Monocellular and Multicellular Parasites Infesting Humans: A Review of Calcium Ion Mechanisms
Abstract
1. Introduction
2. Cell Regulation Pathways Associated with Movement of Calcium
3. Regulation of Intracellular Ca2+ May Require Channels Activated by Ca2+ Utilizing ATPase Enzyme [33]
4. Cell Coordination Mechanisms Employ Sodium (Na+)/Calcium (Ca2+) Exchange Signals
5. Cell Immunity Organized by Calcium-Release-Activated Calcium Channels and Purinergic Signals
6. Cell Resistance to Parasite Infestation Enhanced by Antibiotics Through Ca2+ and Parasite Cell Resistance to Antibiotics Enhanced by Calcium Channels
7. Cell Movement of Calcium from One Compartment to Another May Involve a Na+/H+ Exchanger
8. Possible Future Developments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lohiya, A.; Suliankatchi Abdulkader, R.; Rath, R.S.; Jacob, O.; Chinnakali, P.; Goel, A.D.; Agrawal, S. Prevalence and patterns of drug-resistant pulmonary tuberculosis in India-A systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2020, 22, 308–316. [Google Scholar] [CrossRef]
- D’Elia, J.A.; Weinrauch, L.A. Role of Divalent Cations in Infections in Host-Pathogen Interaction. Int. J. Mol. Sci. 2024, 25, 9775. [Google Scholar] [CrossRef]
- Reiter, P. Global warming and vector borne disease in temperate regions. Lancet 1998, 351, 839–840. [Google Scholar] [CrossRef]
- Karch, S.; Dellile, M.F.; Guillet, P.; Mouchet, J. African malaria vectors in European aircraft. Lancet 1998, 357, 235. [Google Scholar] [CrossRef]
- Rasheed, M.U.; Thajuddin, N.; Ahamed, P.; Teklemariam, Z.; Jamil, K. Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Rev. Inst. Med. Trop. Sao Paulo 2014, 56, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Diaz Caballero, J.; Wheatley, R.M.; Kapel, N.; López-Causapé, C.; Van der Schalk, T.; Quinn, A.; Shaw, L.P.; Ogunlana, L.; Recanatini, C.; Xavier, B.B.; et al. Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients. Nat. Commun. 2023, 14, 4083. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guideline for the Treatment of Visceral Leishmaniasis in HIV Co-Infected Patients in East Africa and South-East Asia; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar] [PubMed]
- Konozy, E.H.E.; Osman, M.E.M.; Ghartey-Kwansah, G.; Abushama, H.M. The striking mimics between COVID-19 and malaria: A review. Front. Immunol. 2022, 13, 957913. [Google Scholar] [CrossRef]
- Moutombi Ditombi, B.C.; Pongui Ngondza, B.; Manomba Boulingui, C.; Mbang Nguema, O.A.; Ndong Ngomo, J.M.; M’Bondoukwé, N.P.; Moutongo, R.; Mawili-Mboumba, D.P.; Bouyou Akotet, M.K. Malaria and COVID-19 prevalence in a population of febrile children and adolescents living in Libreville. South. Afr. J. Infect. Dis. 2022, 37, 459. [Google Scholar] [CrossRef]
- Hussein, R.; Guedes, M.; Ibraheim, N.; Ali, M.M.; El-Tahir, A.; Allam, N.; Abuakar, H.; Pecoits-Filho, R.; Kotanko, P. Impact of COVID-19 and malaria co-infection on clinical outcomes: A retrospective cohort study. Clin. Microb. Infect. 2022, 28, 1152.e1–1152.e6. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.D.; Brasil, L.W.; Gomes, E.O.; Khouri, R.; Ferreira, G.J.; Vasconcelos, B.; Gouveia, M.S.; Santos, T.S.; Reis, M.G.; Lacerda, M.V.G. Malaria and COVID-19 coinfection in a non-malaria-endemic area in Brazil. Rev. Soc. Bras. Med. Trop. 2023, 56, e05982022. [Google Scholar] [CrossRef]
- Lapointe, D.A.; Atkinson, C.T.; Samuel, M.D. Ecology and conservation biology of avian malaria. Ann. New York Acad. Sci. 2012, 1249, 211–226. [Google Scholar] [CrossRef]
- King, M.M.; Kayastha, B.B.; Patrauchan, M.A.; Franklin, M.J. Calcium regulation of bacterial virulence. Adv. Exp. Med. Biol. 2020, 1131, 827–855. [Google Scholar] [PubMed]
- Smith, D.J.; Anderson, G.I.; Bell, S.C.; Reid, D.W. Elevated metal concentrations in the CF airway correlate with cellular injury and disease severity. J. Cyst. Fibros. 2014, 13, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Gewirtz, A.T.; Rao, A.S.; Simon, P.O.; Merlin, P.; Carnes, D.; Madara, J.R.; Neish, A.S. Salmonella typhimurium induces epithelial IL-8 expression via Ca2+-mediated activation of the NF kappa Beta pathway. J. Clin. Investig. 2000, 105, 79–92. [Google Scholar] [PubMed]
- Szabó, V.; Csákány-Papp, N.; Görög, M.; Madácsy, T.; Varga, Á.; Kiss, A.; Tél, B.; Jójárt, B.; Crul, T.; Dudás, K.; et al. Orai1 calcium channel inhibition prevents progression of chronic pancreatitis. JCI Insight 2023, 8, e167645. [Google Scholar] [CrossRef]
- De Oliveira, L.S.; Alborghetti, M.R.; Carneiro, R.G.; Bastos, D.; Amino, R.; Grellier, P.; Charneau, S. Calcium in the backstage of malaria parasite biology. Front. Cell Infect. Microbiol. 2021, 11, 708834. [Google Scholar] [CrossRef]
- Pérez-Gordones, M.C.; Ramírez-Iglesias, J.R.; Benaim, G.; Mendoza, M. A store-operated Ca2+-entry in Trypanosoma equiperdum: Physiological evidences of its presence. Mol. Biochem. Parasitol. 2021, 244, 111394. [Google Scholar] [CrossRef]
- Márquez-Nogueras, K.M.; Hortua Triana, M.A.; Chasen, N.M.; Kuo, I.Y.; Moreno, S.N. Calcium signaling through a transient receptor channel is important for Toxoplasma gondii growth. Elife 2021, 10, e63417. [Google Scholar] [CrossRef]
- Nicchitta, C.V.; Kamoun, M.; Williamson, J.R. Cyclosporine augments receptor-mediated cellular Ca2+ fluxes in isolated hepatocytes. J. Biol. Chem. 1985, 260, 13613–13618. [Google Scholar] [CrossRef]
- Matuz-Mares, D.; González-Andrade, M.; Araiza-Villanueva, M.G.; Vilchis-Landeros, M.M.; Vázquez-Meza, H. Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxidants 2022, 11, 801. [Google Scholar] [CrossRef]
- Ahmad, F.; Sharma, S.; Yadav, S.; Rathaur, S. The HSP90 inhibitor 17-AAG induced calcium-mediated apoptosis in filarial parasites. Drug Dev. Res. 2022, 83, 1867–1878. [Google Scholar] [CrossRef]
- Sun, Y.; Chauhan, A.; Sukumaran, P.; Sharma, J.; Singh, B.B.; Mishra, B.B. Inhibition of store-operated calcium entry in microglia by helminth factors: Implications for immune suppression in neurocysticercosis. J. Neuroinflammation 2014, 11, 210. [Google Scholar] [CrossRef]
- Venkatachalam, K.; van Rossum, D.B.; Patterson, R.L.; Ma, H.-T.; Gill, D.L. The cellular and molecular basis of store-operated calcium entry. Nat. Cell Biol. 2002, 4, E263–E272. [Google Scholar] [CrossRef]
- Prole, D.; Taylor, C.W. Identification of intracellular and plasma membrane calcium channel homologues in pathogenic parasites. PLoS ONE 2011, 6, e26218. [Google Scholar] [CrossRef] [PubMed]
- Abdi, A.I.; Achcar, F.; Sollelis, L.; Silva-Filho, J.L.; Mwikali, K.; Muthui, M.; Mwangi, S.; Kimingi, H.W.; Orindi, B.; Andisi, K.C.; et al. Plasmodium falciparum adapts its investment into replication versus transmission according to the host environment. Elife 2023, 12, e85140. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, S.; Dernell, C.; Bal, N.; Gallan, A.J.; Blumenthal, S.; Koratala, A.; Sturgill, D. Hemoglobin Cast Nephropathy. Kidney Int. Rep. 2020, 5, 1581–1585. [Google Scholar] [CrossRef]
- Mulay, S.R.; Shi, C.; Ma, X.; Anders, H.J. Novel Insights into Crystal-Induced Kidney Injury. Kidney Dis. 2018, 4, 49–57. [Google Scholar] [CrossRef]
- Shieh, S.D.; Lin, Y.F.; Lin, S.H.; Li, K.C. A prospective study of calcium metabolism in exertional heat stroke with rhabdomyolysis and acute renal failure. Nephron 1995, 71, 428–432. [Google Scholar] [CrossRef]
- Brown, D.D.; Solomon, S.; Lerner, D.; Del Rio, M. Malaria and acute kidney injury. Pediatr. Nephrol. 2020, 35, 603–608. [Google Scholar] [CrossRef]
- Archer, N.M.; Petersen, N.; Clark, M.A.; Buckee, C.O.; Childs, L.M.; Duraisingh, M.T. Resistance to Plasmodium falciparum in sickle cell trait erythrocytes is driven by oxygen-dependent growth inhibition. Proc. Natl. Acad. Sci. USA 2018, 115, 7350–7355. [Google Scholar] [CrossRef] [PubMed]
- Vlok, M.; Buckley, H.R.; Miszkiewicz, J.J.; Walker, M.M.; Domett, K.; Willis, A.; Trinh, H.H.; Minh, T.T.; Nguyen, M.H.T.; Nguyen, L.C.; et al. Forager and farmer evolutionary adaptations to malaria evidenced by 7000 years of thalassemia in Southeast Asia. Sci. Rep. 2021, 11, 5677. [Google Scholar] [CrossRef]
- Brini, M.; Carafoli, E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb. Perspect. Biol. 2011, 3, a004168. [Google Scholar] [CrossRef]
- Romero-Garcia, S.; Prado-Garcia, H. Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). Int. J. Oncol. 2019, 54, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
- Pulli, I.; Asghar, M.Y.; Kemppainen, K.; Törnquist, K. Sphingolipid-mediated calcium signaling and its pathological effects. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 1668–1677. [Google Scholar] [CrossRef]
- Rodriguez-Duran, J.; Pinto-Martinez, A.; Castillo, C.; Benaim, G. Identification and electrophysiological properties of a sphingosine-dependent plasma membrane Ca2+ channel in Trypanosoma cruzi. FEBS J. 2019, 286, 3909–3925. [Google Scholar]
- Ganguly, P.K.; Pierce, G.N.; Dhalla, K.S.; Dhalla, N.S. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am. J. Physiol. 1983, 244, E528–E535. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Matsuda, N.; Kimura, J.; Ishitani, T.; Tamada, A.; Gando, S.; Kemmotsu, O.; Kanno, M. Diminished function and expression of the cardiac Na+-Ca2+ exchanger in diabetic rats: Implication in Ca2+ overload. J. Physiol. 2000, 527, 85–94. [Google Scholar] [CrossRef]
- Belke, D.D.; Swanson, E.A.; Dillmann, W.H. Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 2004, 53, 3201–3208. [Google Scholar] [CrossRef]
- Marks, A.R. Intracellular calcium-release channels: Regulators of cell life and death. Am J Physiol 1997, 272, H597–H605. [Google Scholar] [CrossRef] [PubMed]
- Chingwena, G.; Mukaratirwa, S.; Chimbari, M.; Kristensen, T.K.; Madsen, H. Population dynamics and ecology of freshwater gastropods in the Highveld and lowveld regions of Zimbabwe, with emphasis on schistosome and amphistome intermediate host. Afr. Zool. 2004, 39, 55–62. [Google Scholar] [CrossRef]
- Brochet, M.; Billker, O. Calcium signaling in malaria parasites. Mol. Microbiol. 2021, 100, 397–408. [Google Scholar] [CrossRef]
- Dias, B.K.M.; Mohanty, A.; Garcia, C.R.S. Melatonin as a circadian marker for Plasmodium rhythms. Int. J. Mol. Sci. 2024, 25, 7815. [Google Scholar] [CrossRef]
- Tu-Sekine, B.; Kim, S.F. The Inositol Phosphate System-A Coordinator of Metabolic Adaptability. Int. J. Mol. Sci. 2022, 23, 6747. [Google Scholar] [PubMed]
- Foskett, J.K.; White, C.; Cheung, K.H.; Mak, D.O. Inositol trisphosphate receptor Ca2+ release channels. Physiol. Rev. 2007, 87, 593–658. [Google Scholar]
- Philosoph, H.; Zilberstein, D. Regulation of intracellular calcium in promastigotes of the human protozoan parasite Leishmania donovani. J. Biol. Chem. 1989, 264, 10420–10424. [Google Scholar] [CrossRef]
- Gupta, S.; Raychaudhury, B.; Banerjee, S.; Das, B.; Datta, S.C. An intracellular calcium store is present in Leishmania donovani glycosomes. Exp. Parasitol. 2006, 113, 161–167. [Google Scholar] [CrossRef]
- Singh, A.; Mandal, D. A novel sucrose/H+ symport system and an intracellular sucrase in Leishmania donovani. Int. J. Parasitol. 2011, 41, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Kohn, A.B.; Lea, J.; Roberts-Misterly, J.M.; Anderson, P.A.; Greenberg, R.M. Structure of three high voltage-activated calcium channel alpha1 subunits from Schistosoma mansoni. Parasitology 2001, 123, 489–497. [Google Scholar] [CrossRef]
- Lanner, J.T.; Georgiou, D.K.; Joshi, A.D.; Hamilton, S.L. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. Cold Spring Harb. Perspect. Biol. 2010, 2, a003996. [Google Scholar] [CrossRef]
- Ito, D.; Schureck, M.A.; Desai, S.A. An essential dual-function complex mediates erythrocyte invasion and channel-mediated nutrient uptake in malaria parasites. Elife 2017, 6, e23485. [Google Scholar] [CrossRef] [PubMed]
- Brandt Paulsen, S.; Fenton, R.A. Sodium glucose cotransport. Curr. Opin. Nephol. Hypertens. 2015, 24, 463–479. [Google Scholar] [CrossRef]
- Gezelle, J.; Saggu, G.; Desai, S.A. Promises and Pitfalls of Parasite Patch-clamp. Trends Parasitol 2021, 37, 414–429. [Google Scholar] [CrossRef]
- Sherling, E.S.; Knuepfer, E.; Brzostowski, J.A.; Miller, L.H.; Blackman, M.J.; van Ooij, C. The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake. Elife 2017, 6, e23239. [Google Scholar] [CrossRef]
- Salinas, R.K.; Bruschweiler-Li, L.; Johnson, E.; Brüschweiler, R. Ca2+ binding alters the interdomain flexibility between the two cytoplasmic calcium-binding domains in the Na+/Ca2+ exchanger. J. Biol. Chem. 2011, 286, 32123–32131. [Google Scholar] [CrossRef]
- Xue, J.; Zeng, W.; Han, Y.; John, S.; Ottolia, M.; Jiang, Y. Structural mechanisms of the human cardiac sodium-calcium exchanger NCX1. Nat. Commun. 2023, 14, 6181. [Google Scholar] [CrossRef] [PubMed]
- Blaustein, M.P.; Lederer, W.J. Sodium/calcium exchange: Its physiological implications. Physiol. Rev. 1999, 79, 763–854. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, C.; Brunette, M.G. The renal Na+/Ca2+ exchange system is located exclusively in the distal tubule. Biochem. J. 1989, 257, 259–264. [Google Scholar] [CrossRef]
- Litwin, S.E.; Raya, T.E.; Anderson, P.G.; Daugherty, S.; Goldman, S. Abnormal cardiac function in the streptozotocin-diabetic rat. Changes in active and passive properties of the left ventricle. J. Clin. Investig. 1990, 86, 481–488. [Google Scholar] [CrossRef]
- Moudgil, V.; Rana, R.; Tripathy, P.K.; Farooq, U.; Sehgal, R.; Khan, M.A. Co-prevalence of parasitic infections and diabetes in sub-Himalayan region of northern India. Int. J. Health Sci. 2019, 13, 19–24. [Google Scholar]
- Reddy, H.; Malali, S.; Dhondge, R.H.; Kumar, S.; Acharya, S. Hydatidosis: A Rare Case of Multi-organ Involvement. Cureus 2024, 16, e57562. [Google Scholar] [CrossRef] [PubMed]
- Gasim, G.I.; Bella, A.; Adam, I. Schistosomiasis, hepatitis B and hepatitis C co-infection. Virol. J. 2015, 12, 19. [Google Scholar] [CrossRef]
- McKenzie, M.; Kirk, R.S.; Walker, A.J. Glucose uptake in the human pathogen Schistosome mansoni is regulated through Akt/protein kinase B signaling. J. Infect. Dis. 2017, 218, 152–164. [Google Scholar]
- Philipson, K.D.; Nicoll, D.A. Sodium-calcium exchanger: A molecular perspective. Annu. Rev. Physiol. 2000, 62, 111–133. [Google Scholar] [CrossRef]
- DiPolo, R.; Beaugé, L. Sodium/calcium exchanger: Influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 2006, 86, 155–203. [Google Scholar] [CrossRef]
- Hilge, M.; Aelen, J.; Vuister, G.W. Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol. Cell 2006, 22, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Ottolia, M.; Nicoll, D.A.; Philipson, K.D. Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 2009, 284, 32735–32741. [Google Scholar]
- John, S.A.; Liao, J.; Jiang, Y.; Ottolia, M. The cardiac Na+-Ca2+ exchanger has two cytoplasmic ion permeation pathways. Proc. Natl. Acad. Sci. USA 2013, 110, 7500–7505. [Google Scholar] [CrossRef]
- Demaurex, N.; Nunes, P. The role of STIM and ORAI proteins in phagocytic immune cells. Am. J. Physiol. Cell Physiol. 2016, 310, C496–C508. [Google Scholar] [CrossRef] [PubMed]
- Egée, S.; Lapaix, F.; Decherf, G.; Staines, H.M.; Ellory, J.C.; Doerig, C.; Thomas, S.L. A stretch-activated anion channel is up-regulated by the malaria parasite Plasmodium falciparum. J. Physiol. 2002, 542, 795–801. [Google Scholar] [PubMed]
- Baumeister, S.; Winterberg, M.; Przyborski, J.M.; Lingelbach, K. The malaria parasite Plasmodium falciparum: Cell biological peculiarities and nutritional consequences. Protoplasma 2010, 240, 3–12. [Google Scholar]
- Prakriya, M.; Lewis, R.S. Store-Operated Calcium Channels. Physiol. Rev. 2015, 95, 1383–1436. [Google Scholar] [CrossRef] [PubMed]
- Haskó, G.; Pacher, P. Regulation of macrophage function by adenosine. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 865–869. [Google Scholar] [CrossRef]
- Chamberlain, N.B.; Dimond, Z.; Hackstadt, T. Chlamydia trachomatis suppresses host cell store-operated Ca2+ entry and inhibits NFAT/calcineurin signaling. Sci. Rep. 2022, 12, 21406. [Google Scholar] [CrossRef]
- Vaeth, M.; Kahlfuss, S.; Feske, S. CRAC Channels and Calcium Signaling in T Cell-Mediated Immunity. Trends Immunol. 2020, 41, 878–901. [Google Scholar] [CrossRef]
- Ledderose, C.; Liu, K.; Kondo, Y.; Slubowski, C.J.; Dertnig, T.; Denicoló, S.; Arbab, M.; Hubner, J.; Konrad, K.; Fakhari, M.; et al. Purinergic P2X4 receptors and mitochondrial ATP production regulate T cell migration. J. Clin. Investig. 2018, 128, 3583–3594. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, N.; Bergero, G.; Mazzocco Mariotta, Y.L.; Aoki, M.P. Purinergic modulation of the immune response to infections. Purinergic Signal 2022, 18, 93–113. [Google Scholar] [CrossRef]
- Borsellino, G.; Kleinewietfeld, M.; Di Mitri, D.; Sternjak, A.; Diamantini, A.; Giometto, R.; Höpner, S.; Centonze, D.; Bernardi, G.; Dell’Acqua, M.L.; et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: Hydrolysis of extracellular ATP and immune suppression. Blood 2007, 110, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Ohta, A.; Sitkovsky, M. Extracellular adenosine-mediated modulation of regulatory T cells. Front. Immunol. 2014, 5, 304. [Google Scholar] [CrossRef]
- Basu, M.; Gupta, P.; Dutta, A.; Jana, K.; Ukil, A. Increased host ATP efflux and its conversion to extracellular adenosine is crucial for establishing Leishmania infection. J. Cell Sci. 2020, 133, jcs239939. [Google Scholar] [CrossRef]
- Faas, M.M.; Sáez, T.; de Vos, P. Extracellular ATP and adenosine: The Yin and Yang in immune responses? Mol. Asp. Med. 2017, 55, 9–19. [Google Scholar] [CrossRef]
- Tonin, A.A.; Da Silva, A.S.; Ruchel, J.B.; Rezer, J.F.; Camillo, G.; Faccio, L.; França, R.T.; Leal, D.B.; Duarte, M.M.; Vogel, F.F.; et al. E-NTP Dase and E-ADA activities in lymphocytes associated with the immune response of rats experimentally infected with Toxoplasma gondii. Exp. Parasitol. 2013, 135, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Tonin, A.A.; Da Silva, A.S.; Casali, E.A.; Silveira, S.S.; Moritz, C.E.; Camillo, G.; Flores, M.M.; Fighera, R.; Thomé, G.R.; Morsch, V.M.; et al. Influence of infection by Toxoplasma gondii on purine levels and E-ADA activity in the brain of mice experimentally infected mice. Exp. Parasitol. 2014, 142, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, N.; Sanmarco, L.M.; Bergero, G.; Favaloro, R.R.; Vigliano, C.; Aoki, M.P. HIF-1α and CD73 expression in cardiac leukocytes correlates with the severity of myocarditis in end-stage Chagas disease patients. J. Leukoc. Biol. 2021, 109, 233–244. [Google Scholar] [CrossRef]
- Borges-Pereira, L.; Meissner, K.A.; Wrenger, C.; Garcia, C.R.S. Plasmodium falciparum GFP-E-NTPDase expression at the intraerythrocytic stages and its inhibition blocks the development of the human malaria parasite. Purinergic Signal 2017, 13, 267–277. [Google Scholar]
- Oliveira, N.F.; Silva, C.L.M. Unveiling the potential of purinergic signaling in Schistosomiasis treatment. Curr. Top. Med. Chem. 2021, 21, 193–204. [Google Scholar] [CrossRef]
- Doleski, P.H.; Mendes, R.E.; Leal, D.B.; Bottari, N.B.; Piva, M.M.; Da Silva, E.S.; Gabriel, M.E.; Lucca, N.J.; Schwertz, C.I.; Giacomim, P.; et al. Seric and hepatic NTPDase and 5′ nucleotidase activities of rats experimentally infected by Fasciola hepatica. Parasitology 2016, 143, 551–556. [Google Scholar] [CrossRef]
- Levano-Garcia, J.; Dluzewski, A.R.; Markus, R.P.; Garcia, C.R. Purinergic signaling is involved in the malaria parasite Plasmodium falciparum invasion to red blood cells. Purinergic Signal 2010, 6, 365–372. [Google Scholar]
- Huber, S.M. Purinoceptor signaling in malaria-infected erythrocytes. Microbes Infect. 2012, 14, 779–786. [Google Scholar] [CrossRef]
- Govindasamy, A.; Bhattarai, P.R.; John, J. Liver cystic echinococcosis: A parasitic review. Ther. Adv. Infect. Dis. 2023, 10, 20499361231171478. [Google Scholar] [CrossRef]
- Scheibel, L.W.; Colombani, P.M.; Hess, A.D.; Aikawa, M.; Atkinson, C.T.; Milhous, W.K. Calcium and calmodulin antagonists inhibit human malaria parasites (Plasmodium falciparum): Implications for drug design. Proc. Natl. Acad. Sci. USA 1987, 84, 7310–7314. [Google Scholar] [CrossRef] [PubMed]
- Chappell, L.H.; Wastling, J.M. Cyclosporin A: Antiparasite drug, modulator of the host-parasite relationship and immunosuppressant. Parasitology 1992, 105, S25–S40. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-S.; Lee, S.C.; Cardenas, M.E.; Heitman, J. Calcium-calmodulin-calcineurin cascade signaling: A globally conserved virulence cascade in eukaryotic microbial pathogens. Cell Host Microbes 2019, 26, 453–462. [Google Scholar] [CrossRef]
- Scarpelli, P.H.; Pecenin, M.F.; Garcia, C.R.S. Intracellular Ca2+ Signaling in Protozoan Parasites: An Overview with a Focus on Mitochondria. Int. J. Mol. Sci. 2021, 22, 469. [Google Scholar] [CrossRef]
- Machado, D.; Pires, D.; Perdigão, J.; Couto, I.; Portugal, I.; Martins, M.; Amaral, L.; Anes, E.; Viveiros, M. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis. PLoS ONE 2016, 11, e0149326. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, J.A.; Weinrauch, L.A. Gated ion channels and mutation mechanisms in multidrug resistant tuberculosis. Int. J. Mol. Sci. 2023, 24, 9670. [Google Scholar] [CrossRef]
- Krogstad, D.J.; Gluzman, I.Y.; Kyle, D.E.; Oduola, A.M.; Martin, S.K.; Milhous, W.K.; Schlesinger, P.H. Efflux of chloroquine from Plasmodium falciparum: Mechanism of chloroquine resistance. Science 1987, 238, 1283–1285. [Google Scholar] [CrossRef]
- Martin, S.K.; Oduola, A.M.J.; Milhous, W.K. Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science 1987, 235, 899–901. [Google Scholar] [CrossRef]
- Martiney, J.A.; Cerami, A.; Slater, A.F. Verapamil reversal of chloroquine resistance in the malaria parasite Plasmodium falciparum is specific for resistant parasites and independent of the weak base effect. J. Biol. Chem. 1995, 270, 22393–22398. [Google Scholar] [CrossRef]
- Desai, S.A. Novel Ion Channel Genes in Malaria Parasites. Genes 2024, 15, 296. [Google Scholar] [CrossRef]
- D’Elia, J.A.; Weinrauch, L.A. Calcium ion channels: Roles in infection and sepsis. Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. Int. J. Mol. Sci. 2018, 19, 2465. [Google Scholar] [CrossRef] [PubMed]
- Lamers, O.A.C.; Franke-Fayard, B.M.D.; Koopman, J.P.R.; Roozen, G.V.T.; Janse, J.J.; Chevalley-Maurel, S.C.; Geurten, F.J.A.; de Bes-Roeleveld, H.M.; Iliopoulou, E.; Colstrup, E.; et al. Safety and Efficacy of Immunization with a Late-Liver-Stage Attenuated Malaria Parasite. N. Engl. J. Med. 2024, 391, 1913–1923. [Google Scholar] [CrossRef]
- Lloyd, A.E.; Honey, B.L.; John, B.M.; Condren, M. Treatment Options and Considerations for Intestinal Helminthic Infections. J. Pharm. Technol. 2014, 30, 130–139. [Google Scholar] [CrossRef]
- Chai, J.Y.; Jung, B.K.; Hong, S.J. Albendazole and Mebendazole as Anti-Parasitic and Anti-Cancer Agents: An Update. Korean J. Parasitol. 2021, 59, 189–225. [Google Scholar] [CrossRef]
- Randic, M.; Padjen, A. Effect of calcium ions on the release of acetylcholine from the cerebral cortex. Nature 1967, 215, 990. [Google Scholar] [CrossRef]
- Reimão, J.Q.; Mesquita, J.T.; Ferreira, D.D.; Tempone, A.G. Investigation of Calcium Channel Blockers as Antiprotozoal Agents and Their Interference in the Metabolism of Leishmania (L.) infantum. Evid. Based Complement. Altern. Med. 2016, 2016, 1523691. [Google Scholar] [CrossRef]
- Docampo, R.; Vercesi, A.E.; Huang, G.; Lander, N.; Chiurillo, M.A.; Bertolini, M. Mitochondrial Ca2+ homeostasis in trypanosomes. Int. Rev. Cell Mol. Biol. 2021, 362, 261–289. [Google Scholar]
- Brading, A.F. Calcium-induced increase in membrane permeability in the guinea-pig taenia coli: Evidence for involvement of a sodium-calcium exchange mechanism. J. Physiol. 1978, 275, 65–84. [Google Scholar] [CrossRef]
- Vercesi, A.E.; Docampo, R. Sodium-proton exchange stimulates Ca2+ release from acidocalcisomes of Trypanosoma brucei. Biochem. J. 1996, 315, 265–270. [Google Scholar] [CrossRef]
- Vercesi, A.E.; Rodrigues, C.O.; Catisti, R.; Docampo, R. Presence of a Na+/H+ exchanger in acidocalcisomes of Leishmania donovani and their alkalization by anti-leishmanial drugs. FEBS Lett. 2000, 473, 203–206. [Google Scholar] [CrossRef]
- Arrizabalaga, G.; Ruiz, F.; Moreno, S.; Boothroyd, J.C. Ionophore-resistant mutant of Toxoplasma gondii reveals involvement of a sodium/hydrogen exchanger in calcium regulation. J. Cell Biol. 2004, 165, 653–662. [Google Scholar] [CrossRef]
- Haines, L.R.; Trett, A.; Rose, C.; García, N.; Sterkel, M.; McGuinness, D.; Regnault, C.; Barrett, M.P.; Leroy, D.; Acosta-Serrano, A.; et al. Anopheles mosquito survival and pharmacokinetic modeling show the mosquitocidal activity of nitisinone. Sci. Transl. Med. 2025, 17, eadr4827. [Google Scholar] [CrossRef]
- Bagur, R.; Hagnoczky, G. Intracellular Ca2+ sensing: It’s role in calcium homeostasis and signaling. Mol. Cell 2017, 66, 780–788. [Google Scholar] [CrossRef]
- Zaidi, A.; Adawale, M.; McLean, L.; Ramlow, P. The plasma membrane calcium pumps; The old and the new. Neurosci. Lett. 2018, 663, 12–17. [Google Scholar] [CrossRef]
- Benaim, G.; Calderon-Atavia, C.G.; Castillo, C.; Perez-Gordones, M.C.; Serrano, M.L. The discovery of the Sph-gated plasma membrane Ca2+ channel in trypanosomatids. A difficult path for a surprising kind of L-type VGCC. Biophys. Rev. 2025, 17, 709–722. [Google Scholar]
- Benaim, G.; Garcia-Marchan, Y.; Reyes, C.; Uzcanga, G.; Figerella, K. Identification of sphingosine-sensitive Ca2+ channel in the plasma membrane of Leishmania mexicana. Biochem. Biophys. Rese Arch Commun. 2013, 430, 1091–1096. [Google Scholar]
- Benaim, G.; Paniz-Mandolphi, A. Unmasking the mechanism behind miltefosine: Revealing the disruption of intracellular Ca2+ homeostasis as a rational therapeutic target in leishmaniasis and Chagas disease. Biomolecules 2024, 14, 406. [Google Scholar] [CrossRef]
- Wu, J.; Yan, Z.; Li, Z.; Qian, X.; Lu, S.; Dong, M.; Zhou, Q.; Yan, N. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution. Nature 2016, 537, 191–196. [Google Scholar] [CrossRef]
- Tang, L.; Gamel, E.-D.; Swanson, T.M.; Pryde, D.C.; Scheuer, T.; Shang, M.; Catteral, W.A. Structural basis for inhibition of a voltage-gatedCa2+ by Ca2+ antagonistic drugs. Nature 2016, 537, 117–121. [Google Scholar]
- Salvador-Recatala, V.; Greenberg, R. Calcium channels of schistosomes: Unresolved questions and unexpected answers. Wiley Interdisp Rev. Membr. Transp. Signal 2012, 1, 85–93. [Google Scholar] [CrossRef]
- Zamponi, G.W. A crash course in calcium channels. ACS Chem. Neurosci. 2017, 8, 2583–2585. [Google Scholar] [CrossRef]
- Park, S.-K.; Gunaratne, G.S.; Cholkav, E.G.; Moshimg, F.; McCusker, P.; Doss, P.I.U.; Chan, J.D.; Stucky, C.L.; Marchant, J.S. The antihelmintic drug praziquqhtel activates a transient receptor potential channel. J. Biol. Chem. 2019, 394, 18873–18880. [Google Scholar] [CrossRef]
- Harder, A. Activation of transient receptor potential channel Sm. (Schistosoma mansoni) TRPM by Praziquantel enhanced Ca++ influx, spastic paralysis, and tegumental disruption—The deadly cascade in parasitic schistosomes, other trematodes, and cestodes. Parasitol. Res. 2020, 119, 2371–2382. [Google Scholar]
- Cestari, I.; Anupuma, A.; Stuart, K. Inositol polyphosphate multikinase regulation of Trypanosoma brucei life stage development. Mol. Biol. Cell 2018, 29, 1137–1152. [Google Scholar] [PubMed]
- Mondal, A.; Siwach, M.; Ahmqd, M.; Radhaknishmian, S.K.; Talukdar, P. Pyridyl-linked/hetero hydrazones: Transmembrane H+/Cl− symporters with efficient antibacterial activity. ACS Infect. Dis. 2024, 10, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Malla, J.A.; Umesh, R.M.; Vijay, A.; Mukherjee, A.; Lahiri, M.; Talukdar, P. Apoptosis-inducing activity of a fluorescent barrel-rosette M+/Cl− channel. Chem. Sci. 2020, 11, 2420–2428. [Google Scholar] [PubMed]
- Ren, S.; Zhang, Z.; Dong, Z. Biomimetic ion channels: An emerging and promising material for therapeutic ion channelopathies. Trends Chem. 2024, 6, 726–738. [Google Scholar] [CrossRef]
| CNS | Heart | Liver | Viscera (Other) | Blood | Skin | |
|---|---|---|---|---|---|---|
| Plasmodium falciparum | + | ++ | ++ | |||
| Leishmania | ++ | ++ | ||||
| Trypanosoma brucei, cruzi, | ++ | ++ | ||||
| Toxoplasma gondii | ++ | |||||
| Schistosoma haematobium | ++ (bladder) | |||||
| Schistosoma japonicum | ++ | ++ | ||||
| Schistosoma mansoni | ++ | |||||
| Taenia solium (cestode) | ++ | ++ | ++ | |||
| Cryptosporidium | ++ (lung, GI) | |||||
| Echinococcus | ++ | ++ |
| Initial Lymphohematogenous Phase: Injection of sporozoites by Anopheles mosquito |
|
| Hepatic Phase: Maturation of Plasmodium sporozoites into merozoites and formation of clusters called schizonts |
|
| Hematogenous Phase: Rupture of schizonts permits merozoites to enter bloodstream and parasitize erythrocytes |
|
| Maturation of parasites (merozoites to trophozoites, schizonts) with subsequent rupture of erythrocytes | |
| Release of merozoites into the bloodstream: Acute malaria hemolytic crisis |
| Human Host Anatomy | Life Cycle Phase | Therapeutic Agent Mechanism |
|---|---|---|
| Hepatocyte/erythrocyte | Merozoites and schizonts Merozoites in red blood cells | Cyclosporine/chloroquine Atovaquone/proguanil Impairs calcium peak |
| Erythrocyte | Trophozoites | Chloroquine inhibition of protein and nucleic acid synthesis Artemether/lumefantrine binds to heme, generating oxygen radicals |
| Anopheles mosquito | Life cycle phase | Therapeutic agent mechanism |
| Salivary gland | Sporozoites | Vaccine (trial) |
|
|
| Sodium/acetylcholine ion pump |
| L-type voltage-gated calcium channel |
| Sodium/calcium ion exchanger |
| Transient receptor potential channel |
| Store-operated calcium entry channel |
| Transient receptor potential channel |
| Sodium/hydrogen/calcium exchanger | |
| L-type voltage-gated calcium channel |
| Ligand-related calcium channel | |
| Sphingosine | |
| Inositol triphosphate | |
| Store-operated calcium entry channels | |
| Acidocalcisomes (phosphate-containing organelles) | |
| Calcium-containing protein kinases | |
| Endoplasmic reticulum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
D’Elia, J.A.; Weinrauch, L.A. Monocellular and Multicellular Parasites Infesting Humans: A Review of Calcium Ion Mechanisms. Biomedicines 2026, 14, 2. https://doi.org/10.3390/biomedicines14010002
D’Elia JA, Weinrauch LA. Monocellular and Multicellular Parasites Infesting Humans: A Review of Calcium Ion Mechanisms. Biomedicines. 2026; 14(1):2. https://doi.org/10.3390/biomedicines14010002
Chicago/Turabian StyleD’Elia, John A., and Larry A. Weinrauch. 2026. "Monocellular and Multicellular Parasites Infesting Humans: A Review of Calcium Ion Mechanisms" Biomedicines 14, no. 1: 2. https://doi.org/10.3390/biomedicines14010002
APA StyleD’Elia, J. A., & Weinrauch, L. A. (2026). Monocellular and Multicellular Parasites Infesting Humans: A Review of Calcium Ion Mechanisms. Biomedicines, 14(1), 2. https://doi.org/10.3390/biomedicines14010002

