Development, Fabrication and Application of a Sectioned 3D-Printed Human Nasal Cavity Model for In Vitro Nasal Spray Deposition Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. CAD Model Generation and Sectioning
2.2. Material Selection and 3D Printing
2.3. Tested Nasal Spray Products
2.4. Analytical Characterization Methods
2.4.1. Droplet Size Distribution by Laser Diffraction
2.4.2. Spray Pattern and Plume Geometry by Non-Contact Laser Sheet Methods
2.4.3. HPLC Method for Quantification of Deposited Dose Fractions
2.5. Determination of Actuation Parameters
2.6. In Vitro Drug Deposition Study Methodology
2.7. Setup for In Vitro Drug Deposition Study
2.8. Staistical Evaluation
3. Results
3.1. Digital Model Validation
3.2. 3D Printed Components Validation
3.2.1. Nasal Cavity Sections
3.2.2. Fixation Device
3.3. Final Assembled Apparatus
3.4. Actuation Parameters and Characterization of NS
DSD, SP and PG
3.5. In Vitro Drug Deposition Study
4. Discussion
4.1. 3D Nasal Cavity Model Creation and Sectioning
4.2. Selection and Sectioning of Nasal Cavity Model
4.3. NS Actuation Parameters and Characterization
4.4. In Vitro Deposition Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Hajaj, N.; Khalil, R.; Husseini, G.A. Intranasal drug delivery: Pathways, challenges, and advancements in CNS targeting. J. Drug Deliv. Sci. Technol. 2025, 107, 106825. [Google Scholar] [CrossRef]
- Formica, M.L.; Real, D.A.; Picchio, M.L.; Catlin, E.; Donnelly, R.F.; Paredes, A.J. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Appl. Mater. Today 2022, 29, 101631. [Google Scholar] [CrossRef]
- Kehagia, E.; Papakyriakopoulou, P.; Valsami, G. Advances in intranasal vaccine delivery: A promising non-invasive route of immunization. Vaccine 2023, 41, 3589–3603. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Kumar, S.; Mishra, S. Intranasal mRNA vaccines: Targeting mucosal immunity through optimized delivery. Mol. Ther. Nucleic Acids 2025, 36, 102654. [Google Scholar] [CrossRef]
- Khan, T.T.S.; Sheikh, Z.; Fathi, A.; Maleknia, S.; Oveissi, F.; Abrams, T.; Knox, W.; Casettari, L.; Tiboni, M.; Suman, J.; et al. Exploring intranasal delivery of peptide and protein nanoparticles by a thermoresponsive hydrogel. J. Drug Deliv. Sci. Technol. 2025, 110, 107070. [Google Scholar] [CrossRef]
- Chen, J.; Finlay, W.H.; Vehring, R.; Martin, A.R. Characterizing regional drug delivery within the nasal airways. Expert. Opin. Drug Deliv. 2024, 21, 537–551. [Google Scholar] [CrossRef]
- Le Guellec, S.; Ehrmann, S.; Vecellio, L. In vitro—In vivo correlation of intranasal drug deposition. Adv. Drug Deliv. Rev. 2021, 170, 340–352. [Google Scholar] [CrossRef]
- Pires, A.; Fortuna, A.; Alves, G.; Falcão, A. Intranasal Drug Delivery: How, Why and What for? J. Pharm. Pharm. Sci. 2009, 12, 288–311. [Google Scholar] [CrossRef]
- Modaresi, M.A.; Shirani, E. Effect of mucociliary clearance on the particulate airflow inside the nasal sinus and its role in increasing the residence time and absorption of drugs inside the upper respiratory pathway. J. Drug Deliv. Sci. Technol. 2023, 89, 105095. [Google Scholar] [CrossRef]
- Gao, M.; Shen, X.; Mao, S. Factors influencing drug deposition in thenasal cavity upon delivery via nasal sprays. J. Pharm. Investig. 2020, 50, 251–259. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, Y.; Su, Y.; Sun, D. Influencing factors of particle deposition in the human nasal cavity. Laryngoscope Investig. Otolaryngol. 2024, 9, e1308. [Google Scholar] [CrossRef]
- Seifelnasr, A.; Si, X.; Xi, J. Assessing Nasal Epithelial Dynamics: Impact of the Natural Nasal Cycle on Intranasal Spray Deposition. Pharmaceuticals 2024, 17, 73. [Google Scholar] [CrossRef]
- Habib, A.-R.R.; Thamboo, A.; Manji, J.; Dar Santos, R.C.; Gan, E.C.; Anstead, A.; Javer, A.R. The effect of head position on the distribution of topical nasal medication using the Mucosal Atomization Device: A cadaver study. Int. Forum Allergy Rhinol. 2013, 3, 958–962. [Google Scholar] [CrossRef] [PubMed]
- Grmaš, J.; Stare, K.; Božič, D.; Injac, R.; Dreu, R. Elucidation of Formulation and Delivery Device-Related Effects on In Vitro Performance of Nasal Spray with Implication to Rational Product Specification Identification. J. Aerosol Med. Pulm. Drug Deliv. 2017, 30, 230–246. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.P.; Illum, L. Radionuclide imaging studies in the assessment of nasal drug delivery in humans. Am. J. Drug Deliv. 2004, 2, 101–112. [Google Scholar] [CrossRef]
- Veronesi, M.C.; Alhamami, M.; Miedema, S.B.; Yun, Y.; Ruiz-Cardozo, M.; Vannier, M.W. Imaging of intranasal drug delivery to the brain. Am. J. Nucl. Med. Mol. Imaging 2020, 10, 1–31. [Google Scholar]
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research (CDER). FY 2024 GDUFA Science and Research Report; U.S. Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER): Silver Spring, MD, USA, 2025. Available online: https://www.fda.gov/media/186225/download?attachment (accessed on 10 December 2025).
- Fratini, C.; Zhang, Y.; Moroni, S.; Tiboni, M.; Ong, H.X.; Young, P.M.; Casettari, L.; Traini, D. Combining innovation and sustainable development in the 3D printing manufacturing of drug delivery and testing devices. Int. J. Pharm. 2025, 679, 125751. [Google Scholar] [CrossRef]
- Fang, S.; Rui, X.; Zhang, Y.; Yang, Z.; Wang, W. Comparative study of nasal cavity drug delivery efficiency with different nozzles in a 3D printed model. PeerJ 2024, 12, e17227. [Google Scholar] [CrossRef]
- Schroeter, J.D.; Tewksbury, E.W.; Wong, B.A.; Kimbell, J.S. Experimental Measurements and Computational Predictions of Regional Particle Deposition in a Sectional Nasal Model. J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, N.P.; Zhu, F.; Hall, C.J.; Reboud, J.; Crosier, P.S.; Patton, E.E.; Wlodkowic, D.; Cooper, J.M. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab. Chip 2016, 16, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Goyanes, A.; Buanz, A.B.; Basit, A.W.; Gaisford, S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int. J. Pharm. 2014, 476, 88–92. [Google Scholar] [CrossRef]
- Lin, W.S.; Evenson, W.E.; Bostic, W.K.V.; Roberts, R.W.; Malmstadt, N. Compatibility of Popular Three-Dimensional Printed Microfluidics Materials with In Vitro Enzymatic Reactions. ACS Appl. Bio Mater. 2022, 5, 818–824. [Google Scholar] [CrossRef]
- Kim, C.S.; Eldridge, M.A. Aerosol deposition in the airway model with excessive mucus secretions. J. Appl. Physiol. 1985, 59, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, M.; Weitzberg, E.; Sundberg, J.; Sofia, M.; Lundberg, J.O. Assessment of nasal and sinus nitric oxide output using single-breath humming exhalations. Eur. Respir. J. 2003, 22, 323–329. [Google Scholar] [CrossRef]
- Möller, W.; Celik, G.; Feng, S.; Bartenstein, P.; Meyer, G.; Eickelberg, O.; Schmid, O.; Tatkov, S. Nasal high flow clears anatomical dead space in upper airway models. J. Appl. Physiol. 2015, 118, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Si, X.A.; Peters, S.; Nevorski, D.; Wen, T.; Lehman, M. Understanding the mechanisms underlying pulsating aerosol delivery to the maxillary sinus: In vitro tests and computational simulations. Int. J. Pharm. 2017, 520, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Holmes, T.D.; Gao, J.; Guilmette, R.A.; Li, S.; Surakitbanharn, Y.; Rowlings, C. Characterization of Nasal Spray Pumps and Deposition Pattern in a Replica of the Human Nasal Airway. J. Aerosol Med. 2001, 14, 267–280. [Google Scholar] [CrossRef]
- Kundoor, V.; Dalby, R.N. Effect of Formulation- and Administration-Related Variables on Deposition Pattern of Nasal Spray Pumps Evaluated Using a Nasal Cast. Pharm. Res. 2011, 28, 1895–1904. [Google Scholar] [CrossRef]
- Javaheri, E.; Golshahi, L.; Finlay, W.H. An idealized geometry that mimics average infant nasal airway deposition. J. Aerosol Sci. 2013, 55, 137–148. [Google Scholar] [CrossRef]
- Salade, L.; Wauthoz, N.; Goole, J.; Amighi, K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int. J. Pharm. 2019, 561, 47–65. [Google Scholar] [CrossRef]
- Francis, M.; Le Pennec, D.; Williams, G.; Duclos, E.; Diot, P.; Vecellio, L. In vitro study of aerosol deposition in nasal cavities during inhalation and exhalation. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, A25. [Google Scholar]
- Sartoretti, T.; Mannil, M.; Biendl, S.; Froehlich, J.M.; Alkadhi, H.; Zadory, M. In vitro qualitative and quantitative CT assessment of iodinated aerosol nasal deposition using a 3D-printed nasal replica. Eur. Radiol. Exp. 2019, 3, 32. [Google Scholar] [CrossRef]
- Le Guellec, S.; Le Pennec, D.; Gatier, S.; Leclerc, L.; Cabrera, M.; Pourchez, J.; Diot, P.; Reychler, G.; Pitance, L.; Durand, M.; et al. Validation of Anatomical Models to Study Aerosol Deposition in Human Nasal Cavities. Pharm. Res. 2014, 31, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Saijo, R.; Majima, Y.; Hyo, N.; Takano, H. Particle deposition of therapeutic aerosols in the nose and paranasal sinuses after transnasal sinus surgery: A cast model study. Am. J. Rhinol. 2004, 18, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Longest, P.W. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann. Biomed. Eng. 2007, 35, 560–581. [Google Scholar] [CrossRef]
- Garcia, G.J.; Tewksbury, E.W.; Wong, B.A.; Kimbell, J.S. Interindividual variability in nasal filtration as a function of nasal cavity geometry. J. Aerosol Med. Pulm. Drug Deliv. 2009, 22, 139–155. [Google Scholar] [CrossRef]
- Inthavong, K.; Shang, Y.; Wong, E.; Singh, N. Characterization of nasal irrigation flow from a squeeze bottle using computational fluid dynamics. Int. Forum Allergy Rhinol. 2020, 10, 29–40. [Google Scholar] [CrossRef]
- Brüning, J.; Hildebrandt, T.; Heppt, W.; Schmidt, N.; Lamecker, H.; Szengel, A.; Amiridze, N.; Ramm, H.; Bindernagel, M.; Zachow, S.; et al. Characterization of the Airflow within an Average Geometry of the Healthy Human Nasal Cavity. Sci. Rep. 2020, 10, 3755. [Google Scholar] [CrossRef] [PubMed]
- Foo, M.Y.; Cheng, Y.-S.; Su, W.-C.; Donovan, M.D. The Influence of Spray Properties on Intranasal Deposition. J. Aerosol Med. 2007, 20, 495–508. [Google Scholar] [CrossRef]
- Xi, J.; Yuan, J.E.; Zhang, Y.; Nevorski, D.; Wang, Z.; Zhou, Y. Visualization and Quantification of Nasal and Olfactory Deposition in a Sectional Adult Nasal Airway Cast. Pharm. Res. 2016, 33, 1527–1541. [Google Scholar] [CrossRef]
- Rigaut, C.; Deruyver, L.; Niesen, M.; Vander Ghinst, M.; Goole, J.; Lambert, P.; Haut, B. What Are the Key Anatomical Features for the Success of Nose-to-Brain Delivery? A Study of Powder Deposition in 3D-Printed Nasal Casts. Pharmaceutics 2023, 15, 2661. [Google Scholar] [CrossRef]
- Warnken, Z.N.; Smyth, H.D.C.; Davis, D.A.; Weitman, S.; Kuhn, J.G.; Williams, R.O. Personalized Medicine in Nasal Delivery: The Use of Patient-Specific Administration Parameters To Improve Nasal Drug Targeting Using 3D-Printed Nasal Replica Casts. Mol. Pharm. 2018, 15, 1392–1402. [Google Scholar] [CrossRef]
- Kundoor, V.; Dalby, R.N. Assessment of Nasal Spray Deposition Pattern in a Silicone Human Nose Model Using a Color-Based Method. Pharm. Res. 2010, 27, 30–36. [Google Scholar] [CrossRef]
- Kelly, J.T.; Asgharian, B.; Kimbell, J.S.; Wong, B.A. Particle Deposition in Human Nasal Airway Replicas Manufactured by Different Methods. Part I: Inertial Regime Particles. Aerosol Sci. Technol. 2004, 38, 1063–1071. [Google Scholar] [CrossRef]
- Hughes, R.; Watterson, J.; Dickens, C.; Ward, D.; Banaszek, A. Development of a nasal cast model to test medicinal nasal devices. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2008, 222, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Yarragudi, S.B.; Richter, R.; Lee, H.; Walker, G.F.; Clarkson, A.N.; Kumar, H.; Rizwan, S.B. Formulation of olfactory-targeted microparticles with tamarind seed polysaccharide to improve nose-to-brain transport of drugs. Carbohydr. Polym. 2017, 163, 216–226. [Google Scholar] [CrossRef]
- Wingrove, J.; Swedrowska, M.; Scherließ, R.; Parry, M.; Ramjeeawon, M.; Taylor, D.; Gauthier, G.; Brown, L.; Amiel, S.; Zelaya, F.; et al. Characterisation of nasal devices for delivery of insulin to the brain and evaluation in humans using functional magnetic resonance imaging. J. Control. Release 2019, 302, 140–147. [Google Scholar] [CrossRef]
- Quispe, R.; Trevino, J.A.; Khan, F.; Novak, V. Strategies for nose-to-brain drug delivery. In Proceedings of the 8th International Workshop on Innovative Simulation for Healthcare (IWISH 2019); CAL-TEK srl.: Rende, Italy, 2019. [Google Scholar]
- Vasa, D.M.; O’Donnell, L.A.; Wildfong, P.L.D. Influence of Dosage Form, Formulation, and Delivery Device on Olfactory Deposition and Clearance: Enhancement of Nose-to-CNS Uptake. J. Pharm. Innov. 2015, 10, 200–210. [Google Scholar] [CrossRef]
- Shrewsbury, S.B. The Upper Nasal Space: Option for Systemic Drug Delivery, Mucosal Vaccines and “Nose-to-Brain”. Pharmaceutics 2023, 15, 1720. [Google Scholar] [CrossRef]
- Pu, Y.; Goodey, A.P.; Fang, X.; Jacob, K. A Comparison of the Deposition Patterns of Different Nasal Spray Formulations Using a Nasal Cast. Aerosol Sci. Technol. 2014, 48, 930–938. [Google Scholar] [CrossRef]
- Nižić, L.; Ugrina, I.; Špoljarić, D.; Saršon, V.; Kučuk, M.S.; Pepić, I.; Hafner, A. Innovative sprayable in situ gelling fluticasone suspension: Development and optimization of nasal deposition. Int. J. Pharm. 2019, 563, 445–456. [Google Scholar] [CrossRef]
- Maaz, A.; Blagbrough, I.S.; De Bank, P.A. In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery. Pharmaceutics 2021, 13, 1079. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Z.; Finlay, W.H.; Martin, A. In Vitro Regional Deposition of Nasal Sprays in an Idealized Nasal Inlet: Comparison with In Vivo Gamma Scintigraphy. Pharm. Res. 2022, 39, 3021–3028. [Google Scholar] [CrossRef]
- Chen, J.Z.; Kiaee, M.; Martin, A.R.; Finlay, W.H. In vitro assessment of an idealized nose for nasal spray testing: Comparison with regional deposition in realistic nasal replicas. Int. J. Pharm. 2020, 582, 119341. [Google Scholar] [CrossRef]
- Hagen, M.; Shanga, G.; Caron, S.; Debnath, G. Nasal cast deposition for xylo-and oxymetazoline formulations using two different nasal pumps. Rhinol. Online 2023, 6, 11–17. [Google Scholar] [CrossRef]
- Rigaut, C.; Deruyver, L.; Goole, J.; Haut, B.; Lambert, P. Instillation of a dry powder in nasal casts: Parameters influencing the olfactory deposition with uni-and bi-directional devices. Front. Med. Technol. 2022, 4, 924501. [Google Scholar] [CrossRef] [PubMed]
- Seifelnasr, A.; Si, X.A.; Xi, J. Visualization and Estimation of Nasal Spray Delivery to Olfactory Mucosa in an Image-Based Transparent Nasal Model. Pharmaceutics 2023, 15, 1657. [Google Scholar] [CrossRef]
- Kimbell, J.S.; Segal, R.A.; Asgharian, B.; Wong, B.A.; Schroeter, J.D.; Southall, J.P.; Dickens, C.J.; Brace, G.; Miller, F.J. Characterization of Deposition from Nasal Spray Devices Using A Computational Fluid Dynamics Model of The Human Nasal Passages. J. Aerosol Med. 2007, 20, 59–74. [Google Scholar] [CrossRef]
- Guo, Y.; Laube, B.; Dalby, R. The Effect of Formulation Variables and Breathing Patterns on the Site of Nasal Deposition in an Anatomically Correct Model. Pharm. Res. 2005, 22, 1871–1878. [Google Scholar] [CrossRef]
- Calmet, H.; Inthavong, K.; Eguzkitza, B.; Lehmkuhl, O.; Houzeaux, G.; Vázquez, M. Nasal sprayed particle deposition in a human nasal cavity under different inhalation conditions. PLoS ONE 2019, 14, e0221330. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services, Food and Drug Administration (FDA). Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products—Chemistry, Manufacturing, and Controls Documentation; U.S. Department of Health and Human Services, Food and Drug Administration (FDA): Rockville, MD, USA, 2002. Available online: https://www.fda.gov/media/70857/download (accessed on 19 January 2026).








| NS | Dv10 [µm] | Dv50 [µm] | Dv90 [µm] | Span | Dmax [mm] | Dmin [mm] | Area [mm2] | Ovality | Plume Angle [°]/Perpendicular Positions |
|---|---|---|---|---|---|---|---|---|---|
| A | 19 ± 0 | 40 ± 0 | 83 ± 0 | 1.60 ± 0.01 | 24 ± 0 | 20 ± 0 | 377 ± 5 | 1.24 ± 0.02 | 44 ± 2/48 ± 2 |
| B | 16 ± 0 | 31 ± 0 | 58 ± 0 | 1.36 ± 0.04 | 28 ± 0 | 20 ± 0 | 407 ± 2 | 1.45 ± 0.03 | 61 ± 1/58 ± 1 |
| Effect | Pillai | F | df1 | df2 | p |
|---|---|---|---|---|---|
| Device | 0.087 | 0.589 | 2 | 13 | 0.569 |
| Angle | 1.202 | 22.588 | 4 | 30 | 1.09 × 10−8 |
| Device * Angle | 0.449 | 4.339 | 4 | 30 | 0.007 |
| Residual | 1345.484 | 12 |
| Effect | Pillai | F | df1 | df2 | p |
|---|---|---|---|---|---|
| Device | 0.212 | 1.543 | 2 | 13 | 0.250 |
| Angle | 1.011 | 15.339 | 4 | 30 | 6.17 × 10−7 |
| Device * Angle | 0.560 | 5.827 | 4 | 30 | 0.001 |
| Effect | Sum_sq | df | F | PR (>F) |
|---|---|---|---|---|
| Device | 7.128 | 1 | 0.064 | 0.805 |
| Angle | 1278.817 | 2 | 5.703 | 0.018 |
| Device * Angle | 636.140 | 2 | 2.837 | 0.098 |
| Residual | 1345.484 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ličen, A.; Grmaš, J.; Pelcar, Š.; Trontelj, J.; Gomboc, T.; Hriberšek, M.; Harih, G. Development, Fabrication and Application of a Sectioned 3D-Printed Human Nasal Cavity Model for In Vitro Nasal Spray Deposition Studies. Biomedicines 2026, 14, 329. https://doi.org/10.3390/biomedicines14020329
Ličen A, Grmaš J, Pelcar Š, Trontelj J, Gomboc T, Hriberšek M, Harih G. Development, Fabrication and Application of a Sectioned 3D-Printed Human Nasal Cavity Model for In Vitro Nasal Spray Deposition Studies. Biomedicines. 2026; 14(2):329. https://doi.org/10.3390/biomedicines14020329
Chicago/Turabian StyleLičen, Anže, Jernej Grmaš, Špela Pelcar, Jurij Trontelj, Timi Gomboc, Matjaž Hriberšek, and Gregor Harih. 2026. "Development, Fabrication and Application of a Sectioned 3D-Printed Human Nasal Cavity Model for In Vitro Nasal Spray Deposition Studies" Biomedicines 14, no. 2: 329. https://doi.org/10.3390/biomedicines14020329
APA StyleLičen, A., Grmaš, J., Pelcar, Š., Trontelj, J., Gomboc, T., Hriberšek, M., & Harih, G. (2026). Development, Fabrication and Application of a Sectioned 3D-Printed Human Nasal Cavity Model for In Vitro Nasal Spray Deposition Studies. Biomedicines, 14(2), 329. https://doi.org/10.3390/biomedicines14020329

