT; (

**C**) the fraction of tumors exhibiting specific numbers of EMT events as generational capacity is altered; (

**D**) the fraction of tumors exhibiting occurrences of EMT over time, for three different generational capacities; (

**E**) the fraction of tumors in which EMT events occur with a varied generational capacity of 18 and fixed probability of EMT. In (

**A**–

**C**), tumors were initiated from a single precursor M cell; while in (

**D**), tumors were started from a population of 100 E cells. The probability of EMT in (

**B**–

**E**) was set at ${10}^{-7}$.

#### 2.6. Dormant Tumor Recurrence in the Stochastic Model

## 3. Discussion

## Acknowledgments

## Author Contributions

## Abbreviations

## Conflicts of Interest

## References

- Fidler, I.J. Cancer biology is the foundation for therapy. Cancer Biol. Ther.
**2005**, 4, 1036–1039. [Google Scholar] [CrossRef] [PubMed] - Uhr, J.W.; Pantel, K. Controversies in clinical cancer dormancy. Proc. Natl. Acad. Sci. USA
**2011**, 108, 12396–12400. [Google Scholar] [CrossRef] [PubMed] - Croker, A.K.; Allan, A.L. Cancer stem cells: Implications for the progression and treatment of metastatic disease. J. Cell. Mol. Med.
**2007**, 12, 374–390. [Google Scholar] [CrossRef] [PubMed] - Hermann, P.C.; Huber, S.L.; Herrler, T.; Aicher, A.; Ellwart, J.W.; Guba, M.; Bruns, C.J.; Heeschen, C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell
**2007**, 1, 313–323. [Google Scholar] [CrossRef] [PubMed] - Fiala, S. The cancer cell as a stem cell unable to differentiate. A theory of carcinogenesis. Neoplasma
**1968**, 15, 607–622. [Google Scholar] [PubMed] - Todaro, M.; Perez Alea, M.; Scopelliti, A.; Medema, J.P.; Stassi, G. IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle
**2008**, 7, 309–313. [Google Scholar] [CrossRef] [PubMed] - Eramo, A.; Ricci-Vitiani, L.; Zeuner, A.; Pallini, R.; Lotti, F.; Sette, G.; Pilozzi, E.; Larocca, L.M.; Peschle, C.; de Maria, R. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ.
**2006**, 13, 1238–1241. [Google Scholar] [CrossRef] [PubMed] - Johnston, M.D.; Maini, P.K.; Chapman, S.J.; Edwards, C.M.; Bodmer, W.F. On the proportion of cancer stem cells in a tumour. J. Theor. Biol.
**2010**, 266, 708–711. [Google Scholar] [CrossRef] [PubMed] - Dalerba, P.; Cho, R.W.; Clarke, M.F. Cancer stem cells: Models and concepts. Ann. Rev. Med.
**2007**, 58, 267–284. [Google Scholar] [CrossRef] [PubMed] - Radisky, D.C.; LaBarge, M.A. Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell
**2008**, 2, 511–512. [Google Scholar] [CrossRef] [PubMed] - Polyak, K.; Weinberg, R.A. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat. Rev. Cancer
**2009**, 9, 265–273. [Google Scholar] [CrossRef] [PubMed] - Arumugam, T.; Ramachandran, V.; Fournier, K.F.; Wang, H.; Marquis, L.; Abbruzzese, J.L.; Gallick, G.E.; Logsdon, C.D.; McConkey, D.J.; Choi, W. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res.
**2009**, 69, 5820–5828. [Google Scholar] [CrossRef] [PubMed] - Scheel, C.; Weinberg, R.A. Cancer stem cells and epithelial-mesenchymal transition: Concepts and molecular links. Semin. Cancer Biol.
**2012**, 22, 396–403. [Google Scholar] [CrossRef] [PubMed] - Yang, J.; Weinberg, R.A. Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev. Cell
**2008**, 14, 818–829. [Google Scholar] [CrossRef] [PubMed] - Thiery, J.P. Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol.
**2003**, 15, 740–746. [Google Scholar] [CrossRef] [PubMed] - Day, R.M.; Felici, A.; Bottaro, D.P. Hepatocyte growth factor regulates transitions between epithelial and mesenchymal cellular phenotypes during normal development and in disease. In Rise and Fall of Epithelial Phenotype Concepts of Epithelial-Mesenchymal Transition; Savagner, P., Ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Naldini, L.; Vigna, E.; Narsimhan, R.P.; Gaudino, G. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene
**1991**, 6, 501–504. [Google Scholar] [PubMed] - Weidner, K.M.; Sachs, M.; Birchmeier, W. The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J. Cell Biol.
**1993**, 121, 145–154. [Google Scholar] [CrossRef] [PubMed] - Li, Y.; Li, A.; Glas, M.; Lal, B.; Ying, M.; Sang, Y.; Xia, S.; Trageser, D.; Guerrero-Cázares, H.; Eberhart, C.G.; et al. c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc. Natl. Acad. Sci. USA
**2011**, 108, 9951–9956. [Google Scholar] [CrossRef] [PubMed] - Li, C.; Wu, J.J.; Hynes, M.; Dosch, J.; Sarkar, B.; Welling, T.H.; Pasca di Magliano, M.; Simeone, D.M. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology
**2011**, 141, 2218–2227. [Google Scholar] [CrossRef] [PubMed] - Jun, H.J.; Bronson, R.T.; Charest, A. Inhibition of EGFR induces a c-MET-driven stem cell population in glioblastoma. Stem Cells
**2014**, 32, 338–348. [Google Scholar] [CrossRef] [PubMed] - Tang, M.; Zhou, H.Y.; Yam, J.; Wong, A. c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia
**2010**, 12, 128–138. [Google Scholar] [CrossRef] [PubMed] - Scheel, C.; Weinberg, R.A. Cancer stem cells and epithelial-mesenchymal transition: Concepts and molecular links. Semin. Cancer Biol.
**2012**, 22, 396–403. [Google Scholar] [CrossRef] [PubMed] - Patel, P.; Chen, E.I. Cancer stem cells, tumor dormancy, and metastasis. Front. Endocrinol.
**2012**, 3, 125. [Google Scholar] [CrossRef] [PubMed] - Johnston, M.D.; Edwards, C.M.; Bodmer, W.F.; Maini, P.K.; Chapman, S.J. Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc. Natl. Acad. Sci. USA
**2007**, 104, 4008–4013. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Anderson, A.R.A.; Enderling, H.; Chaplain, M.A.J.; Beheshti, A.; Hlatky, L.; Hahnfeldt, P. Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res.
**2009**, 69, 8814–8821. [Google Scholar] - Roeder, I.; Horn, M.; Glauche, I.; Hochhaus, A.; Mueller, M.C.; Loeffler, M. Dynamic modeling of imatinib-treated chronic myeloid leukemia: Functional insights and clinical implications. Nat. Med.
**2006**, 12, 1181–1184. [Google Scholar] [CrossRef] [PubMed] - MacLean, A.L.; Lo Celso, C.; Stumpf, M.P.H. Population dynamics of normal and leukaemia stem cells in the haematopoietic stem cell niche show distinct regimes where leukaemia will be controlled. J. R. Soc. Interface
**2013**, 10, 20120968. [Google Scholar] [CrossRef] [PubMed] - MacLean, A.L.; Filippi, S.; Stumpf, M.P.H. The ecology in the hematopoietic stem cell niche determines the clinical outcome in chronic myeloid leukemia. Proc. Natl. Acad. Sci. USA
**2014**, 111, 3882–3888. [Google Scholar] [CrossRef] [PubMed] - Wells, A.; Griffith, L.; Wells, J.Z.; Taylor, D.P. The dormancy dilemma: Quiescence versus balanced proliferation. Cancer Res.
**2013**, 73, 3811–3816. [Google Scholar] [CrossRef] [PubMed] - Manish, P.; Sylvia, N. Mathematical models of cancer. In Cancer Bioinformatics: From Therapy Design to Treatment; Sylvia, N., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2006; pp. 59–94. [Google Scholar]
- Turner, C.; Kohandel, M. Investigating the link between epithelial-mesenchymal transition and the cancer stem cell phenotype: A mathematical approach. J. Theor. Biol.
**2010**, 265, 329–335. [Google Scholar] [CrossRef] [PubMed] - Turner, C.; Kohandel, M. Quantitative approaches to cancer stem cells and epithelial–mesenchymal transition. Semin. Cancer Biol.
**2012**, 22, 374–378. [Google Scholar] [CrossRef] [PubMed] - Stinson, S.F.; Alley, M.C.; Kopp, W.C.; Fiebig, H.H.; Mullendore, L.A.; Pittman, A.F.; Kenney, S.; Keller, J.; Boyd, M.R. Morphological and immunocytochemical characteristics of human tumor cell lines for use in a disease-oriented anticancer drug screen. Anticancer Res.
**1992**, 12, 1035–1053. [Google Scholar] [PubMed]

© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

MacLean, A.L.; Harrington, H.A.; Stumpf, M.P.H.; Hansen, M.D.H.
Epithelial-Mesenchymal Transition in Metastatic Cancer Cell Populations Affects Tumor Dormancy in a Simple Mathematical Model. *Biomedicines* **2014**, *2*, 384-402.
https://doi.org/10.3390/biomedicines2040384

**AMA Style**

MacLean AL, Harrington HA, Stumpf MPH, Hansen MDH.
Epithelial-Mesenchymal Transition in Metastatic Cancer Cell Populations Affects Tumor Dormancy in a Simple Mathematical Model. *Biomedicines*. 2014; 2(4):384-402.
https://doi.org/10.3390/biomedicines2040384

**Chicago/Turabian Style**

MacLean, Adam L., Heather A. Harrington, Michael P. H. Stumpf, and Marc D. H. Hansen.
2014. "Epithelial-Mesenchymal Transition in Metastatic Cancer Cell Populations Affects Tumor Dormancy in a Simple Mathematical Model" *Biomedicines* 2, no. 4: 384-402.
https://doi.org/10.3390/biomedicines2040384