Pharmacogenomic Pathways Underlying Variable Vedolizumab Response in Crohn’s Disease Patients: A Rare-Variant Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Statistical Analysis of Demographic and Clinical Characteristics
2.3. Whole-Exome Sequencing and Data Processing
2.4. Variant Annotation
2.5. Enrichment Analysis
2.6. Rare-Variant Pathway Association Analysis
3. Results
3.1. Cohort Description
3.2. Genetic Variant Detection
3.3. Enrichment Analysis
3.4. Rare-Variant Pathway Burden Analysis
3.5. Genes Related to Differential VDZ Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, J.; Mehandru, S.; Colombel, J.-F.; Peyrin-Biroulet, L. Crohn’s Disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Hammer, T.; Langholz, E. The Epidemiology of Inflammatory Bowel Disease: Balance between East and West? A Narrative Review. Dig. Med. Res. 2020, 3, 48. [Google Scholar] [CrossRef]
- Berg, D.R.; Colombel, J.F.; Ungaro, R. The Role of Early Biologic Therapy in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2019, 25, 1896–1905. [Google Scholar] [CrossRef] [PubMed]
- Adegbola, S.O.; Sahnan, K.; Warusavitarne, J.; Hart, A.; Tozer, P. Anti-TNF Therapy in Crohn’s Disease. Int. J. Mol. Sci. 2018, 19, 2244. [Google Scholar] [CrossRef]
- Liu, J.; Di, B.; Xu, L.L. Recent Advances in the Treatment of IBD: Targets, Mechanisms and Related Therapies. Cytokine Growth Factor Rev. 2023, 71–72, 1–12. [Google Scholar] [CrossRef]
- Ha, C.; Kornbluth, A. Vedolizumab as a Treatment for Crohn’s Disease and Ulcerative Colitis. Gastroenterol. Hepatol. 2014, 10, 793. [Google Scholar]
- Yang, H.; Li, B.; Guo, Q.; Tang, J.; Peng, B.; Ding, N.; Li, M.; Yang, Q.; Huang, Z.; Diao, N.; et al. Systematic Review with Meta-Analysis: Loss of Response and Requirement of Ustekinumab Dose Escalation in Inflammatory Bowel Diseases. Aliment. Pharmacol. Ther. 2022, 55, 764–777. [Google Scholar] [CrossRef]
- Deyhim, T.; Cheifetz, A.S.; Papamichael, K. Drug Clearance in Patients with Inflammatory Bowel Disease Treated with Biologics. J. Clin. Med. 2023, 12, 7132. [Google Scholar] [CrossRef]
- Ballesta-López, O.; Gil-Candel, M.; Centelles-Oria, M.; Megías-Vericat, J.E.; Solana-Altabella, A.; Ribes-Artero, H.; Nos-Mateu, P.; García-Pellicer, J.; Poveda-Andrés, J.L. Pharmacogenetics in Response to Biological Agents in Inflammatory Bowel Disease: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 1760. [Google Scholar] [CrossRef]
- Chang, J.Y.; Cheon, J.H. Pharmacogenetics-Based Personalized Treatment in Patients with Inflammatory Bowel Disease: A Review. Precis. Future Med. 2021, 5, 151–163. [Google Scholar] [CrossRef]
- Eltantawy, N.; El-Zayyadi, I.A.E.-H.; Elberry, A.A.; Salah, L.M.; Abdelrahim, M.E.A.; Kassem, A.B. A Review Article of Inflammatory Bowel Disease Treatment and Pharmacogenomics. Beni Suef Univ. J. Basic Appl. Sci. 2023, 12, 35. [Google Scholar] [CrossRef]
- Katsanos, K.H.; Papadakis, K.A. Pharmacogenetics of Inflammatory Bowel Disease. Pharmacogenomics 2014, 15, 2049–2062. [Google Scholar] [CrossRef]
- Lichtenstein, G.R.; Abreu, M.T.; Cohen, R.; Tremaine, W. American Gastroenterological Association Institute Technical Review on Corticosteroids, Immunomodulators, and Infliximab in Inflammatory Bowel Disease. Gastroenterology 2006, 130, 940–987. [Google Scholar] [CrossRef] [PubMed]
- Tavano, F.; Palmieri, O.; Latiano, M.; Gioffreda, D.; Latiano, T.; Guerra, M.; Martino, G.; Valvano, M.R.; Bossa, F.; Perri, F.; et al. Examination of the TPMT and NUDT15*3 Variants to Predict the Response to Thiopurines in an Italian Cohort of Patients with Inflammatory Bowel Disease. Int. J. Mol. Sci. 2025, 26, 7860. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Pérez, R.; Almoguera, B.; Cabaleiro, T.; Hakonarson, H.; Abad-Santos, F. Association between Genetic Polymorphisms and Response to Anti-TNFs in Patients with Inflammatory Bowel Disease. Int. J. Mol. Sci. 2016, 17, 225. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto-Furusho, J.K. Pharmacogenetics in Inflammatory Bowel Disease: Understanding Treatment Response and Personalizing Therapeutic Strategies. Pharmgenomics Pers. Med. 2017, 10, 197–204. [Google Scholar] [CrossRef]
- Jan, Z.; El Assadi, F.; Velayutham, D.; Mifsud, B.; Jithesh, P.V. Pharmacogenomics of TNF Inhibitors. Front. Immunol. 2025, 16, 1521794. [Google Scholar] [CrossRef]
- Alsoud, D.; Verstockt, B.; Vermeire, S. Ustekinumab and Vedolizumab Exposure Is Unaffected by Pharmacogenetic Determinants of Anti-TNFs Pharmacokinetics. Inflamm. Bowel Dis. 2024, 30, 874–875. [Google Scholar] [CrossRef]
- Ioannou, S.; Beecham, A.H.; Gomez, L.; Dauer, R.M.; Khakoo, N.S.; Pascual, L.; Quintero, M.; Mills, G.; Lopez, J.; Leavitt, J.S.; et al. HISPANIC IBD PATIENTS WITH HLA-DQA1*05 HAVE HIGHER RATES OF ANTI-TNF IMMUNOGENICITY COMPARED TO NON-CARRIERS. Gastroenterology 2021, 160, 72. [Google Scholar] [CrossRef]
- Honap, S.; Netter, P.; Danese, S.; Peyrin-Biroulet, L. An Update on the Safety of Long-Term Vedolizumab Use in Inflammatory Bowel Disease. Expert. Opin. Drug Saf. 2023, 22, 767–776. [Google Scholar] [CrossRef]
- DeBerg, H.A.; Konecny, A.J.; Shows, D.M.; Lord, J.D. MAdCAM-1 Costimulates T Cells through Integrin A4β7 to Cause Gene Expression Events Resembling Costimulation through CD28. Immunohorizons 2022, 6, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Khanna, R.; Son, S.; Zou, G.; Roshanov, P.S. Estimation of the Harvey Bradshaw Index from the Patient-Reported Outcome 2 in Crohn’s Disease: Results Based on a Large Scale Randomized Controlled Trial. Inflamm. Bowel Dis. 2025, 31, 2097–2105. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Pedersen, B.S.; Brown, J.M.; Dashnow, H.; Wallace, A.D.; Velinder, M.; Tristani-Firouzi, M.; Schiffman, J.D.; Tvrdik, T.; Mao, R.; Best, D.H.; et al. Effective Variant Filtering and Expected Candidate Variant Yield in Studies of Rare Human Disease. NPJ Genom. Med. 2021, 6, 60. [Google Scholar] [CrossRef]
- Fang, Z.; Liu, X.; Peltz, G. GSEApy: A Comprehensive Package for Performing Gene Set Enrichment Analysis in Python. Bioinformatics 2023, 39, btac757. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Bailey, A.; Kuleshov, M.V.; Clarke, D.J.B.; Evangelista, J.E.; Jenkins, S.L.; Lachmann, A.; Wojciechowicz, M.L.; Kropiwnicki, E.; Jagodnik, K.M.; et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 2021, 1, e90. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Wu, M.C.; Lin, X. Optimal Tests for Rare Variant Effects in Sequencing Association Studies. Biostatistics 2012, 13, 762–775. [Google Scholar] [CrossRef]
- Lee, S.; Emond, M.J.; Bamshad, M.J.; Barnes, K.C.; Rieder, M.J.; Nickerson, D.A.; NHLBI GO Exome Sequencing Project—ESP Lung Project Team; Christiani, D.C.; Wurfel, M.M.; Lin, X. Optimal Unified Approach for Rare-Variant Association Testing with Application to Small-Sample Case-Control Whole-Exome Sequencing Studies. Am. J. Hum. Genet. 2012, 91, 224–237. [Google Scholar] [CrossRef]
- Comelli, E.M.; Lariani, S.; Zwahlen, M.-C.; Fotopoulos, G.; Holzwarth, J.A.; Cherbut, C.; Dorta, G.; Corthésy-Theulaz, I.; Grigorov, M. Biomarkers of Human Gastrointestinal Tract Regions. Mamm. Genome 2009, 20, 516–527. [Google Scholar] [CrossRef]
- Norris, A.C.; Mansueto, A.J.; Jimenez, M.; Yazlovitskaya, E.M.; Jain, B.K.; Graham, T.R. Flipping the Script: Advances in Understanding How and Why P4-ATPases Flip Lipid across Membranes. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119700. [Google Scholar] [CrossRef]
- van der Mark, V.A.; Ghiboub, M.; Marsman, C.; Zhao, J.; van Dijk, R.; Hiralall, J.K.; Ho-Mok, K.S.; Castricum, Z.; de Jonge, W.J.; Elferink, R.P.J.O.; et al. Phospholipid Flippases Attenuate LPS-Induced TLR4 Signaling by Mediating Endocytic Retrieval of Toll-like Receptor 4. Cell. Mol. Life Sci. 2017, 74, 715–730. [Google Scholar] [CrossRef]
- Kars, M.E.; Wu, Y.; Stenson, P.D.; Cooper, D.N.; Burisch, J.; Peter, I.; Itan, Y. The Landscape of Rare Genetic Variation Associated with Inflammatory Bowel Disease and Parkinson’s Disease Comorbidity. Genome Med. 2024, 16, 66. [Google Scholar] [CrossRef] [PubMed]
- Mauriño, J.J.T.; Fonseca-Camarillo, G.; Furuzawa-Carballeda, J.; Barreto-Zuñiga, R.; Benítez, B.M.; Granados, J.; Yamamoto-Furusho, J.K. TRPV Subfamily (TRPV2, TRPV3, TRPV4, TRPV5, and TRPV6) Gene and Protein Expression in Patients with Ulcerative Colitis. J. Immunol. Res. 2020, 2020, 2906845. [Google Scholar] [CrossRef] [PubMed]
- Gombert, S.; Rhein, M.; Winterpacht, A.; Münster, T.; Hillemacher, T.; Leffler, A.; Frieling, H. Transient Receptor Potential Ankyrin 1 Promoter Methylation and Peripheral Pain Sensitivity in Crohn’s Disease. Clin. Epigenetics 2019, 12, 1. [Google Scholar] [CrossRef]
- Nakamoto, T.; Matsumoto, K.; Yasuda, H.; Mori, Y.; Kato, S. Transient Receptor Potential Melastatin 2 Is Involved in Trinitrobenzene Sulfonic Acid-Induced Acute and Chronic Colitis-Associated Fibrosis Progression in Mice. J. Pharmacol. Sci. 2024, 154, 18–29. [Google Scholar] [CrossRef]
- Zhang, W.; Hui, K.Y.; Gusev, A.; Warner, N.; Ng, S.M.E.; Ferguson, J.; Choi, M.; Burberry, A.; Abraham, C.; Mayer, L.; et al. Extended Haplotype Association Study in Crohn’s Disease Identifies a Novel, Ashkenazi Jewish-Specific Missense Mutation in the NF-ΚB Pathway Gene, HEATR3. Genes Immun. 2013, 14, 310–316. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takagi, K.; Kato, A.; Ishibashi, T.; Mori, Y.; Tashima, K.; Mitsumoto, A.; Kato, S.; Horie, S. Role of Transient Receptor Potential Melastatin 2 (TRPM2) Channels in Visceral Nociception and Hypersensitivity. Exp. Neurol. 2016, 285, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Boldyreva, L.V.; Evtushenko, A.A.; Lvova, M.N.; Morozova, K.N.; Kiseleva, E. V Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int. J. Mol. Sci. 2024, 25, 12125. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, Z.; Gao, X.; Chen, Y.; Huang, J.; Li, L.; Sun, B. Stomatin Promotes Neutrophil Degranulation and Vascular Leakage in the Early Stage after Severe Burn via Enhancement of the Intracellular Binding of Neutrophil Primary Granules to F-Actin. Burns 2024, 50, 653–665. [Google Scholar] [CrossRef]
- Vastrad, B.; Vastrad, C. Identification of Differentially Expressed Genes and Enriched Pathways in Inflammatory Bowel Disease Using Bioinformatics and next Generation Sequencing Data Analysis. bioRxiv 2023. [Google Scholar] [CrossRef]
- Bu, P.; Xiao, Y.; Hu, S.; Jiang, X.; Tan, C.; Qiu, M.; Huang, W.; Li, M.; Li, Q.; Qin, C. Identification of ABCA5 among ATP-Binding Cassette Transporter Family as a New Biomarker for Colorectal Cancer. J. Oncol. 2022, 2022, 3399311. [Google Scholar] [CrossRef]
- Clark, P.M.; Dawany, N.; Dampier, W.; Byers, S.W.; Pestell, R.G.; Tozeren, A. Bioinformatics Analysis Reveals Transcriptome and MicroRNA Signatures and Drug Repositioning Targets for IBD and Other Autoimmune Diseases. Inflamm. Bowel Dis. 2012, 18, 2315–2333. [Google Scholar] [CrossRef]
- Fenton, C.G.; Taman, H.; Florholmen, J.; Sørbye, S.W.; Paulssen, R.H. Transcriptional Signatures That Define Ulcerative Colitis in Remission. Inflamm. Bowel Dis. 2021, 27, 94–105. [Google Scholar] [CrossRef] [PubMed]
- van Munster, K.N.; Bergquist, A.; Ponsioen, C.Y. Inflammatory Bowel Disease and Primary Sclerosing Cholangitis: One Disease or Two? J. Hepatol. 2024, 80, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Haisma, S. Towards Personalized Medicine in Pediatric Inflammatory Bowel Disease. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2019. [Google Scholar]
- Avula, L.R.; Knapen, D.; Buckinx, R.; Vergauwen, L.; Adriaensen, D.; Van Nassauw, L.; Timmermans, J.-P. Whole-Genome Microarray Analysis and Functional Characterization Reveal Distinct Gene Expression Profiles and Patterns in Two Mouse Models of Ileal Inflammation. BMC Genom. 2012, 13, 377. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Camarillo, G.; Furuzawa-Carballeda, J.; Miguel-Cruz, E.; Barreto-Zuñiga, R.; Martínez-Benítez, B.; Yamamoto-Furusho, J.K. Protective Role of ABCC Drug Subfamily Resistance Transporters (ABCC1-7) in Intestinal Inflammation. Immunol. Res. 2025, 73, 33. [Google Scholar] [CrossRef]
- Langmann, T.; Moehle, C.; Mauerer, R.; Scharl, M.; Liebisch, G.; Zahn, A.; Stremmel, W.; Schmitz, G. Loss of Detoxification in Inflammatory Bowel Disease: Dysregulation of Pregnane X Receptor Target Genes. Gastroenterology 2004, 127, 26–40. [Google Scholar] [CrossRef]
- Alrubia, S.; Al-Majdoub, Z.M.; Achour, B.; Rostami-Hodjegan, A.; Barber, J. Quantitative Assessment of the Impact of Crohn’s Disease on Protein Abundance of Human Intestinal Drug-Metabolising Enzymes and Transporters. J. Pharm. Sci. 2022, 111, 2917–2929. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, Q.; Yuan, K.; Sazonovs, A.; Stevens, C.; Fachal, L.; International Inflammatory Bowel Disease Genetics Consortium; Anderson, C.A.; Daly, M.J.; Huang, H. Cystic Fibrosis Risk Variants Confer Protection against Inflammatory Bowel Disease. medRxiv 2024. [Google Scholar] [CrossRef]
- Shakhnovich, V.; Katta, L.; Christenson, K.; Bass, J.; Farrow, E.; Soden, S.; Smith, L.; Saunders, C. P-199 Pathogenic CFTR Mutation in Crohnʼs Disease in the Absence of Other CFTR-Related Manifestations. Inflamm. Bowel Dis. 2016, 22, S69. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Wang, P.; Sun, Y.; Xu, T. PSMD13 Inhibits NF-ΚB Pathway by Targeting TAK1 for K63-Linked Ubiquitination in Miiuy Croaker (Miichthys miiuy). Fish Shellfish. Immunol. 2023, 138, 108857. [Google Scholar] [CrossRef]
- Shaw, K.A.; Cutler, D.J.; Okou, D.; Dodd, A.; Aronow, B.J.; Haberman, Y.; Stevens, C.; Walters, T.D.; Griffiths, A.; Baldassano, R.N.; et al. Genetic Variants and Pathways Implicated in a Pediatric Inflammatory Bowel Disease Cohort. Genes Immun. 2019, 20, 131–142. [Google Scholar] [CrossRef]
- Bai, S.H.; Chandnani, A.; Cao, S. Bile Acids in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024, 12, 2910. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.P.; Modos, D.; Rushbrook, S.M.; Powell, N.; Korcsmaros, T. The Emerging Role of Bile Acids in the Pathogenesis of Inflammatory Bowel Disease. Front. Immunol. 2022, 13, 829525. [Google Scholar] [CrossRef] [PubMed]
- Ouahed, J.; Gordon, W.; Canavan, J.B.; Zhou, H.; Du, S.; von Schack, D.; Phillips, K.; Wang, L.; Dunn, W.A.; Field, M.; et al. Mucosal Gene Expression in Pediatric and Adult Patients With Ulcerative Colitis Permits Modeling of Ideal Biopsy Collection Strategy for Transcriptomic Analysis. Inflamm. Bowel Dis. 2018, 24, 2565–2578. [Google Scholar] [CrossRef] [PubMed]
- Vastrad, B.; Vastrad, C. Identification of Hub Genes and Key Pathways in Pediatric Crohn’s Disease Using next Generation Sequencing and Bioinformatics Analysis. bioRxiv 2022. [Google Scholar] [CrossRef]
- Mohan, S.; Mok, S.; Judge, T. Identification of Novel Therapeutic Molecular Targets in Inflammatory Bowel Disease by Using Genetic Databases. Clin. Exp. Gastroenterol. 2020, 13, 467–473. [Google Scholar] [CrossRef]
- Wong, M.H.; Oelkers, P.; Dawson, P.A. Identification of a Mutation in the Ileal Sodium-Dependent Bile Acid Transporter Gene That Abolishes Transport Activity. J. Biol. Chem. 1995, 270, 27228–27234. [Google Scholar] [CrossRef] [PubMed]
- Tien, N.T.N.; Choi, E.J.; Thu, N.Q.; Yu, S.J.; Nguyen, D.N.; Kim, D.H.; Long, N.P.; Lee, H.S. Multi-Omics Phenotyping Characterizes Molecular Divergence Underlying Different Clinical Scenarios of Inflammatory Bowel Disease. bioRxiv 2024. [Google Scholar] [CrossRef]
- Grossi, V.; Hyams, J.S.; Glidden, N.C.; Knight, B.E.; Young, E.E. Characterizing Clinical Features and Creating a Gene Expression Profile Associated with Pain Burden in Children with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 1283–1290. [Google Scholar] [CrossRef]
- Gonzalez-Lopez, E.; Kawasawa, Y.I.; Walter, V.; Zhang, L.; Koltun, W.A.; Huang, X.; Vrana, K.E.; Coates, M.D. Homozygosity for the SCN10A Polymorphism Rs6795970 Is Associated with Hypoalgesic Inflammatory Bowel Disease Phenotype. Front. Med. 2018, 5, 324. [Google Scholar] [CrossRef]
- Zhao, C.; Jin, J.; Hu, H.; Zhou, X.; Shi, X. The Gain-of-Function R222S Variant in Scn11a Contributes to Visceral Hyperalgesia and Intestinal Dysmotility in Scn11a R222S/R222S Mice. Front. Neurol. 2022, 13, 856459. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, X.; Shi, X. The Influence of Nav1.9 Channels on Intestinal Hyperpathia and Dysmotility. Channels 2023, 17, 2212350. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chai, Y.; Qiu, J.; Zhang, J.; Wu, M.; Fu, Z.; Wang, Y.; Qin, C. Integrated Omics Analysis Reveals the Epigenetic Mechanism of Visceral Hypersensitivity in IBS-D. Front. Pharmacol. 2023, 14, 1062630. [Google Scholar] [CrossRef]
- Hu, S.; Bourgonje, A.R.; Gacesa, R.; Jansen, B.H.; Björk, J.R.; Bangma, A.; Hidding, I.J.; van Dullemen, H.M.; Visschedijk, M.C.; Faber, K.N.; et al. Mucosal Host-Microbe Interactions Associate with Clinical Phenotypes in Inflammatory Bowel Disease. Nat. Commun. 2024, 15, 1470. [Google Scholar] [CrossRef]
- Söderman, J.; Berglind, L.; Almer, S. Inverse and Concordant Mucosal Pathway Gene Expressions in Inflamed and Non-Inflamed Ulcerative Colitis Patients: Potential Relevance to Aetiology and Pathogenesis. Int. J. Mol. Sci. 2022, 23, 6944. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhuge, A.; Chen, H.; Han, S.; Shen, J.; Wang, K.; Xia, J.; Xia, H.; Jiang, S.; Wu, Y.; et al. Sedanolide Alleviates DSS-Induced Colitis by Modulating the Intestinal FXR-SMPD3 Pathway in Mice. J. Adv. Res. 2025, 69, 413–426. [Google Scholar] [CrossRef]
- Liu, J.Z.; van Sommeren, S.; Huang, H.; Ng, S.C.; Alberts, R.; Takahashi, A.; Ripke, S.; Lee, J.C.; Jostins, L.; Shah, T.; et al. Association Analyses Identify 38 Susceptibility Loci for Inflammatory Bowel Disease and Highlight Shared Genetic Risk across Populations. Nat. Genet. 2015, 47, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Di Ciaula, A.; Bonfrate, L.; Khalil, M.; Portincasa, P. The Interaction of Bile Acids and Gut Inflammation Influences the Pathogenesis of Inflammatory Bowel Disease. Intern. Emerg. Med. 2023, 18, 2181–2197. [Google Scholar] [CrossRef]
- Raschdorf, C.; Tran, F.; Stengel, S.; Yang, H.; Bernardes, J.P.; Lopez-Agudero, V.; Falk-Paulsen, M.; Jentzsch, M.; Bordoni, D.; Messner, B.; et al. P0210 ORMDL Proteins Regulate Intestinal Epithelial Cell Homeostasis by Modulating ER Architecture, Autophagy, and DNA Damage Response. J. Crohn’s Colitis 2025, 19, i618. [Google Scholar] [CrossRef]
- Malicevic, U.; Rai, V.; Skrbic, R.; Agrawal, D.K. Modulation of Orosomucoid-like Protein 3 Activity in the Management of Inflammatory Bowel Disease. J. Biotechnol. Biomed. 2024, 7, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Huo, A.; Wang, F. Biomarkers of Ulcerative Colitis Disease Activity CXCL1, CYP2R1, LPCAT1, and NEU4 and Their Relationship to Immune Infiltrates. Sci. Rep. 2023, 13, 12126. [Google Scholar] [CrossRef]
- Lillehoj, E.P.; Luzina, I.G.; Atamas, S.P. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front. Immunol. 2022, 13, 883079. [Google Scholar] [CrossRef]
- Piernik, M.; Eder, P. P0096 Impaired Fatty Acid Oxidation Is a Hallmark of Ulcerative Colitis: Evidence from Multi-Cohort Transcriptomics Analysis. J. Crohn’s Colitis 2025, 19, i467. [Google Scholar] [CrossRef]
- van der Lugt, B.; Vos, M.C.P.; Bromhaar, M.G.; Ijssennagger, N.; Vrieling, F.; Meijerink, J.; Steegenga, W.T. The Effects of Sulfated Secondary Bile Acids on Intestinal Barrier Function and Immune Response in an Inflammatory in Vitro Human Intestinal Model. Heliyon 2022, 8, e08883. [Google Scholar] [CrossRef]
- Khatun, I.; Clark, R.W.; Vera, N.B.; Kou, K.; Erion, D.M.; Coskran, T.; Bobrowski, W.F.; Okerberg, C.; Goodwin, B. Characterization of a Novel Intestinal Glycerol-3-Phosphate Acyltransferase Pathway and Its Role in Lipid Homeostasis. J. Biol. Chem. 2016, 291, 2602–2615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-B.; Su, W.; Xu, H.; Zhang, X.-Y.; Guan, Y.-F. HSD17B13: A Potential Therapeutic Target for NAFLD. Front. Mol. Biosci. 2021, 8, 824776. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, N.; Wang, J.; Liu, Q.; Mei, Q. Monocyte CD36 Expression Predicts Disease Activity in Patients with Crohn’s Disease. Gastroenterol. Res. Pract. 2024, 2024, 9202686. [Google Scholar] [CrossRef]
- Wei, Y.; Li, J.; Li, J.; Liu, C.; Guo, X.; Liu, Z.; Zhang, L.; Bao, S.; Wu, X.; Su, W.; et al. Dietary Long-Chain Fatty Acids Promote Colitis by Regulating Palmitoylation of STAT3 through CD36-Mediated Endocytosis. Cell Death Dis. 2024, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Cifarelli, V.; Ivanov, S.; Xie, Y.; Son, N.-H.; Saunders, B.T.; Pietka, T.A.; Shew, T.M.; Yoshino, J.; Sundaresan, S.; Davidson, N.O.; et al. CD36 Deficiency Impairs the Small Intestinal Barrier and Induces Subclinical Inflammation in Mice. Cell Mol. Gastroenterol. Hepatol. 2017, 3, 82–98. [Google Scholar] [CrossRef]
- Sæterstad, S.; Østvik, A.E.; Røyset, E.S.; Bakke, I.; Sandvik, A.K.; Granlund, A.v.B. Profound Gene Expression Changes in the Epithelial Monolayer of Active Ulcerative Colitis and Crohn’s Disease. PLoS ONE 2022, 17, e0265189. [Google Scholar] [CrossRef]
- Takeda, A.J.; Maher, T.J.; Zhang, Y.; Lanahan, S.M.; Bucklin, M.L.; Compton, S.R.; Tyler, P.M.; Comrie, W.A.; Matsuda, M.; Olivier, K.N.; et al. Human PI3Kγ Deficiency and Its Microbiota-Dependent Mouse Model Reveal Immunodeficiency and Tissue Immunopathology. Nat. Commun. 2019, 10, 4364. [Google Scholar] [CrossRef]
- González-García, A.; Sánchez-Ruiz, J.; Flores, J.M.; Carrera, A.C. Phosphatidylinositol 3-Kinase γ Inhibition Ameliorates Inflammation and Tumor Growth in a Model of Colitis-Associated Cancer. Gastroenterology 2010, 138, 1374–1383. [Google Scholar] [CrossRef]
- Winkelmann, P.; Unterweger, A.-L.; Khullar, D.; Beigel, F.; Koletzko, L.; Siebeck, M.; Gropp, R. The PI3K Pathway as a Therapeutic Intervention Point in Inflammatory Bowel Disease. Immun. Inflamm. Dis. 2021, 9, 804–818. [Google Scholar] [CrossRef] [PubMed]
- Snider, A.J.; Wu, B.X.; Jenkins, R.W.; Sticca, J.A.; Kawamori, T.; Hannun, Y.A.; Obeid, L.M. Loss of Neutral Ceramidase Increases Inflammation in a Mouse Model of Inflammatory Bowel Disease. Prostaglandins Other Lipid Mediat. 2012, 99, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Vieujean, S.; Hu, S.; Bequet, E.; Salee, C.; Massot, C.; Bletard, N.; Pierre, N.; Calvo, F.Q.; Baiwir, D.; Mazzucchelli, G.; et al. Potential Role of Epithelial Endoplasmic Reticulum Stress and Anterior Gradient Protein 2 Homologue in Crohn’s Disease Fibrosis. J. Crohn’s Colitis 2021, 15, 1737–1750. [Google Scholar] [CrossRef]
- de Lange, K.M.; Moutsianas, L.; Lee, J.C.; Lamb, C.A.; Luo, Y.; Kennedy, N.A.; Jostins, L.; Rice, D.L.; Gutierrez-Achury, J.; Ji, S.-G.; et al. Genome-Wide Association Study Implicates Immune Activation of Multiple Integrin Genes in Inflammatory Bowel Disease. Nat. Genet. 2017, 49, 256–261. [Google Scholar] [CrossRef]
- Diercks, A.H.; Podolskaia, I.S.; Murray, T.A.; Jahn, A.N.; Mai, D.; Liu, D.; Amon, L.M.; Nakagawa, Y.; Shimano, H.; Aderem, A.; et al. Oxysterol Binding Protein Regulates the Resolution of TLR-Induced Cytokine Production in Macrophages. Proc. Natl. Acad. Sci. USA 2024, 121, e2406492121. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, M.K.; Brynjólfsson, S.F.; Dige, A.; Uronen-Hansson, H.; Börjesson, L.G.; Bengtsson, J.L.; Gudjonsson, S.; Öhman, L.; Agnholt, J.; Sjövall, H.; et al. Macrophage and Dendritic Cell Subsets in IBD: ALDH+ Cells Are Reduced in Colon Tissue of Patients with Ulcerative Colitis Regardless of Inflammation. Mucosal Immunol. 2016, 9, 171–182. [Google Scholar] [CrossRef]
- El-Hindi, K.; Brachtendorf, S.; Hartel, J.C.; Oertel, S.; Birod, K.; Trautmann, S.; Thomas, D.; Ulshöfer, T.; Weigert, A.; Utermöhlen, O.; et al. Ceramide Synthase 5 Deficiency Aggravates Dextran Sodium Sulfate-Induced Colitis and Colon Carcinogenesis and Impairs T-Cell Activation. Cancers 2020, 12, 1753. [Google Scholar] [CrossRef]
- Espinoza, K.S.; Snider, A.J. Therapeutic Potential for Sphingolipids in Inflammatory Bowel Disease and Colorectal Cancer. Cancers 2024, 16, 789. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.; Fantin, A.C.; Scheurer, U.; Fried, M.; Kullak-Ublick, G.A. Human Ileal Bile Acid Transporter Gene ASBT (SLC10A2) Is Transactivated by the Glucocorticoid Receptor. Gut 2004, 53, 78–84. [Google Scholar] [CrossRef]
- Yang, N.; Dong, Y.-Q.; Jia, G.-X.; Fan, S.-M.; Li, S.-Z.; Yang, S.-S.; Li, Y.-B. ASBT(SLC10A2): A Promising Target for Treatment of Diseases and Drug Discovery. Biomed. Pharmacother. 2020, 132, 110835. [Google Scholar] [CrossRef]
- Shang, K.; Ma, N.; Che, J.; Li, H.; Hu, J.; Sun, H.; Cao, B. SLC27A2 Mediates FAO in Colorectal Cancer through Nongenic Crosstalk Regulation of the PPARs Pathway. BMC Cancer 2023, 23, 335. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhan, S.; Zhou, Y.; Huang, G.; Chen, P.; Li, B. Pediatric Crohn’s Disease Diagnosis Aid via Genomic Analysis and Machine Learning. Front. Pediatr. 2023, 11, 991247. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.K.; Adams, A.T.; Kalla, R.; Lindstrøm, J.C.; Vatn, S.; Bergemalm, D.; Keita, Å.V.; Gomollón, F.; Jahnsen, J.; Vatn, M.H.; et al. Characterisation of the Circulating Transcriptomic Landscape in Inflammatory Bowel Disease Provides Evidence for Dysregulation of Multiple Transcription Factors Including NFE2, SPI1, CEBPB, and IRF2. J. Crohn’s Colitis 2022, 16, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Linggi, B.; Jairath, V.; Zou, G.; Shackelton, L.M.; McGovern, D.P.B.; Salas, A.; Verstockt, B.; Silverberg, M.S.; Nayeri, S.; Feagan, B.G.; et al. Meta-Analysis of Gene Expression Disease Signatures in Colonic Biopsy Tissue from Patients with Ulcerative Colitis. Sci. Rep. 2021, 11, 18243. [Google Scholar] [CrossRef]
- Mennillo, E.; Yang, X.; Paszek, M.; Auwerx, J.; Benner, C.; Chen, S. NCoR1 Protects Mice From Dextran Sodium Sulfate-Induced Colitis by Guarding Colonic Crypt Cells from Luminal Insult. Cell Mol. Gastroenterol. Hepatol. 2020, 10, 133–147. [Google Scholar] [CrossRef]
- Bello, Y.; Phillips, T. Adjunctive Therapies for Wound Healing. JAMA 2000, 284, 40–41. [Google Scholar]
- Boudreau, F.; Lecours, M.; Di Castro, A.C.; Nicolas, V.R.; Jones, C.; Perreault, N. Loss of Colonic Epithelial NCOR1 Aggravates Experimental Colitis Chronicity. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Shinzaki, S.; Iijima, H.; Fujii, H.; Kuroki, E.; Tatsunaka, N.; Inoue, T.; Nakajima, S.; Egawa, S.; Kanto, T.; Tsujii, M.; et al. Altered Oligosaccharide Structures Reduce Colitis Induction in Mice Defective in β-1,4-Galactosyltransferase. Gastroenterology 2012, 142, 1172–1182. [Google Scholar] [CrossRef]
- Costea, I.; Mack, D.R.; Israel, D.; Morgan, K.; Krupoves, A.; Seidman, E.; Deslandres, C.; Lambrette, P.; Grimard, G.; Levy, E.; et al. Genes Involved in the Metabolism of Poly-Unsaturated Fatty-Acids (PUFA) and Risk for Crohn’s Disease in Children & Young Adults. PLoS ONE 2010, 5, e15672. [Google Scholar] [CrossRef]
- Curley, C.R.; Monsuur, A.J.; Wapenaar, M.C.; Rioux, J.D.; Wijmenga, C. A Functional Candidate Screen for Coeliac Disease Genes. Eur. J. Hum. Genet. 2006, 14, 1215–1222. [Google Scholar] [CrossRef]
- Olsen, R.S.; Andersson, R.E.; Zar, N.; Löfgren, S.; Wågsäter, D.; Matussek, A.; Dimberg, J. Prognostic Significance of PLA2G4C Gene Polymorphism in Patients with Stage II Colorectal Cancer. Acta Oncol. 2016, 55, 474–479. [Google Scholar] [CrossRef]
- Li, Z.; Kabir, I.; Tietelman, G.; Huan, C.; Fan, J.; Worgall, T.; Jiang, X.-C. Sphingolipid de Novo Biosynthesis Is Essential for Intestine Cell Survival and Barrier Function. Cell Death Dis. 2018, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Cusato, J.; Ribaldone, D.G.; D Avolio, A.; Infusino, V.; Antonucci, M.; Caviglia, G.P.; Armandi, A.; Ceccarelli, L.; Costa, F.; Bottari, A.; et al. Associations Between Polymorphisms of Genes Related to Vitamin D Pathway and the Response to Vedolizumab and Ustekinumab in Inflammatory Bowel Disease. J. Clin. Med. 2024, 13, 7277. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ruan, X.; Sun, Y.; Lu, S.; Hu, S.; Yuan, S.; Li, X. Multi-Omic Insight into the Molecular Networks of Mitochondrial Dysfunction in the Pathogenesis of Inflammatory Bowel Disease. EBioMedicine 2024, 99, 104934. [Google Scholar] [CrossRef]
- Noh, J.Y.; Farhataziz, N.; Kinter, M.T.; Yan, X.; Sun, Y. Colonic Dysregulation of Major Metabolic Pathways in Experimental Ulcerative Colitis. Metabolites 2024, 14, 194. [Google Scholar] [CrossRef]
- Roediger, W.E. The Colonic Epithelium in Ulcerative Colitis: An Energy-Deficiency Disease? Lancet 1980, 2, 712–715. [Google Scholar] [CrossRef]
- Manzella, C.; Singhal, M.; Alrefai, W.A.; Saksena, S.; Dudeja, P.K.; Gill, R.K. Serotonin Is an Endogenous Regulator of Intestinal CYP1A1 via AhR. Sci. Rep. 2018, 8, 6103. [Google Scholar] [CrossRef] [PubMed]
- Klotz, U.; Hoensch, H.; Schütz, T.; Beaune, P.; Zanger, U.; Bode, J.C.; Fritz, P. Expression of Intestinal Drug-Metabolizing Enzymes in Patients with Chronic Inflammatory Bowel Disease. Curr. Ther. Res. 1998, 59, 556–563. [Google Scholar] [CrossRef]
- Alhouayek, M.; Gouveia-Figueira, S.; Hammarström, M.-L.; Fowler, C.J. Involvement of CYP1B1 in Interferon γ-Induced Alterations of Epithelial Barrier Integrity. Br. J. Pharmacol. 2018, 175, 877–890. [Google Scholar] [CrossRef]
- Deuring, J.J.; de Haar, C.; Koelewijn, C.L.; Kuipers, E.J.; Peppelenbosch, M.P.; van der Woude, C.J. Absence of ABCG2-Mediated Mucosal Detoxification in Patients with Active Inflammatory Bowel Disease Is Due to Impeded Protein Folding. Biochem. J. 2012, 441, 87–93. [Google Scholar] [CrossRef]
- Taubenheim, J.; Kadibalban, A.S.; Zimmermann, J.; Taubenheim, C.; Tran, F.; Rosenstiel, P.; Aden, K.; Kaleta, C. Metabolic Modeling Reveals a Multi-Level Deregulation of Host-Microbiome Metabolic Networks in IBD. Nat. Commun. 2025, 16, 5120, Erratum in Nat. Commun. 2025, 16, 8978. https://doi.org/10.1038/s41467-025-60233-2.. [Google Scholar] [CrossRef]
- Yu, J.; Chen, H.; Xu, J.; Zhou, P. Research Advances in the Role and Pharmaceuticals of ATP-Binding Cassette Transporters in Autoimmune Diseases. Mol. Cell Biochem. 2022, 477, 1075–1091. [Google Scholar] [CrossRef]
- Mercado-Lubo, R.; McCormick, B.A. The Interaction of Gut Microbes with Host ABC Transporters. Gut Microbes 2010, 1, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Stanislovas, J.; Kermorgant, S. C-Met-Integrin Cooperation: Mechanisms, Tumorigenic Effects, and Therapeutic Relevance. Front. Cell Dev. Biol. 2022, 10, 994528. [Google Scholar] [CrossRef] [PubMed]
- Stakenborg, M.; Verstockt, B.; Meroni, E.; Goverse, G.; De Simone, V.; Verstockt, S.; Di Matteo, M.; Czarnewski, P.; Villablanca, E.J.; Ferrante, M.; et al. Neutrophilic HGF-MET Signalling Exacerbates Intestinal Inflammation. J. Crohn’s Colitis 2020, 14, 1748–1758. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Matos, C.; Borges-Pereira, C.; Libório-Ramos, S.; Fernandes, R.; Oliveira, M.; Mendes-Frias, A.; Silvestre, R.; Osório, N.S.; Bastos, H.N.; Santos, R.F.; et al. Deregulated Immune Cell Recruitment Orchestrated by C-MET Impairs Pulmonary Inflammation and Fibrosis. Respir. Res. 2024, 25, 257. [Google Scholar] [CrossRef]
- Mennillo, E.; Kim, Y.J.; Lee, G.; Rusu, I.; Patel, R.K.; Dorman, L.C.; Flynn, E.; Li, S.; Bain, J.L.; Andersen, C.; et al. Single-Cell and Spatial Multi-Omics Highlight Effects of Anti-Integrin Therapy across Cellular Compartments in Ulcerative Colitis. Nat. Commun. 2024, 15, 1493. [Google Scholar] [CrossRef]
- Alexdottir, M.S.; Bourgonje, A.R.; Karsdal, M.A.; Pehrsson, M.; Loveikyte, R.; van Dullemen, H.M.; Visschedijk, M.C.; Festen, E.A.M.; Weersma, R.K.; Faber, K.N.; et al. Serological Biomarkers of Extracellular Matrix Turnover and Neutrophil Activity Are Associated with Long-Term Use of Vedolizumab in Patients with Crohn’s Disease. Int. J. Mol. Sci. 2022, 23, 8137. [Google Scholar] [CrossRef] [PubMed]
- Koutroumpakis, E.; Ramos-Rivers, C.; Regueiro, M.; Hashash, J.G.; Barrie, A.; Swoger, J.; Baidoo, L.; Schwartz, M.; Dunn, M.A.; Koutroubakis, I.E.; et al. Association Between Long-Term Lipid Profiles and Disease Severity in a Large Cohort of Patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2016, 61, 865–871. [Google Scholar] [CrossRef]
- Diab, J.; Hansen, T.; Goll, R.; Stenlund, H.; Ahnlund, M.; Jensen, E.; Moritz, T.; Florholmen, J.; Forsdahl, G. Lipidomics in Ulcerative Colitis Reveal Alteration in Mucosal Lipid Composition Associated With the Disease State. Inflamm. Bowel Dis. 2019, 25, 1780–1787. [Google Scholar] [CrossRef]
- Pinelli, M.; Makdissi, S.; Scur, M.; Parsons, B.D.; Baker, K.; Otley, A.; MacIntyre, B.; Nguyen, H.D.; Kim, P.K.; Stadnyk, A.W.; et al. Peroxisomal Cholesterol Metabolism Regulates Yap-Signaling, Which Maintains Intestinal Epithelial Barrier Function and Is Altered in Crohn’s Disease. Cell Death Dis. 2024, 15, 536. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.G.; Yoon, Y.C.; Yoon, J.; Lee, S.J.; Oh, Y.-K.; Kwon, S.W. Systematic Review of Recent Lipidomics Approaches Toward Inflammatory Bowel Disease. Biomol Ther. 2021, 29, 582–595. [Google Scholar] [CrossRef]
- Sleutjes, J.A.M.; Roeters van Lennep, J.E.; van der Woude, C.J.; de Vries, A.C. Lipid Changes After Induction Therapy in Patients with Inflammatory Bowel Disease: Effect of Different Drug Classes and Inflammation. Inflamm. Bowel Dis. 2023, 29, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Rioux, J.D.; Boucher, G.; Forest, A.; Bouchard, B.; Coderre, L.; Daneault, C.; Frayne, I.R.; Legault, J.T.; Bitton, A.; Ananthakrishnan, A.; et al. Serum Proteomic and Metabolomic Analyses from Patients with IBD Identify Biological Pathways Associated with Treatment Success with Anti-Integrin Therapy. Immunol. Cell Biol. 2025, 103, 648–663. [Google Scholar] [CrossRef]
- Wang, B.; Dai, T.; Sun, W.; Wei, Y.; Ren, J.; Zhang, L.; Zhang, M.; Zhou, F. Protein N-Myristoylation: Functions and Mechanisms in Control of Innate Immunity. Cell Mol. Immunol. 2021, 18, 878–888. [Google Scholar] [CrossRef]
- Aljohani, H.; Anbarserry, D.; Mosli, M.; Ujaimi, A.; Bakhshwin, D.; Elango, R.; Alharthi, S. High-Throughput Whole-Exome Sequencing and Large-Scale Computational Analysis to Identify the Genetic Biomarkers to Predict the Vedolizumab Response Status in Inflammatory Bowel Disease Patients from Saudi Arabia. Biomedicines 2025, 13, 459. [Google Scholar] [CrossRef]


| Variable | SR | OR | p |
|---|---|---|---|
| Number, counts | 31 | 32 | |
| Male, counts (%) | 16 (51.6) | 11 (34.4) | 0.2 * |
| Female, counts (%) | 15 (48.4) | 21 (65.6) | |
| Age #, years, median (min–max) | 59 (23–77) | 56.5 (25–79) | 0.9 † |
| Age at diagnosis (Montreal Classification) | |||
| A1 <17 years, counts (%) | 0 (0) # | 2 (6.3) | 0.54 * |
| A2 17–40 years, counts (%) | 12 (40) # | 14 (43.7) | |
| A3 >40 years, counts (%) | 18 (60) # | 16 (50) | |
| Disease location (Montreal Classification) | |||
| L1 (terminal ileum), counts (%) | 6 (19.4) | 7 (21.9) | 0.8 * |
| L2 (colon), counts (%) | 11 (35.5) | 8 (25) | |
| L3 (ileum and colon), counts (%) | 13 (41.9) | 15 (46.8) | |
| L4 (upper disease), counts (%) | 1 (3.2) | 2 (6.3) | |
| Disease behavior (Montreal Classification) | |||
| B1 (inflammatory), counts (%) | 19 (61.3) | 18 (56.2) | 0.72 * |
| B2 (stricturing), counts (%) | 6 (19.4) | 10 (31.3) | |
| B3 (penetrating), counts (%) | 5 (16.1) | 3 (9.4) | |
| B1/B2/B3 + perianal disease, counts (%) | 1 (3.2) | 1 (3.1) | |
| FC baseline, µg/g, median [IQR] | 453 [140–1096] | 283 [100–674] | 0.11 † |
| FC 14 week, µg/g, median [IQR] | 145 [62.1–342] | 100 [31.8–218] | 0.14 † |
| CRP baseline, mg/L, median [IQR] | 6.6 [1.85–11.2] | 2.5 [0.738–4.68] | 0.01 † |
| CRP 14 week, mg/L, median [IQR] | 4.2 [2–7.7] | 1.9 [0.975–5.46] | 0.04 † |
| Immunomodulators | |||
| Yes, counts (%) | 12 (38.7) | 10 (31.3) | 0.6 * |
| No, counts (%) | 19 (61.3) | 22 (68.7) | |
| Dose administration at week 10 | |||
| Yes, counts (%) | 28 (90.3) | 28 (87.5) | 1 * |
| No, counts (%) | 3 (9.7) | 4 (12.5) |
| Variant Type, n | SR | OR |
|---|---|---|
| Missense all | 17,235 | 17,464 |
| Missense damaging * | 549 | 588 |
| pLoF | 345 | 344 |
| Rare pLoF and missense damaging (MAF < 5% according to gnomAD) | 662 | 691 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Stankovic, B.; Stasuk, M.; Gasic, V.; Ristivojevic, B.; Grubisa, I.; Zukic, B.; Toplicanin, A.; Latinovic Bosnjak, O.; Smolovic, B.; Markovic, S.; et al. Pharmacogenomic Pathways Underlying Variable Vedolizumab Response in Crohn’s Disease Patients: A Rare-Variant Analysis. Biomedicines 2026, 14, 203. https://doi.org/10.3390/biomedicines14010203
Stankovic B, Stasuk M, Gasic V, Ristivojevic B, Grubisa I, Zukic B, Toplicanin A, Latinovic Bosnjak O, Smolovic B, Markovic S, et al. Pharmacogenomic Pathways Underlying Variable Vedolizumab Response in Crohn’s Disease Patients: A Rare-Variant Analysis. Biomedicines. 2026; 14(1):203. https://doi.org/10.3390/biomedicines14010203
Chicago/Turabian StyleStankovic, Biljana, Mihajlo Stasuk, Vladimir Gasic, Bojan Ristivojevic, Ivana Grubisa, Branka Zukic, Aleksandar Toplicanin, Olgica Latinovic Bosnjak, Brigita Smolovic, Srdjan Markovic, and et al. 2026. "Pharmacogenomic Pathways Underlying Variable Vedolizumab Response in Crohn’s Disease Patients: A Rare-Variant Analysis" Biomedicines 14, no. 1: 203. https://doi.org/10.3390/biomedicines14010203
APA StyleStankovic, B., Stasuk, M., Gasic, V., Ristivojevic, B., Grubisa, I., Zukic, B., Toplicanin, A., Latinovic Bosnjak, O., Smolovic, B., Markovic, S., Sokic Milutinovic, A., & Pavlovic, S. (2026). Pharmacogenomic Pathways Underlying Variable Vedolizumab Response in Crohn’s Disease Patients: A Rare-Variant Analysis. Biomedicines, 14(1), 203. https://doi.org/10.3390/biomedicines14010203

