Emerging Artificial Intelligence Models for Estimating Breslow Thickness from Dermoscopic Images
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Histopathological Breslow Thickness Measurement: The Current Gold Standard and Its Limitations
3.2. Artificial Intelligence in Medical Imaging: A Paradigm Shift
3.3. CNN Architectures for Melanoma Analysis
- ResNets (Residual Networks): introduced by He et al., they employ skip connections that facilitate training of exceptionally deep architectures (50, 101, 152 layers) by mitigating vanishing gradient problems [33]. ResNet variants (ResNetV2, ResNet50, ResNet152) have demonstrated strong performance in melanoma classification tasks [34,35]. For Breslow thickness prediction, ResNetV2 achieved AUC-ROC of 0.76 for thickness comparisons [8].
- EfficientNet: achieves state-of-the-art accuracy with improved computational efficiency by optimizing the balance between network depth, width, and resolution [36]. EfficientNetB6 recorded the highest diagnostic accuracy (75%) for BT classification (<0.8 mm vs. ≥0.8 mm), outperforming dermatologist groups [8]. Himel et al. report EfficientNetB4 achieving 87.9% accuracy on the HAM10000 dataset (a publicly available collection of 10015 dermoscopic images) for multi-class skin lesion classification [37].
- InceptionV3: this architecture employs multiple parallel convolutional operations at different scales, enabling efficient extraction of diagnostic morphologic features across different magnification levels—a characteristic particularly relevant to dermoscopic image interpretation. For BT assessment, InceptionV3 achieved AUC-ROC of 0.75, demonstrating competitive performance [8]. The Esteva landmark study utilized InceptionV3 as a base architecture [26].
- DenseNet: Dense Convolutional Networks connect each layer to every subsequent layer, promoting feature reuse and gradient flow [38]. DenseNet121 and DenseNet201 have achieved over 95% accuracy on melanoma detection tasks using HAM10000 and ISIC datasets (Figure 1) [11,39]. DenseNet-201 achieved 82.9% accuracy on seven-class HAM10000 classification [37].
- Vision Transformers (ViTs): transformer architectures originally developed for natural language processing that have been adapted for image analysis [40]. Vision transformers divide images into patches and process them using self-attention mechanisms, potentially capturing long-range morphologic dependencies better than CNNs [41]. Early applications to skin lesion classification show promise, with modified ViT models achieving competitive performance with CNN architectures [42].
- RegNet: proposed by Radosavovic et al., it introduces a design space that systematizes scaling of depth, width, and group convolution parameters to improve both accuracy and efficiency [46]. RegNet models exhibit competitive performance in medical imaging and outperform ResNet families. In dermatology, RegNet-based (Regdisnet) approaches have demonstrated robust accuracy (93.21%) for melanoma detection [47].
3.4. Image Preprocessing Techniques and Transfer Learning
3.5. Current AI Model for Breslow Thickness Estimation
3.6. Explainability and Interpretability
3.7. Clinical Application and Workflow Integration
3.8. Challenges and Limitations
3.9. Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CM | Cutaneous Melanoma |
| AI | Artificial Intelligence |
| ML | Machine Learning |
| DL | Deep Learning |
| BT | Breslow thickness |
| RCM | Reflectance Confocal Microscopy |
| OCT | Optical coherence tomography |
| MAE | Mean absolute error |
| AUC | Area under the curve |
| AJCC | American Joint Committee on Cancer |
| TNM | Tumor Node Metastasis |
| ISIC | International Skin Imaging Collaboration |
| Grad-CAM | Gradient-weighted Class Activation Mapping |
| CDSS | Clinical Decision Support System |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Ribero, S.; Glass, D.; Bataille, V. Genetic Epidemiology of Melanoma. Eur. J. Dermatol. 2016, 26, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to Build a Bridge from a Population-Based to a More “Personalized” Approach to Cancer Staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Amaral, T.; Ottaviano, M.; Arance, A.; Blank, C.; Chiarion-Sileni, V.; Donia, M.; Dummer, R.; Garbe, C.; Gershenwald, J.E.; Gogas, H.; et al. Cutaneous Melanoma: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2025, 36, 10–30. [Google Scholar] [CrossRef] [PubMed]
- Polesie, S.; Gillstedt, M.; Kittler, H.; Rinner, C.; Tschandl, P.; Paoli, J. Assessment of Melanoma Thickness Based on Dermoscopy Images: An Open, Web-based, International, Diagnostic Study. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 2002–2007. [Google Scholar] [CrossRef]
- Russo-de la Torre, F. One-Step surgical removal of a cutaneous melanoma: Current evidence. Actas Dermosifiliogr. 2020, 111, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Morales, J.P.; Hernandez-Rodriguez, J.-C.; Duran-Lopez, L.; Conejo-Mir, J.; Pereyra-Rodriguez, J.-J. Melanoma Breslow Thickness Classification Using Ensemble-Based Knowledge Distillation With Semi-Supervised Convolutional Neural Networks. IEEE J. Biomed. Health Inform. 2025, 29, 443–455. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, J.-C.; Durán-López, L.; Domínguez-Morales, J.P.; Ortiz-Álvarez, J.; Conejo-Mir, J.; Pereyra-Rodriguez, J.-J. Prediction of Melanoma Breslow Thickness Using Deep Transfer Learning Algorithms. Clin. Exp. Dermatol. 2023, 48, 752–758. [Google Scholar] [CrossRef]
- Bansal, P.; Garg, R.; Soni, P. Detection of Melanoma in Dermoscopic Images by Integrating Features Extracted Using Handcrafted and Deep Learning Models. Comput. Ind. Eng. 2022, 168, 108060. [Google Scholar] [CrossRef]
- Jütte, L.; Patel, H.; Roth, B. Advancing Dermoscopy through a Synthetic Hair Benchmark Dataset and Deep Learning-Based Hair Removal. J. Biomed. Opt. 2024, 29, 116003. [Google Scholar] [CrossRef]
- Naseri, H.; Safaei, A.A. Diagnosis and Prognosis of Melanoma from Dermoscopy Images Using Machine Learning and Deep Learning: A Systematic Literature Review. BMC Cancer 2025, 25, 75. [Google Scholar] [CrossRef]
- Darzidehkalani, E.; Ghasemi-Rad, M.; van Ooijen, P.M.A. Federated Learning in Medical Imaging: Part I: Toward Multicentral Health Care Ecosystems. J. Am. Coll. Radiol. 2022, 19, 969–974. [Google Scholar] [CrossRef]
- Pop, A.M.; Monea, M.; Olah, P.; Moraru, R.; Cotoi, O.S. The Importance of Immunohistochemistry in the Evaluation of Tumor Depth of Primary Cutaneous Melanoma. Diagnostics 2023, 13, 1020. [Google Scholar] [CrossRef] [PubMed]
- Breslow, A. Thickness, Cross-Sectional Areas and Depth of Invasion in the Prognosis of Cutaneous Melanoma. Ann. Surg. 1970, 172, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Keung, E.Z.; Gershenwald, J.E. The Eighth Edition American Joint Committee on Cancer (AJCC) Melanoma Staging System: Implications for Melanoma Treatment and Care. Expert. Rev. Anticancer Ther. 2018, 18, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Tejera-Vaquerizo, A.; Ribero, S.; Puig, S.; Boada, A.; Paradela, S.; Moreno-Ramírez, D.; Cañueto, J.; de Unamuno, B.; Brinca, A.; Descalzo-Gallego, M.A.; et al. Survival Analysis and Sentinel Lymph Node Status in Thin Cutaneous Melanoma: A Multicenter Observational Study. Cancer Med. 2019, 8, 4235–4244. [Google Scholar] [CrossRef]
- Yardman-Frank, J.M.; Bronner, B.; Rosso, S.; From, L.; Busam, K.; Groben, P.; Tucker, P.; Cust, A.; Armstrong, B.; Kricker, A.; et al. Comparison of Community Pathologists with Expert Dermatopathologists Evaluating Breslow Thickness and Histopathologic Subtype in a Large International Population-Based Study of Melanoma. JAAD Int. 2021, 4, 25–27. [Google Scholar] [CrossRef]
- Elmore, J.G.; Barnhill, R.L.; Elder, D.E.; Longton, G.M.; Pepe, M.S.; Reisch, L.M.; Carney, P.A.; Titus, L.J.; Nelson, H.D.; Onega, T.; et al. Pathologists’ Diagnosis of Invasive Melanoma and Melanocytic Proliferations: Observer Accuracy and Reproducibility Study. BMJ 2017, 357, j2813. [Google Scholar] [CrossRef]
- Ribero, S.; Moscarella, E.; Ferrara, G.; Piana, S.; Argenziano, G.; Longo, C. Regression in Cutaneous Melanoma: A Comprehensive Review from Diagnosis to Prognosis. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 2030–2037. [Google Scholar] [CrossRef]
- Sanz-Motilva, V.; Martorell, A.; Manrique-Silva, E.; Terradez-Mas, L.; Requena, C.; Traves, V.; Sanmartín, O.; Rodríguez-Peralto, J.L.; Nagore, E. Interobserver Variability in the Histopathological Evaluation of Melanoma: Analysis of 60 Cases. Actas Dermosifiliogr. 2025, 116, 583–588. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma Staging: Evidence-Based Changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef]
- Taylor, L.A.; Eguchi, M.M.; Reisch, L.M.; Radick, A.C.; Shucard, H.; Kerr, K.F.; Piepkorn, M.W.; Knezevich, S.R.; Elder, D.E.; Barnhill, R.L.; et al. Histopathologic Synoptic Reporting of Invasive Melanoma: How Reliable Are the Data? Cancer 2021, 127, 3125–3136. [Google Scholar] [CrossRef]
- Matsumoto, M.; Secrest, A.; Anderson, A.; Saul, M.I.; Ho, J.; Kirkwood, J.M.; Ferris, L.K. Estimating the Cost of Skin Cancer Detection by Dermatology Providers in a Large Healthcare System. J. Am. Acad. Dermatol. 2018, 78, 701–709.e1. [Google Scholar] [CrossRef]
- Omiye, J.A.; Gui, H.; Daneshjou, R.; Cai, Z.R.; Muralidharan, V. Principles, Applications, and Future of Artificial Intelligence in Dermatology. Front. Med. 2023, 10, 1278232. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Leachman, S.A.; Merlino, G. Medicine: The Final Frontier in Cancer Diagnosis. Nature 2017, 542, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3031254 (accessed on 26 October 2025). [CrossRef]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Holland-Letz, T.; et al. Deep Learning Outperformed 136 of 157 Dermatologists in a Head-to-Head Dermoscopic Melanoma Image Classification Task. Eur. J. Cancer 2019, 113, 47–54. [Google Scholar] [CrossRef]
- Marchetti, M.A.; Codella, N.C.F.; Dusza, S.W.; Gutman, D.A.; Helba, B.; Kalloo, A.; Mishra, N.; Carrera, C.; Celebi, M.E.; DeFazio, J.L.; et al. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging Challenge: Comparison of the Accuracy of Computer Algorithms to Dermatologists for the Diagnosis of Melanoma from Dermoscopic Images. J. Am. Acad. Dermatol. 2018, 78, 270–277.e1. [Google Scholar] [CrossRef]
- Grossarth, S.; Mosley, D.; Madden, C.; Ike, J.; Smith, I.; Huo, Y.; Wheless, L. Recent Advances in Melanoma Diagnosis and Prognosis Using Machine Learning Methods. Curr. Oncol. Rep. 2023, 25, 635–645. [Google Scholar] [CrossRef]
- Siarov, J.; Siarov, A.; Kumar, D.; Paoli, J.; Mölne, J.; Neittaanmäki, N. Deep Learning Model Shows Pathologist-Level Detection of Sentinel Node Metastasis of Melanoma and Intra-Nodal Nevi on Whole Slide Images. Front. Med. 2024, 11, 1418013. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Liu, Y.; Li, C.; Li, F.; Lin, R.; Zhang, D.; Lian, Y. Advances in Computer Vision and Deep Learning-Facilitated Early Detection of Melanoma. Brief. Funct. Genom. 2025, 24, elaf002. [Google Scholar] [CrossRef] [PubMed]
- Alenezi, F.; Armghan, A.; Polat, K. A Multi-Stage Melanoma Recognition Framework with Deep Residual Neural Network and Hyperparameter Optimization-Based Decision Support in Dermoscopy Images. Expert. Syst. Appl. 2023, 215, 119352. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946. [Google Scholar] [CrossRef]
- Himel, G.M.S.; Islam, M.M.; Al-Aff, K.A.; Karim, S.I.; Sikder, M.K.U. Skin Cancer Segmentation and Classification Using Vision Transformer for Automatic Analysis in Dermatoscopy-Based Noninvasive Digital System. Int. J. Biomed. Imaging 2024, 2024, 3022192. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Liu, Y.; Jain, A.; Eng, C.; Way, D.H.; Lee, K.; Bui, P.; Kanada, K.; de Oliveira Marinho, G.; Gallegos, J.; Gabriele, S.; et al. A Deep Learning System for Differential Diagnosis of Skin Diseases. Nat. Med. 2020, 26, 900–908. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [Google Scholar] [CrossRef]
- Shamshad, F.; Khan, S.; Zamir, S.W.; Khan, M.H.; Hayat, M.; Khan, F.S.; Fu, H. Transformers in Medical Imaging: A Survey. Med. Image Anal. 2023, 88, 102802. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. arXiv 2022, arXiv:2201.03545. [Google Scholar] [CrossRef]
- Nogales, M.; Acha, B.; Alarcón, F.; Pereyra, J.; Serrano, C. Robust Melanoma Thickness Prediction via Deep Transfer Learning Enhanced by XAI Techniques. arXiv 2024, arXiv:2406.13441. [Google Scholar] [CrossRef]
- Aksoy, S.; Demircioglu, P.; Bogrekci, I. Enhancing Melanoma Diagnosis with Advanced Deep Learning Models Focusing on Vision Transformer, Swin Transformer, and ConvNeXt. Dermatopathology 2024, 11, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollár, P. Designing Network Design Spaces. arXiv 2020, arXiv:2003.13678. [Google Scholar] [CrossRef]
- Liu, R.; Hu, Z.; Pang, C.; Guan, Q. Regdisnet: An Improved Regnet Model for Melanoma Detection; Elsevier: Amsterdam, The Netherlands, 2025. [Google Scholar]
- Lee, T.; Ng, V.; Gallagher, R.; Coldman, A.; McLean, D. Dullrazor®: A Software Approach to Hair Removal from Images. Comput. Biol. Med. 1997, 27, 533–543. [Google Scholar] [CrossRef]
- Gijsenij, A.; Gevers, T.; Van De Weijer, J. Computational Color Constancy: Survey and Experiments. IEEE Trans. Image Process. 2011, 20, 2475–2489. [Google Scholar] [CrossRef]
- Reinhard, E.; Adhikhmin, M.; Gooch, B.; Shirley, P. Color Transfer between Images. IEEE Comput. Graph. Appl. 2001, 21, 34–41. [Google Scholar] [CrossRef]
- Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification Using Deep Learning. arXiv 2017, arXiv:1712.04621. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Data Augmentation for Improved Melanoma Classification in Convolutional Neural Networks. Available online: https://link.springer.com/chapter/10.1007/978-3-031-83210-9_13 (accessed on 29 October 2025).
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding Transfer Learning for Medical Imaging. arXiv 2019, arXiv:1902.07208. [Google Scholar] [CrossRef]
- Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Classification of Skin Lesions Using Transfer Learning and Augmentation with Alex-Net. PLoS ONE 2019, 14, e0217293. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, J.; Daneshvar, S.; Argenziano, G.; Hamarneh, G. Seven-Point Checklist and Skin Lesion Classification Using Multitask Multimodal Neural Nets. IEEE J. Biomed. Health Inform. 2019, 23, 538–546. [Google Scholar] [CrossRef]
- Sáez, A.; Sánchez-Monedero, J.; Gutiérrez, P.A.; Hervás-Martínez, C. Machine Learning Methods for Binary and Multiclass Classification of Melanoma Thickness From Dermoscopic Images. IEEE Trans. Med. Imaging 2015, 35, 1036–1045. [Google Scholar] [CrossRef]
- Jaworek-Korjakowska, J.; Kleczek, P.; Gorgon, M. Melanoma Thickness Prediction Based on Convolutional Neural Network With VGG-19 Model Transfer Learning. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 2748–2756. [Google Scholar]
- Szijártó, Á.; Somfai, E.; Lőrincz, A. Design of a Machine Learning System to Predict the Thickness of a Melanoma Lesion in a Non-Invasive Way from Dermoscopic Images. Healthc. Inform. Res. 2023, 29, 112–119. [Google Scholar] [CrossRef]
- Gillstedt, M.; Mannius, L.; Paoli, J.; Dahlén Gyllencreutz, J.; Fougelberg, J.; Johansson Backman, E.; Pakka, J.; Zaar, O.; Polesie, S. Evaluation of Melanoma Thickness with Clinical Close-up and Dermoscopic Images Using a Convolutional Neural Network. Acta Derm. Venereol. 2022, 102, adv00790. [Google Scholar] [CrossRef]
- Holzinger, A.; Biemann, C.; Pattichis, C.S.; Kell, D.B. What Do We Need to Build Explainable AI Systems for the Medical Domain? arXiv 2017, arXiv:1712.09923. [Google Scholar] [CrossRef]
- London, A.J. Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability. Hastings Cent. Rep. 2019, 49, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Inf. Fusion. 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Jinnai, S.; Yamazaki, N.; Hirano, Y.; Sugawara, Y.; Ohe, Y.; Hamamoto, R. The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning. Biomolecules 2020, 10, 1123. [Google Scholar] [CrossRef]
- Giavina-Bianchi, M.; Vitor, W.G.; Fornasiero De Paiva, V.; Okita, A.L.; Sousa, R.M.; Machado, B. Explainability Agreement between Dermatologists and Five Visual Explanations Techniques in Deep Neural Networks for Melanoma AI Classification. Front. Med. 2023, 10, 1241484. [Google Scholar] [CrossRef]
- On Interpretability of Deep Learning Based Skin Lesion Classifiers. Available online: https://openreview.net/forum?id=EeYHn08vDO (accessed on 30 October 2025).
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1135–1144. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2023, arXiv:1706.03762. [Google Scholar] [PubMed]
- Thomsen, K.; Iversen, L.; Titlestad, T.L.; Winther, O. Systematic Review of Machine Learning for Diagnosis and Prognosis in Dermatology. J. Dermatol. Treat. 2019, 31, 496–510. [Google Scholar] [CrossRef] [PubMed]
- Bozsányi, S.; Varga, N.N.; Farkas, K.; Bánvölgyi, A.; Lőrincz, K.; Lihacova, I.; Lihachev, A.; Plorina, E.V.; Bartha, Á.; Jobbágy, A.; et al. Multispectral Imaging Algorithm Predicts Breslow Thickness of Melanoma. J. Clin. Med. 2021, 11, 189. [Google Scholar] [CrossRef]
- Tognetti, L.; Bonechi, S.; Andreini, P.; Bianchini, M.; Scarselli, F.; Cevenini, G.; Moscarella, E.; Farnetani, F.; Longo, C.; Lallas, A.; et al. A New Deep Learning Approach Integrated with Clinical Data for the Dermoscopic Differentiation of Early Melanomas from Atypical Nevi. J. Dermatol. Sci. 2021, 101, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Chuchu, N.; Takwoingi, Y.; Dinnes, J.; Matin, R.N.; Bassett, O.; Moreau, J.F.; Bayliss, S.E.; Davenport, C.; Godfrey, K.; O’Connell, S.; et al. Smartphone Applications for Triaging Adults with Skin Lesions That Are Suspicious for Melanoma. Cochrane Database Syst. Rev. 2018, 12, CD013192. [Google Scholar] [CrossRef]
- Guo, L.N.; Lee, M.S.; Kassamali, B.; Mita, C.; Nambudiri, V.E. Bias in, Bias out: Underreporting and Underrepresentation of Diverse Skin Types in Machine Learning Research for Skin Cancer Detection-A Scoping Review. J. Am. Acad. Dermatol. 2022, 87, 157–159. [Google Scholar] [CrossRef]
- Montoya, L.N.; Roberts, J.S.; Hidalgo, B.S. Towards Fairness in AI for Melanoma Detection: Systemic Review and Recommendations. arXiv 2024, arXiv:2411.12846. [Google Scholar] [CrossRef]
- Wen, D.; Khan, S.M.; Xu, A.J.; Ibrahim, H.; Smith, L.; Caballero, J.; Zepeda, L.; de Blas Perez, C.; Denniston, A.K.; Liu, X.; et al. Characteristics of Publicly Available Skin Cancer Image Datasets: A Systematic Review. Lancet Digit. Health 2022, 4, e64–e74. [Google Scholar] [CrossRef]
- Koçak, B. Key Concepts, Common Pitfalls, and Best Practices in Artificial Intelligence and Machine Learning: Focus on Radiomics. Diagn. Interv. Radiol. 2022, 28, 450–462. [Google Scholar] [CrossRef]
- Nagendran, M.; Chen, Y.; Lovejoy, C.A.; Gordon, A.C.; Komorowski, M.; Harvey, H.; Topol, E.J.; Ioannidis, J.P.A.; Collins, G.S.; Maruthappu, M. Artificial Intelligence versus Clinicians: Systematic Review of Design, Reporting Standards, and Claims of Deep Learning Studies. BMJ 2020, 368, m689. [Google Scholar] [CrossRef]
- Wadden, J.J. Defining the Undefinable: The Black Box Problem in Healthcare Artificial Intelligence. J. Med. Ethics 2021, 48, 764–768. [Google Scholar] [CrossRef]
- Chanda, T.; Hauser, K.; Hobelsberger, S.; Bucher, T.-C.; Garcia, C.N.; Wies, C.; Kittler, H.; Tschandl, P.; Navarrete-Dechent, C.; Podlipnik, S.; et al. Dermatologist-like Explainable AI Enhances Trust and Confidence in Diagnosing Melanoma. Nat. Commun. 2024, 15, 524. [Google Scholar] [CrossRef] [PubMed]
- Tonekaboni, S.; Joshi, S.; McCradden, M.D.; Goldenberg, A. What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use. In Proceedings of the Machine Learning for Healthcare Conference, Ann Arbor, MI, USA, 28 October 2019; PMLR: Cambridge MA, USA, 2019; pp. 359–380. [Google Scholar]
- Gomez Rossi, J.; Rojas-Perilla, N.; Krois, J.; Schwendicke, F. Cost-Effectiveness of Artificial Intelligence as a Decision-Support System Applied to the Detection and Grading of Melanoma, Dental Caries, and Diabetic Retinopathy. JAMA Netw. Open 2022, 5, e220269. [Google Scholar] [CrossRef] [PubMed]
- Gerke, S.; Minssen, T.; Cohen, G. Ethical and Legal Challenges of Artificial Intelligence-Driven Healthcare. Artif. Intell. Healthc. 2020, 295–336. [Google Scholar] [CrossRef]
- Yang, R.; Nair, S.V.; Ke, Y.; D’Agostino, D.; Liu, M.; Ning, Y.; Liu, N. Disparities in Clinical Studies of AI Enabled Applications from a Global Perspective. npj Digit. Med. 2024, 7, 209. [Google Scholar] [CrossRef]
- Varga, N.N.; Boostani, M.; Farkas, K.; Bánvölgyi, A.; Lőrincz, K.; Posta, M.; Lihacova, I.; Lihachev, A.; Medvecz, M.; Holló, P.; et al. Optically Guided High-Frequency Ultrasound Shows Superior Efficacy for Preoperative Estimation of Breslow Thickness in Comparison with Multispectral Imaging: A Single-Center Prospective Validation Study. Cancers 2023, 16, 157. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Estudillo, Z.F.; Brito, J.; Chavez-Bourgeois, M.; Alejo, B.; Alos, L.; García, A.P.; Puig, S.; Malvehy, J.; Carrera, C. Dermoscopy and Reflectance Confocal Microscopy to Estimate Breslow Index and Mitotic Rate in Primary Melanoma. Dermatol. Pract. Concept. 2022, 12, e2022174. [Google Scholar] [CrossRef]
- Haggenmüller, S.; Schmitt, M.; Krieghoff-Henning, E.; Hekler, A.; Maron, R.C.; Wies, C.; Utikal, J.S.; Meier, F.; Hobelsberger, S.; Gellrich, F.F.; et al. Federated Learning for Decentralized Artificial Intelligence in Melanoma Diagnostics. JAMA Dermatol. 2024, 160, 303–311. [Google Scholar] [CrossRef]
- Din, S.; Imran, M.; Irfan, S.; Tariq, A.; Elgamal, Z.; Dawood, H. Federated Learning for Melanoma Detection: A Decentralized and Privacy-Preserving Approach Using Deep Learning. Biomed. Signal Process. Control 2026, 112, 108576. [Google Scholar] [CrossRef]
- Garcia, A.; Zhou, J.; Pinero-Crespo, G.; Beachkofsky, T.; Huang, X. Clinical Application of Vision Transformers for Melanoma Classification: A Multi-Dataset Evaluation Study. Cancers 2025, 17, 3447. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, Z.; Liu, K.; Wang, G.; Wang, Q.; Yu, H.; Chen, W.; Dai, H.; Li, Y.; Xie, J.; et al. Combining Multi-Omics Analysis with Machine Learning to Uncover Novel Molecular Subtypes, Prognostic Markers, and Insights into Immunotherapy for Melanoma. BMC Cancer 2025, 25, 630. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Ramón, J.L.; Gardeazabal, J.; Izu, R.M.; Garrote, E.; Rasero, J.; Apraiz, A.; Penas, C.; Seijo, S.; Lopez-Saratxaga, C.; De la Peña, P.M.; et al. Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients. Cancers 2023, 15, 2174. [Google Scholar] [CrossRef] [PubMed]


| Study | Image Modality | Classification Task | Best Model/Method | Primary Performance Metric | Best Result |
|---|---|---|---|---|---|
| Nogales et al. [44] | Dermoscopy only | Binary: thin (<0.76 mm) vs. thick (≥0.76 mm) | ConvNext transfer learning with Focal Loss | Accuracy 79%, Recall 0.79, F1 0.67 | Accuracy 79%, Recall 0.79, F1-score 0.67; R2 = 0.25 overall; zone 0.4–1.0 mm R2 = 0.08 |
| Szijártó et al. [61] | Dermoscopy only | Binary: thin (<0.76 mm) vs. thick (≥0.76 mm); Multiclass: <0.76 mm vs. 0.76–1.5 mm vs. >1.5 mm | EfficientNet-B4 with transfer learning, weighted class training, data augmentation, 5-fold cross-validation | Accuracy, Balanced Accuracy, ROC-AUC | Binary: Accuracy 77.6%, Balanced Accuracy 70.8%, AUC 0.83; Multiclass (3-class): Accuracy 71.6%, Balanced Accuracy 70.8%, AUC 0.834 |
| Polesie et al. [5] | Dermoscopy only | 3-class (MIS, ≤1.0 mm, >1.0 mm) and binary (thin vs. thick) | Collective reader assessment (majority voting) | 3-class AUC 0.85; Binary: thin 85.9%, thick 70.8% | Readers AUC 0.85 >> de novo CNN AUC 0.80; no experience effect (p = 0.35) |
| Hernández-Rodríguez et al. [8] | Dermoscopy only | In situ vs. invasive and Breslow <0.8 mm vs. ≥0.8 mm | ResNetV2 and InceptionV3 for thickness; EfficientNetB6 for invasiveness | ResNetV2 AUC 0.76, InceptionV3 0.75; EfficientNetB6 61% accuracy | For thickness: ResNetV2 AUC 0.76 >> dermatologists 0.70; for invasiveness: EfficientNetB6 61% << dermatologists 64% |
| Gillstedt et al. [62] | Clinical close-up + dermoscopy | Binary: in situ vs. invasive | De novo CNN (6 + 7 conv layers) | CNN AUC 0.73 vs. dermatologists AUC 0.80 | Thick (>1.0 mm): CNN AUC 0.93 vs. 0.97; Thin (≤1.0 mm): CNN AUC 0.64 vs. dermatologists 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Santaniello, U.; Rosset, F.; Fava, P.; Cavallo, F.; Quaglino, P.; Ribero, S. Emerging Artificial Intelligence Models for Estimating Breslow Thickness from Dermoscopic Images. Biomedicines 2026, 14, 97. https://doi.org/10.3390/biomedicines14010097
Santaniello U, Rosset F, Fava P, Cavallo F, Quaglino P, Ribero S. Emerging Artificial Intelligence Models for Estimating Breslow Thickness from Dermoscopic Images. Biomedicines. 2026; 14(1):97. https://doi.org/10.3390/biomedicines14010097
Chicago/Turabian StyleSantaniello, Umberto, Francois Rosset, Paolo Fava, Francesco Cavallo, Pietro Quaglino, and Simone Ribero. 2026. "Emerging Artificial Intelligence Models for Estimating Breslow Thickness from Dermoscopic Images" Biomedicines 14, no. 1: 97. https://doi.org/10.3390/biomedicines14010097
APA StyleSantaniello, U., Rosset, F., Fava, P., Cavallo, F., Quaglino, P., & Ribero, S. (2026). Emerging Artificial Intelligence Models for Estimating Breslow Thickness from Dermoscopic Images. Biomedicines, 14(1), 97. https://doi.org/10.3390/biomedicines14010097

