A Novel Concept of Tissue Micro-Instability as the Underlying Mechanism of Osteophytosis in Human Knee Osteoarthritis
Abstract
1. Introduction
- Identify early subchondral bone alterations as potential triggers for OP initiation in human OA and delineate their progression throughout OA stages;
- Perform a comprehensive histological evaluation of the peripheral osteochondral junction, utilizing human tissue from early to late OA;
- Define the chronological sequence of morphological events culminating in OP development.
2. Materials and Methods
2.1. Study Cohort
2.2. Histology
2.3. Scanning Electron Microscopy
2.4. Raman Spectroscopy
2.5. Statistical Analysis
3. Results
3.1. Histological Analysis
3.1.1. Articular Cartilage
3.1.2. Subchondral Trabecular Bone
3.1.3. OPs
3.1.4. The VEPLS Zone
3.2. Pearson Correlation Analysis
- Structural interdependenceA strong positive correlation (r = 0.76, p < 0.0001) was observed between the thickness of the subchondral cortical plate and the thickness of the adjacent trabeculae, confirming their structural and functional interdependence as a unified biomechanical system.
- Ambiguity in the load-response mechanismConflicting correlations within the load-bearing zone demonstrated a dualistic response. Positive correlations were found with cartilage height (r = 0.36, p = 0.002) and with the VEPLS-zone cortical fractures (r = 0.37, p = 0.002). A negative correlation was observed with trabecular thickness (r = −0.63, p < 0.0001). This pattern suggests a complex tissue adaptation mechanism, involving compensatory cartilage thickening concurrent with the development of osteoporosis in unloaded regions.
- The VEPLS zone as a key linkModerate correlations between subchondral cortical fractures and VEPLS-zone cortical fractures (r = 0.34, p = 0.005), as well as between the load-bearing zone and VEPLS-zone cortical fractures (r = 0.37, p = 0.002), confirm the central role of this zone in transmitting biomechanical stress.
- Disease progressionThe correlation between the OARSI stage and OP diameter (r = 0.64, p < 0.0001) indicates their concurrent progression throughout the disease course.
3.3. Bone Tissue Mineral Composition
4. Discussion
4.1. Early Subchondral Remodeling and a Proposed Refinement of Its Anatomical Definition
4.2. Early Structural Failure and an Anatomical Oversight
4.3. Structural Vulnerability of the VEPLS Zone
4.4. Initial Phase of OP Development
4.5. Concurrent Vascular Pathology in the VEPLS Zone
4.6. The Initiating Traumatic Force and Its Origin
4.7. The Concept of Tissue Micro-Instability and a Revised Definition of the OP
- Pre-OP stage (characterized by cortical protrusion and peripheral trabecular fracture)
- Joint micro-instability induces fractures at the cortical angle, affecting both its subchondral and condylar aspects. Concurrently, fractures develop in the trabecula closest to the cortical angle.
- Under persistent mechanical stress and impaired reparative osteogenesis, the cortical angle protrudes and the trabecular fracture extends linearly toward the central compartment.
- OP emergence
- Wavelike deformation of the condylar cortical plate arises within the VEPLS zone, accompanied by advancement of the protrusion and the formation of a distinct OP elevated above the original condylar surface.
- Continued OP growth exacerbates deformation of the condylar cortical plate, resulting in compression of perforating epiphyseal vessels.
- OP maturationThe OP undergoes continued growth through enchondral and periosteal ossification, accompanied by recurrent cortical plate fractures and progression of the linear trabecular fracture. These fractures likely result from persistent mechanical trauma and further stimulate OP development.
- Mature OP stageThe OP detaches from the VEPLS-zone cortical plate while maintaining connections to the subchondral cortical plate and trabecular bone. This stage marks stabilization of the regenerative process, evidenced by the appearance of red bone marrow islands within the OP. Complete loss of articular cartilage and widespread osteosclerosis of the subchondral trabecular bone accompany this final stage.
4.8. Study Limitations
- Sample size imbalance limiting evolutionary analysis
- 2.
- Methodological limitations
- 3.
- Heterogeneous biomaterial sources and absence of radiographic data for key groups
- 4.
- Single-center data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| OP | Osteophyte |
| OA | Osteoarthritis |
| VEPLS zone | A special anatomical area where osteophyte develops |
References
- Li, X.; Chen, W.; Liu, D.; Chen, P.; Wang, S.; Li, F.; Chen, Q.; Lv, S.; Li, F.; Chen, C. Pathological progression of osteoarthritis: A perspective on subchondral bone. Front. Med. 2024, 18, 237–257. [Google Scholar] [CrossRef]
- Lange, M.; Babczyk, P.; Tobiasch, E. Exosomes: A new hope for angiogenesis-mediated bone regeneration. Int. J. Mol. Sci. 2024, 25, 5204. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Huang, X.; Ma, J.; Zhao, G.; Ma, T.; Chen, K.; Huang, G.; Chen, J.; Shi, J.; Wang, S. Exosomes derived from MSC as drug system in osteoarthritis therapy. Front. Bioeng. Biotechnol. 2024, 12, 1331218. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xiong, W.-Q.; Li, C.-Z.; Wu, M.-J.; Zhang, X.-Z.; Ran, C.-X.; Li, Z.-H.; Cui, Y.; Liu, B.-Y.; Zhao, D.-W. Extracellular vesicles derived from mesenchymal stem cells mediate extracellular matrix remodeling in osteoarthritis through the transport of microRNA-29a. World J. Stem Cells 2024, 16, 191. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, Y.; Cao, Y.; Zhao, C.; Liu, Q.; Li, N.; Liu, Y.; Cui, X.; Liu, P.; Liang, J. Remodeling the Proinflammatory Microenvironment in Osteoarthritis through Interleukin-1 Beta Tailored Exosome Cargo for Inflammatory Regulation and Cartilage Regeneration. ACS Nano 2025, 19, 4924–4941. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Y.; Miao, Y.; Xue, F.; Yin, J.; Wang, L.; Li, G. Microstructural and histomorphological features of osteophytes in late-stage human knee osteoarthritis with varus deformity. Jt. Bone Spine 2022, 89, 105353. [Google Scholar] [CrossRef]
- Gelse, K.; Söder, S.; Eger, W.; Diemtar, T.; Aigner, T. Osteophyte development—Molecular characterization of differentiation stages. Osteoarthr. Cartil. 2003, 11, 141–148. [Google Scholar] [CrossRef]
- Van Der Kraan, P.M.; Van Den Berg, W.B. Osteophytes: Relevance and biology. Osteoarthr. Cartil. 2007, 15, 237–244. [Google Scholar] [CrossRef]
- Vincent, G.; Marchand, R.; Mont, M.A.; Harder, B.; Salem, H.S.; Conaghan, P.G.; Brett, A.D.; Bowes, M.A. Characterizing osteophyte formation in knee osteoarthritis: Application of machine learning quantification of a computerized tomography cohort: Implications for treatment. J. Arthroplast. 2024, 39, 2692–2701. [Google Scholar] [CrossRef]
- Wong, S.H.J.; Chiu, K.Y.; Yan, C.H. Review Article: Osteophytes. J. Orthop. Surg. 2016, 24, 403–410. [Google Scholar] [CrossRef]
- Hashimoto, S.; Creighton-Achermann, L.; Takahashi, K.; Amiel, D.; Coutts, R.; Lotz, M. Development and regulation of osteophyte formation during experimental osteoarthritis. Osteoarthr. Cartil. 2002, 10, 180–187. [Google Scholar] [CrossRef]
- Wang, Q.; Runhaar, J.; Kloppenburg, M.; Boers, M.; Bijlsma, J.W.; Bierma-Zeinstra, S.M.; Group, C.E. Evaluation of the diagnostic performance of American college of rheumatology, EULAR, and National Institute for health and clinical excellence criteria against clinically relevant knee osteoarthritis: Data from the CHECK cohort. Arthritis Care Res. 2024, 76, 511–516. [Google Scholar] [CrossRef]
- Little, C.B.; Barai, A.; Burkhardt, D.; Smith, S.; Fosang, A.; Werb, Z.; Shah, M.; Thompson, E. Matrix metalloproteinase 13–deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2009, 60, 3723–3733. [Google Scholar] [CrossRef]
- Junker, S.; Krumbholz, G.; Frommer, K.W.; Rehart, S.; Steinmeyer, J.; Rickert, M.; Schett, G.; Müller-Ladner, U.; Neumann, E. Differentiation of osteophyte types in osteoarthritis–proposal of a histological classification. Jt. Bone Spine 2016, 83, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Roelofs, A.J.; Kania, K.; Rafipay, A.J.; Sambale, M.; Kuwahara, S.T.; Collins, F.L.; Smeeton, J.; Serowoky, M.A.; Rowley, L.; Wang, H. Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Ann. Rheum. Dis. 2020, 79, 1625–1634. [Google Scholar] [CrossRef] [PubMed]
- Venne, G.; Tse, M.; Pang, S.; Ellis, R. Mechanically-induced osteophyte in the rat knee. Osteoarthr. Cartil. 2020, 28, 853–864. [Google Scholar] [CrossRef]
- Zoricic, S.; Maric, I.; Bobinac, D.; Vukicevic, S. Expression of bone morphogenetic proteins and cartilage-derived morphogenetic proteins during osteophyte formation in humans. J. Anat. 2003, 202, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Heiland, G.; Horn, A.; Zerr, P.; Hofstetter, W.; Baum, W.; Stock, M.; Distler, J.H.; Nimmerjahn, F.; Schett, G.; Zwerina, J. Blockade of the hedgehog pathway inhibits osteophyte formation in arthritis. Ann. Rheum. Dis. 2012, 71, 400–407. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, T.; Luo, J.; Ding, S.; Gao, S.; Zhang, J. Cartilaginous metabolomic study reveals potential mechanisms of osteophyte formation in osteoarthritis. J. Proteome Res. 2017, 16, 1425–1435. [Google Scholar] [CrossRef]
- Rockel, J.S.; Kapoor, M. The metabolome and osteoarthritis: Possible contributions to symptoms and pathology. Metabolites 2018, 8, 92. [Google Scholar] [CrossRef]
- Murata, K.; Kokubun, T.; Morishita, Y.; Onitsuka, K.; Fujiwara, S.; Nakajima, A.; Fujino, T.; Takayanagi, K.; Kanemura, N. Controlling abnormal joint movement inhibits response of osteophyte formation. Cartilage 2018, 9, 391–401. [Google Scholar] [CrossRef]
- Murata, K.; Kokubun, T.; Onitsuka, K.; Oka, Y.; Kano, T.; Morishita, Y.; Ozone, K.; Kuwabara, N.; Nishimoto, J.; Isho, T. Controlling joint instability after anterior cruciate ligament transection inhibits transforming growth factor-beta-mediated osteophyte formation. Osteoarthr. Cartil. 2019, 27, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
- Blom, A.B.; van Lent, P.L.; Holthuysen, A.E.; van der Kraan, P.M.; Roth, J.; van Rooijen, N.; van den Berg, W.B. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr. Cartil. 2004, 12, 627–635. [Google Scholar] [CrossRef]
- Cai, W.; Li, H.; Zhang, Y.; Han, G. Identification of key biomarkers and immune infiltration in the synovial tissue of osteoarthritis by bioinformatics analysis. PeerJ 2020, 8, e8390. [Google Scholar] [CrossRef]
- Kumm, J.; Turkiewicz, A.; Zhang, F.; Englund, M. Structural abnormalities detected by knee magnetic resonance imaging are common in middle-aged subjects with and without risk factors for osteoarthritis. Acta Orthop. 2018, 89, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Snoeker, B.; Ishijima, M.; Kumm, J.; Zhang, F.; Turkiewicz, A.; Englund, M. Are structural abnormalities on knee MRI associated with osteophyte development? Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2021, 29, 1701–1708. [Google Scholar] [CrossRef]
- Waldstein, W.; Kasparek, M.F.; Faschingbauer, M.; Windhager, R.; Boettner, F. Lateral-compartment osteophytes are not associated with lateral-compartment cartilage degeneration in arthritic varus knees. Clin. Orthop. Relat. Res. 2017, 475, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Yokota, S.; Ishizu, H.; Miyazaki, T.; Takahashi, D.; Iwasaki, N.; Shimizu, T. Osteoporosis, osteoarthritis, and subchondral insufficiency fracture: Recent insights. Biomedicines 2024, 12, 843. [Google Scholar] [CrossRef]
- Oláh, T.; Cucchiarini, M.; Madry, H. Subchondral bone remodeling patterns in larger animal models of meniscal injuries inducing knee osteoarthritis–a systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5346–5364. [Google Scholar] [CrossRef]
- Intema, F.; Hazewinkel, H.; Gouwens, D.; Bijlsma, J.; Weinans, H.; Lafeber, F.; Mastbergen, S. In early OA, thinning of the subchondral plate is directly related to cartilage damage: Results from a canine ACLT-meniscectomy model. Osteoarthr. Cartil. 2010, 18, 691–698. [Google Scholar] [CrossRef]
- Teichtahl, A.J.; Wluka, A.E.; Wijethilake, P.; Wang, Y.; Ghasem-Zadeh, A.; Cicuttini, F.M. Wolff’s law in action: A mechanism for early knee osteoarthritis. Arthritis Res. Ther. 2015, 17, 207. [Google Scholar] [CrossRef]
- Kuyinu, E.L.; Narayanan, G.; Nair, L.S.; Laurencin, C.T. Animal models of osteoarthritis: Classification, update, and measurement of outcomes. J. Orthop. Surg. Res. 2016, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.a.; Zhang, C.; Oo, W.M.; Fu, K.; Risberg, M.A.; Bierma-Zeinstra, S.M.; Neogi, T.; Atukorala, I.; Malfait, A.-M.; Ding, C. The osteoarthritis. Nat. Rev. Dis. Primers 2025, 11, 1–22. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef]
- Dempster, D.W.; Compston, J.E.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R.; Parfitt, A.M. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2013, 28, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Pritzker, K.P.; Gay, S.; Jimenez, S.; Ostergaard, K.; Pelletier, J.-P.; Revell, P.; Salter, D.; Van den Berg, W. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthr. Cartil. 2006, 14, 13–29. [Google Scholar] [CrossRef]
- Kraus, V.B.; Huebner, J.L.; DeGroot, J.; Bendele, A. The OARSI histopathology initiative–recommendations for histological assessments of osteoarthritis in the guinea pig. Osteoarthr. Cartil. 2010, 18, S35–S52. [Google Scholar] [CrossRef]
- Gupta, V.; Pathak, D.K.; Chaudhary, S.; Kumar, R. Raman imaging for measuring homogeneity of dry binary blend: Combining microscopy with spectroscopy for technologists. Anal. Sci. Adv. 2020, 1, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. Bone’s mechanostat: A 2003 update. Anat. Rec. 2003, 275, 1081–1101. [Google Scholar] [CrossRef]
- An, Y.H.; Martin, K.L. Handbook of Histology Methods for Bone and Cartilage; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Li, G.; Yin, J.; Gao, J.; Cheng, T.S.; Pavlos, N.J.; Zhang, C.; Zheng, M.H. Subchondral bone in osteoarthritis: Insight into risk factors and microstructural changes. Arthritis Res. Ther. 2013, 15, 223. [Google Scholar] [CrossRef]
- Zarka, M.; Hay, E.; Ostertag, A.; Marty, C.; Chappard, C.; Oudet, F.; Engelke, K.; Laredo, J.; Cohen-Solal, M. Microcracks in subchondral bone plate is linked to less cartilage damage. Bone 2019, 123, 1–7. [Google Scholar] [CrossRef]
- Shimamura, M.; Iwata, K.; Mashiba, T.; Miki, T.; Yamamoto, T. Accumulation of microdamage in subchondral bone at the femoral head in patients with end-stage osteoarthritis of the hip. J. Bone Miner. Metab. 2019, 37, 880–885. [Google Scholar] [CrossRef]
- Cabahug-Zuckerman, P.; Frikha-Benayed, D.; Majeska, R.J.; Tuthill, A.; Yakar, S.; Judex, S.; Schaffler, M.B. Osteocyte apoptosis caused by hindlimb unloading is required to trigger osteocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs. J. Bone Miner. Res. 2016, 31, 1356–1365. [Google Scholar] [CrossRef]
- Plotkin, L.I.; Gortazar, A.R.; Davis, H.M.; Condon, K.W.; Gabilondo, H.; Maycas, M.; Allen, M.R.; Bellido, T. Inhibition of osteocyte apoptosis prevents the increase in osteocytic receptor activator of nuclear factor κB ligand (RANKL) but does not stop bone resorption or the loss of bone induced by unloading. J. Biol. Chem. 2015, 290, 18934–18942. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Y.; Yu, Y.E.; Zhang, X.; Watts, T.; Zhou, B.; Wang, J.; Wang, T.; Zhao, W.; Chiu, K.Y. Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis. J. Bone Miner. Res. 2018, 33, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Day, J.; Ding, M.; Van Der Linden, J.; Hvid, I.; Sumner, D.; Weinans, H. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J. Orthop. Res. 2001, 19, 914–918. [Google Scholar] [CrossRef]
- Dai, G.; Xiao, H.; Liao, J.; Zhou, N.; Zhao, C.; Xu, W.; Xu, W.; Liang, X.; Huang, W. Osteocyte TGFβ1-Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis. Int. J. Mol. Med. 2020, 46, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, Y.; Dou, C.; Dong, S. Microenvironment in subchondral bone: Predominant regulator for the treatment of osteoarthritis. Ann. Rheum. Dis. 2021, 80, 413–422. [Google Scholar] [CrossRef]
- Suri, S.; Walsh, D.A. Osteochondral alterations in osteoarthritis. Bone 2012, 51, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Madry, H.; van Dijk, C.N.; Mueller-Gerbl, M. The basic science of the subchondral bone. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 419–433. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, X.; Wang, S.; Jing, Y.; Su, J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 2021, 9, 20. [Google Scholar] [CrossRef]
- Hayes, W.; Carter, D. Postyield behavior of subchondral trabecular bone. J. Biomed. Mater. Res. 1976, 10, 537–544. [Google Scholar] [CrossRef]
- Radin, E.L.; Rose, R.M. Role of subchondral bone in the initiation and progression of cartilage damage. Clin. Orthop. Relat. Res. 1986, 213, 34–40. [Google Scholar] [CrossRef]
- Daffner, R.H.; Pavlov, H. Stress fractures: Current concepts. AJR Am. J. Roentgenol. 1992, 159, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.R.; Wallace, J. Skeletal Tissue Mechanics; Springer: Berlin/Heidelberg, Germany, 2025. [Google Scholar]
- Bendjaballah, M.; Shirazi-Adl, A.; Zukor, D. Finite element analysis of human knee joint in varus-valgus. Clin. Biomech. 1997, 12, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Goldring, S.R.; Goldring, M.B. Changes in the osteochondral unit during osteoarthritis: Structure, function and cartilage–bone crosstalk. Nat. Rev. Rheumatol. 2016, 12, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Anatomica, T. International Anatomical Terminology; FCAT Thieme: Stuttgart, Germany, 1998. [Google Scholar]
- Carlson, B.M. Human Embryology and Developmental Biology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Kissane, J.M.; Smith, M.G. Pathology of Infancy and Childhood; Mosby: St. Louis, MO, USA, 1975. [Google Scholar]
- Findlay, D. Vascular pathology and osteoarthritis. Rheumatology 2007, 46, 1763–1768. [Google Scholar] [CrossRef]
- Zhen, G.; Wen, C.; Jia, X.; Li, Y.; Crane, J.L.; Mears, S.C.; Askin, F.B.; Frassica, F.J.; Chang, W.; Yao, J. Inhibition of TGF–β signaling in subchondral bone mesenchymal stem cells attenuates osteoarthritis. Nat. Med. 2013, 19, 704. [Google Scholar] [CrossRef]
- He, Y.; Bundkirchen, K.; Taheri, S.; Stauß, R.; Liodakis, E.; Neunaber, C.; Schilling, A.F.; Mühlfeld, C.; Sehmisch, S.; Graulich, T. Increased vascularization of the subchondral region in human osteoarthritic femoral head in the elderly. Histochem. Cell Biol. 2025, 163, 39. [Google Scholar] [CrossRef]
- Goldring, M.B.; Goldring, S.R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N. Y. Acad. Sci. 2010, 1192, 230–237. [Google Scholar] [CrossRef]
- Aaron, R.; Racine, J.; Voisinet, A.; Evangelista, P.; Dyke, J. Subchondral bone circulation in osteoarthritis of the human knee. Osteoarthr. Cartil. 2018, 26, 940–944. [Google Scholar] [CrossRef]
- Muratovic, D.; Findlay, D.M.; Cicuttini, F.M.; Wluka, A.E.; Lee, Y.-R.; Kuliwaba, J.S. Bone matrix microdamage and vascular changes characterize bone marrow lesions in the subchondral bone of knee osteoarthritis. Bone 2018, 108, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Aaron, R.K.; Dyke, J.P.; Ciombor, D.M.; Ballon, D.; Lee, J.; Jung, E.; Tung, G.A. Perfusion abnormalities in subchondral bone associated with marrow edema, osteoarthritis, and avascular necrosis. Ann. N. Y. Acad. Sci. 2007, 1117, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Blalock, D.; Miller, A.; Tilley, M.; Wang, J. Joint instability and osteoarthritis. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2015, 8, CMAMD-S22147. [Google Scholar] [CrossRef]
- Brandt, K.; Radin, E.; Dieppe, P.; Van De Putte, L. Yet more evidence that osteoarthritis is not a cartilage disease. Ann. Rheum. Dis. 2006, 65, 1261–1264. [Google Scholar] [CrossRef]
- Segal, N.A.; Glass, N.A. Is quadriceps muscle weakness a risk factor for incident or progressive knee osteoarthritis? Physician Sportsmed. 2011, 39, 44–50. [Google Scholar] [CrossRef]
- Mohajer, B.; Dolatshahi, M.; Moradi, K.; Najafzadeh, N.; Eng, J.; Zikria, B.; Wan, M.; Cao, X.; Roemer, F.W.; Guermazi, A. Role of thigh muscle changes in knee osteoarthritis outcomes: Osteoarthritis initiative data. Radiology 2022, 305, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, M.; Souto, L.; Martinez, A.; Serrão, F.; De Noronha, M. Muscle activation, strength, and volume in people with patellofemoral osteoarthritis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2022, 30, 935–944. [Google Scholar] [CrossRef]
- Holloszy, J.O. The biology of aging. In Proceedings of the Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2000; pp. S3–S9. [Google Scholar]
- Melton, L.; Crowson, C.; O’Connor, M.; O’Fallon, W.; Riggs, B.L. Epidemiology of sarcopenia. J. Am. Geriatr. Soc. 2000, 48, 625–630. [Google Scholar]
- Felson, D.T. Risk factors for osteoarthritis: Understanding joint vulnerability. Clin. Orthop. Relat. Res. 2004, 427, S16–S21. [Google Scholar] [CrossRef]
- Johansson, H.; Sjölander, P.; Sojka, P. A sensory role for the cruciate ligaments. Clin. Orthop. Relat. Res. (1976–2007) 1991, 268, 161–178. [Google Scholar]
- Pai, Y.C.; Rymer, W.Z.; Chang, R.W.; Sharma, L. Effect of age and osteoarthritis on knee proprioception. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1997, 40, 2260–2265. [Google Scholar] [CrossRef]
- Strocchi, R.; De Pasquale, V.; Facchini, A.; Raspanti, M.; Zaffagnini, S.; Marcacci, M. Age-related changes in human anterior cruciate ligament (ACL) collagen fibrils. Ital. J. Anat. Embryol. Arch. Ital. Di Anat. Ed Embriol. 1996, 101, 213–220. [Google Scholar]
- Moore, A.C.; Burris, D.L. Tribological and material properties for cartilage of and throughout the bovine stifle: Support for the altered joint kinematics hypothesis of osteoarthritis. Osteoarthr. Cartil. 2015, 23, 161–169. [Google Scholar] [CrossRef]
- Peters, A.E.; Geraghty, B.; Bates, K.T.; Akhtar, R.; Readioff, R.; Comerford, E. Ligament mechanics of ageing and osteoarthritic human knees. Front. Bioeng. Biotechnol. 2022, 10, 954837. [Google Scholar] [CrossRef]
- McCarthy, M.M.; Hannafin, J.A. The mature athlete: Aging tendon and ligament. Sports Health 2014, 6, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.L.; Seo, G.S.; Gale, D.; Totterman, S.; Gale, M.E.; Felson, D.T. Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum. 2005, 52, 794–799. [Google Scholar] [CrossRef]
- Hasegawa, A.; Otsuki, S.; Pauli, C.; Miyaki, S.; Patil, S.; Steklov, N.; Kinoshita, M.; Koziol, J.; D’Lima, D.D.; Lotz, M.K. Anterior cruciate ligament changes in the human knee joint in aging and osteoarthritis. Arthritis Rheum. 2012, 64, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Thornton, G.M.; Lemmex, D.B.; Ono, Y.; Beach, C.J.; Reno, C.R.; Hart, D.A.; Lo, I.K. Aging affects mechanical properties and lubricin/PRG4 gene expression in normal ligaments. J. Biomech. 2015, 48, 3306–3311. [Google Scholar] [CrossRef] [PubMed]
- Aronson, P.; Rijke, A.; Hertel, J.; Ingersoll, C.D. Medial tibiofemoral-joint stiffness in males and females across the lifespan. J. Athl. Train. 2014, 49, 399–405. [Google Scholar] [CrossRef]
- Tan, A.L.; Toumi, H.; Benjamin, M.; Grainger, A.J.; Tanner, S.F.; Emery, P.; McGonagle, D. Combined high-resolution magnetic resonance imaging and histological examination to explore the role of ligaments and tendons in the phenotypic expression of early hand osteoarthritis. Ann. Rheum. Dis. 2006, 65, 1267–1272. [Google Scholar] [CrossRef]
- Gianotti, S.M.; Marshall, S.W.; Hume, P.A.; Bunt, L. Incidence of anterior cruciate ligament injury and other knee ligament injuries: A national population-based study. J. Sci. Med. Sport 2009, 12, 622–627. [Google Scholar] [CrossRef]
- Hsia, A.W.; Emami, A.J.; Tarke, F.D.; Cunningham, H.C.; Tjandra, P.M.; Wong, A.; Christiansen, B.A.; Collette, N.M. Osteophytes and fracture calluses share developmental milestones and are diminished by unloading. J. Orthop. Res. 2018, 36, 699–710. [Google Scholar] [CrossRef]
- Christiansen, B.; Anderson, M.; Lee, C.; Williams, J.; Yik, J.; Haudenschild, D. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthr. Cartil. 2012, 20, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Hsia, A.W.; Anderson, M.J.; Heffner, M.A.; Lagmay, E.P.; Zavodovskaya, R.; Christiansen, B.A. Osteophyte formation after ACL rupture in mice is associated with joint restabilization and loss of range of motion. J. Orthop. Res. 2017, 35, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Einhorn, T.A. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 1998, 355, S7–S21. [Google Scholar] [CrossRef] [PubMed]







| Morphological Parameters | Group 1 | Group 2 | Group 3 | p-Value |
|---|---|---|---|---|
| load area, scores | 1.0 [1.0; 1.5] | 2.0 [1.0; 2.0] | 2.0 [1.0; 2.0] | 0.057 Gr.1 vs. Gr. 2: 0.046 |
| height of cartilage, µm | 2671.0 ± 1051.0 | 2914.0 ± 895.8 | 2219.0 ± 1125.0 | 0.042 Gr.2 vs. Gr. 3: 0.035 |
| glycosaminoglycan content, scores | 1.4 ± 0.5 | 2.1 ± 0.4 | 2.2 ± 0.9 | 0.022 Gr.1 vs. Gr. 2: 0.040 Gr.1 vs. Gr. 3: 0.019 |
| diameter of the OP, µm | 340.2 ± 334.6 | 2924.0 ± 1602.0 | 3899.0 ± 2089.0 | <0.0001 Gr.1 vs. Gr. 2: 0.001 Gr.1 vs. Gr. 3: <0.0001 |
| Cortical Plate Fracture Score | ||||
| 1.0 [1.0; 2.0] | 2.0 [1.0; 2.0] | 2.0 [1.0; 2.0] | 0.172 |
| 1.0 [1.0; 1.0] | 2.0 [1.0; 2.0] | 2.0 [1.0; 2.0] | 0.001 Gr.1 vs. Gr. 2: 0.002 Gr.1 vs. Gr. 3: 0.001 |
| Subchondral Bone Thickness | ||||
| 286.0 ± 160.5 | 286.8 ± 153.6 | 344.1 ± 313.4 | 0.637 |
| 143.7 ± 38.8 | 117.1 ± 36.4 | 140.8 ± 86.8 | 0.357 |
| OP Microstructure Thickness | ||||
| 69.8 ± 75.0 | 149.7 ± 112.4 | 157.9 ± 131.4 | 0.142 |
| 56.3 ± 66.3 | 107.4 ± 46.3 | 106.4 ± 36.7 | 0.010 Gr.1 vs. Gr. 2: 0.013 Gr.1 vs. Gr. 3: 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Volkov, A.; Lyalina, V.; Eshmotova, G.; Serejnikova, N.; Petrova, S.; Airapetov, G.; Parshina, E.; Zalygin, A.; Belitskaya, E.; Oleinikov, V.; et al. A Novel Concept of Tissue Micro-Instability as the Underlying Mechanism of Osteophytosis in Human Knee Osteoarthritis. Biomedicines 2026, 14, 283. https://doi.org/10.3390/biomedicines14020283
Volkov A, Lyalina V, Eshmotova G, Serejnikova N, Petrova S, Airapetov G, Parshina E, Zalygin A, Belitskaya E, Oleinikov V, et al. A Novel Concept of Tissue Micro-Instability as the Underlying Mechanism of Osteophytosis in Human Knee Osteoarthritis. Biomedicines. 2026; 14(2):283. https://doi.org/10.3390/biomedicines14020283
Chicago/Turabian StyleVolkov, Alexey, Vera Lyalina, Gulnara Eshmotova, Natalia Serejnikova, Sofia Petrova, George Airapetov, Evgeniya Parshina, Anton Zalygin, Ekaterina Belitskaya, Vladimir Oleinikov, and et al. 2026. "A Novel Concept of Tissue Micro-Instability as the Underlying Mechanism of Osteophytosis in Human Knee Osteoarthritis" Biomedicines 14, no. 2: 283. https://doi.org/10.3390/biomedicines14020283
APA StyleVolkov, A., Lyalina, V., Eshmotova, G., Serejnikova, N., Petrova, S., Airapetov, G., Parshina, E., Zalygin, A., Belitskaya, E., Oleinikov, V., Bonartsev, A., Borisovskaya, S., Zagorodny, N., & Prizov, A. (2026). A Novel Concept of Tissue Micro-Instability as the Underlying Mechanism of Osteophytosis in Human Knee Osteoarthritis. Biomedicines, 14(2), 283. https://doi.org/10.3390/biomedicines14020283

