Animal Models of Restenosis and Intimal Hyperplasia in Cardiovascular Percutaneous Interventions: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Selection and Scope
3. Results
3.1. Study Selection and Scope (Table 1)
| Study | Species | Purpose | Short Summary |
|---|---|---|---|
| Jeremy 2010 [11] | Mouse, Rat, Rabbit, Swine | Mechanistic and device evaluation | Time course of neointima formation characterized |
| Iqbal (2016) [13] | Mouse, Rat, Rabbit, Swine, Sheep, Dog | Device and drug testing | Compared stent types and neointimal responses across species |
| Taavitsainen (2020) [14] | Rabbit, Swine | Device evaluation | Neointimal proliferation evaluated post-stenting |
| De Prado (2013) [15] | Rabbit, Swine | Stent performance | Neointimal thickness quantified post-implantation |
| Suzuki (2009) [16] | Rabbit, Swine | Drug/device testing | Evaluated local drug effects on intimal hyperplasia |
| Bayes-Genis (2000) [17] | Mouse, Rat, Rabbit, Sheep | Mechanistic and stent testing | Evaluated vascular injury; interspecies differences noted |
| Perkins (2019) [18] | Swine | Device testing | Assessed long-term neointimal formation |
| Perkins (2010) [19] | Rat, Rabbit, Swine, Dog, Sheep, Nonhuman primates | Device evaluation | Compared DES vs. bare metal stents; species-dependent responses |
| Schwartz (2004) [20] | Mouse, Rat, Rabbit, Swine | Device evaluation | Studied responses to stent implantation |
| Ferns (2000) [21] | Mouse, Rabbit, Swine, Nonhuman primates | Neointimal formation | Characterized smooth muscle proliferation and remodeling |
| Touchard (2006) [22] | Rat, Mouse, Swine | Restenosis mechanism | Balloon injury + diet increased intimal hyperplasia |
| Amatruda (2014) [23] | Swine | Drug/device testing | Swine arteries mimicked human restenosis |
| Mitsutake (2017) [24] | Swine | Neointimal mechanisms | Documented SMC proliferation and vessel remodeling |
| Kantor (1999) [25] | Rat, Rabbit, Swine | Mechanistic | Balloon-injury-induced neointima; species-specific responses |
3.2. Animal Models by Species (Table 2)
3.2.1. Mouse Model [11,14,17,18,22,23]
| Species | Key Features | Main Advantages | Main Limitations | Typical Application | Translational Relevance |
|---|---|---|---|---|---|
| Mouse | ~1 mm vessels, genetic manipulation | Low cost, powerful genetic tools | No clinical stenting, simple plaques | Mechanistic studies | Moderate |
| Rat | Larger vessels, surgical access | Reproducible injury models | Weak atherosclerosis | Neointima, drug testing | Moderate |
| Rabbit | Human-sized arteries, hyperlipidemia | Double-injury model | Elastic arteries | Restenosis, stents | High |
| Pig | Human-like coronary anatomy | Human-like neointimal response | High cost, rapid growth | Devices, PCI | Very high |
| Sheep | Stable physiology | Chronic implant suitability | Cost, handling | Valves, implants | High |
| Dog | Human-like conduction system | Electrophysiology relevance | Resistant to atherosclerosis | EP studies | Moderate |
| NHP | Closest to humans | Best physiological similarity | Ethics, cost | Safety validation | Very high |
3.2.2. Rat Model [11,14,15,17,19,20,23,24,25]
3.2.3. Rabbit Model [11,14,15,17,18,19,20,21,22,25]
3.2.4. Swine Model [11,14,15,16,17,18,19,20,21,22,24,25]
3.2.5. Other Large Animal Models: Dogs, Sheep, and Nonhuman Primates [14,19,22]
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PCI | Percutaneous Coronary Intervention |
| DES | Drug-Eluting Stent |
| NHP | Nonhuman Primate |
| SMC | Smooth Muscle Cell |
| ApoE | Apolipoprotein E |
| EP | Electrophysiology |
| 3Rs | Replacement, Reduction, Refinement |
References
- Nugraha, H.; Hilman, S.; Santiana, L.; Dewi, D.K.; Raffaelo, W.M.; Wibowo, A. Drug-Coated Balloon versus Drug-Eluting Stent in Patients with Femoropopliteal Artery Disease: A Systematic Review and Meta-Analysis. Vasc. Endovasc. Surg. 2022, 56, 385–392. [Google Scholar] [CrossRef]
- Ullah, W.; Zghouzi, M.; Sattar, Z.; Ahmad, B.; Zahid, S.; Suleiman, A.M. Safety and Efficacy of Drug-Coated Balloon for Peripheral Artery Revascularization: A Systematic Review and Meta-Analysis. Catheter. Cardiovasc. Interv. 2022, 99, 1319–1326. [Google Scholar]
- Cao, S.; He, T.; Xie, J.; Feng, H.; Liu, K.; Qu, B. Drug-Coated Balloon Angioplasty versus Balloon Angioplasty for Treating Patients with In-Stent Restenosis in the Femoropopliteal Artery: A Meta-Analysis. Medicine 2021, 100, e25599. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, P.; Farhan, S.; Schneider, P.; Kamran, H.; Iida, O.; Brodmann, M. Determinants of Drug-Coated Balloon Failure in Patients Undergoing Femoropopliteal Arterial Intervention. J. Am. Coll. Cardiol. 2022, 80, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Pathogenesis and Clinical Significance of In-Stent Restenosis in Patients with Diabetes. Int. J. Environ. Res. Public Health 2021, 18, 11970. [Google Scholar] [CrossRef] [PubMed]
- Fattori, R.; Piva, T. Drug-Eluting Stents in Vascular Intervention. Lancet 2003, 361, 247–249. [Google Scholar] [CrossRef]
- Nusca, A.; Viscusi, M.M.; Piccirillo, F.; De Filippis, A.; Nenna, A.; Spadaccio, C.; Nappi, F.; Chello, C.; Mangiacapra, F.; Grigioni, F.; et al. In Stent Neo-Atherosclerosis: Pathophysiology, Clinical Implications, Prevention, and Therapeutic Approaches. Life 2022, 12, 393. [Google Scholar] [CrossRef]
- Rodriguez Perez, C.; Persson, K.; Cajiga Morales, R.; Elger, B.S.; Shaw, D.M. Russell and Burch’s 3Rs Then and Now: The Case of Switzerland. ALTEX Altern. Anim. Exp. 2023, 40, 635–648. [Google Scholar]
- Roy, S.; Silacci, P.; Stergiopulos, N. Biomechanical Properties of Decellularized Porcine Common Carotid Arteries. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H1567–H1576. [Google Scholar] [CrossRef]
- Haase, D.; Otto, S.; Romeike, B.F.M.; Figulla, H.R.; Poerner, T.C. Development and Characterization of an Ex Vivo Arterial Long-Term Proliferation Model for Restenosis Research. ALTEX Altern. Anim. Exp. 2015, 32, 307–317. [Google Scholar]
- Jeremy, J.Y.; Thomas, A.C. Animal Models for Studying Neointima Formation. Curr. Vasc. Pharmacol. 2010, 8, 198–219. [Google Scholar] [CrossRef]
- Ebert, M.L.A.; Schmidt, V.F.; Pfaff, L.; von Thaden, A.; Kimm, M.A.; Wildgruber, M. Animal Models of Neointimal Hyperplasia and Restenosis: Species-Specific Differences and Implications for Translational Research. JACC Basic. Transl. Sci. 2021, 6, 900–917. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Chamberlain, J.; Francis, S.E.; Gunn, J. Role of Animal Models in Coronary Stenting. Ann. Biomed. Eng. 2016, 44, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Taavitsainen, J.; Tarvainen, S.; Kuivanen, A.; Mangiardi, E.K.; Guelcher, M.; Martin, J. Evaluation of Biodegradable Stent Graft Coatings in Pig Rabbit Models. J. Vasc. Res. 2020, 57, 65–75. [Google Scholar] [CrossRef] [PubMed]
- de Prado, A.P.; Pérez Martínez, C.; Cuellas, C.; Gonzalo Orden, J.M.; Diego, A.; Regueiro, M. Preclinical Evaluation of Coronary Stents: Focus on Safety Issues. Curr. Vasc. Pharmacol. 2013, 11, 74–99. [Google Scholar] [CrossRef]
- Suzuki, Y.; Yeung, A.C.; Ikeno, F. The Preclinical Animal Model in the Translational Research of Interventional Cardiology. JACC Cardiovasc. Interv. 2009, 2, 373–383. [Google Scholar] [CrossRef]
- Bayes-Genis, A.; Kantor, B.; Keelan, P.C.; Altman, J.D.; Lubbe, D.F.; Kang, J.H. Restenosis and Hyperplasia: Animal Models. Curr. Interv. Cardiol. Rep. 2000, 2, 303–308. [Google Scholar]
- Perkins, L.E.L.; Rippy, M.K. Balloons and Stents and Scaffolds: Preclinical Evaluation of Interventional Devices for Occlusive Arterial Disease. Toxicol. Pathol. 2019, 47, 297–310. [Google Scholar] [CrossRef]
- Perkins, L.E. Preclinical Models of Restenosis and Their Application in the Evaluation of Drug-Eluting Stent Systems. Vet. Pathol. 2010, 47, 58–76. [Google Scholar] [CrossRef]
- Schwartz, R.S.; Chronos, N.A.; Virmani, R. Preclinical Restenosis Models and Drug-Eluting Stents: Still Important, Still Much to Learn. J. Am. Coll. Cardiol. 2004, 44, 1373–1385. [Google Scholar]
- Ferns, G.A.; Avades, T.Y. The Mechanisms of Coronary Restenosis: Insights from Experimental Models. Int. J. Exp. Pathol. 2000, 81, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Touchard, A.G.; Schwartz, R.S. Preclinical Restenosis Models: Challenges and Successes. Toxicol. Pathol. 2006, 34, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Amatruda, C.M.; Bona Casas, C.; Keller, B.K.; Tahir, H.; Dubini, G.; Hoekstra, A. From Histology and Imaging Data to Models for In-Stent Restenosis. Int. J. Artif. Organs 2014, 37, 786–800. [Google Scholar] [CrossRef] [PubMed]
- Mitsutake, Y.; Reifart, J.; Pyun, W.B.; Lyons, J.K.; Deuse, T.; Schrepfer, S. Differences in Vascular Response between Balloon Overstretch and Stent Overexpansion in Nonatherosclerotic Porcine Coronary Arteries. Comp. Med. 2017, 67, 350–355. [Google Scholar]
- Kantor, B.; Ashai, K.; Holmes, D.R., Jr.; Schwartz, R.S. Experimental Animal Models for Assessing Treatment of Restenosis. Cardiovasc. Radiat. Med. 1999, 1, 48–54. [Google Scholar] [CrossRef]
- Grüntzig, A.; Riedhammer, H.H.; Turina, M.; Rutishauser, W. Eine neue Methode zur perkutanen Dilatation von Koronarstenosen—Tierexperimentelle Prüfung. Verh. Dtsch. Ges. Kreislaufforsch. 1976, 42, 282–285. [Google Scholar]
- Dotter, C.T.; Buschmann, R.W.; McKinney, M.K.; Rösch, J. Transluminal Expandable Nitinol Coil Stent Grafting: Preliminary Report. Radiology 1983, 147, 259–260. [Google Scholar] [CrossRef]
- de Prado, A.P.; Pérez Martínez, C.; Cuellas Ramón, C.; Gonzalo Orden, J.M.; Regueiro Purriños, M.; Martínez, B. Time Course of Reendothelialization of Stents in a Normal Coronary Swine Model: Characterization and Quantification. Vet. Pathol. 2011, 48, 1109–1117. [Google Scholar] [CrossRef]
- Simon, F.; Larena-Avellaneda, A.; Wipper, S. Experimental Atherosclerosis Research on Large and Small Animal Models in Vascular Surgery. J. Vasc. Res. 2022, 59, 221–228. [Google Scholar] [CrossRef]
- Rollin, B.E. The Moral Status of Invasive Animal Research. Hastings Cent. Rep. 2012, 42, S4–S6. [Google Scholar] [CrossRef][Green Version]
- Lafont, A.; Faxon, D. Why Do Animal Models of Post-Angioplasty Restenosis Sometimes Poorly Predict the Outcome of Clinical Trials? Cardiovasc. Res. 1998, 39, 50–59. [Google Scholar] [CrossRef][Green Version]
- Muller, D.W.; Ellis, S.G.; Topol, E.J. Experimental Models of Coronary Artery Restenosis. J. Am. Coll. Cardiol. 1992, 19, 418–432. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.; Fatima, M.; Hou, S.; Bai, L.; Zhao, S.; Liu, E. Research Methods for Animal Models of Atherosclerosis (Review). Mol. Med. Rep. 2021, 24, 871. [Google Scholar] [CrossRef]
- Narayanaswamy, M.; Wright, K.C.; Kandarpa, K. Animal Models for Atherosclerosis, Restenosis, and Endovascular Graft Research. J. Vasc. Interv. Radiol. 2000, 11, 5–17. [Google Scholar] [CrossRef]
- Blackler, G.; Akingbasote, J.; Cairns, E.; Howlett, C.; Kiser, P.; Barra, L. The Effect of HLA-DRB1*04:01 on a Mouse Model of Atherosclerosis. J. Transl. Autoimmun. 2023, 7, 100203. [Google Scholar] [CrossRef]
- Shumakov, D.; Shekhyan, G.G.; Zybin, D.; Yalymov, A.A.; Vedenikin, T.Y.; Popov, M. In-stent restenosis: Symptoms, hemodynamic signs, pathogenesis and treatment. Kardiol. vestnik. 2021, 16, 20. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Houthoofd, S.; Vuylsteke, M.; Mordon, S.; Fourneau, I. Animal Models of Restenosis and Intimal Hyperplasia in Cardiovascular Percutaneous Interventions: A Narrative Review. Biomedicines 2026, 14, 309. https://doi.org/10.3390/biomedicines14020309
Houthoofd S, Vuylsteke M, Mordon S, Fourneau I. Animal Models of Restenosis and Intimal Hyperplasia in Cardiovascular Percutaneous Interventions: A Narrative Review. Biomedicines. 2026; 14(2):309. https://doi.org/10.3390/biomedicines14020309
Chicago/Turabian StyleHouthoofd, Sabrina, Marc Vuylsteke, Serge Mordon, and Inge Fourneau. 2026. "Animal Models of Restenosis and Intimal Hyperplasia in Cardiovascular Percutaneous Interventions: A Narrative Review" Biomedicines 14, no. 2: 309. https://doi.org/10.3390/biomedicines14020309
APA StyleHouthoofd, S., Vuylsteke, M., Mordon, S., & Fourneau, I. (2026). Animal Models of Restenosis and Intimal Hyperplasia in Cardiovascular Percutaneous Interventions: A Narrative Review. Biomedicines, 14(2), 309. https://doi.org/10.3390/biomedicines14020309

