Circadian Clock Genes in Colorectal Cancer: From Molecular Mechanisms to Chronotherapeutic Applications
Abstract
1. Introduction
2. Role of Clock Genes in CRC Pathology
2.1. Disruption of the Cell Cycle in CRC
2.2. Tumor Metastasis of CRC
2.2.1. Metastasis Associated with EMT
2.2.2. Metastasis Associated with Angiogenesis
2.3. Metabolic Reprogramming of CRC
2.3.1. Glucose Metabolism
2.3.2. Lipid Metabolism
2.3.3. Other Metabolic Pathways
2.4. Tumor Microenvironment of CRC
2.4.1. Alterations in the Tumor Microenvironment Unrelated to Enterobacteria and Their Metabolites
2.4.2. Tumor Microenvironment Associated with Enterobacteria and Their Metabolites
3. Clinical Application of Clock Genes in CRC
3.1. Clock Genes in CRC Diagnosis and Prognostic Tests
3.2. Clock Genes in CRC Chronotherapy
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CRC | Colorectal cancer |
| EMT | Epithelial-mesenchymal transition |
| TTFL | Transcription/translation feedback loop |
| CCGs | Clock-controlled genes |
| BMAL1 | Basic helix–loop–helix ARNT like 1 |
| CLOCK | Cycle protein kaput |
| PER | Period |
| CRY | Cryptochrome |
| NR1D2 | Nuclear receptor subfamily 1 group D member 2 |
| RORA | Retinoic acid receptor-related orphan receptor α |
| CK1ε | Casein kinase 1ε |
| TIM | TIMELESS |
| SCN | Suprachiasmatic Nucleus |
| EKs | Extracellular regulated protein kinases |
| CHK1 | Checkpoint kinase 1 |
| CDK1 | Cell cycle protein-dependent kinase 1 |
| PARP | Poly ADP-ribose polymerase poly ADP-ribose polymerase |
| TRCs | Transcription-replication conflicts |
| ISCs | Intestinal stem cells |
| MACC1 | Metastasis-associated in colon cancer 1 |
| CBP | CREB-binding protein |
| VEGF | Vascular endothelial growth factor |
| ECM | Extracellular matrix |
| MDSCs | Myeloid-derived suppressor cells |
| NLC | Nanolipid carrier |
| 6G | 6-gingerol |
| PKA | Protein kinase A |
| SCFAs | Short-chain fatty acid |
| AUC | Area under the curve |
| TCA | Taurocholic acid |
| DPD | Dihydropyrimidine dehydrogenase |
| CY | Cyclophosphamide |
| CMS | Consensus molecular subtypes |
| mCRC | Metastatic colorectal cancer |
| ICI | Immune checkpoint inhibitor |
| NSCLC | Non-small cell lung cancer |
| PFS | Progression-free surviva |
| TRF | Time-restricted feeding |
References
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer Statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Patke, A.; Young, M.W.; Axelrod, S. Molecular Mechanisms and Physiological Importance of Circadian Rhythms. Nat. Rev. Mol. Cell Biol. 2020, 21, 67–84. [Google Scholar] [CrossRef]
- Lowrey, P.L.; Takahashi, J.S. Genetics of circadian rhythms in Mammalian model organisms. Adv. Genet. 2011, 74, 175–230. [Google Scholar] [CrossRef]
- Turek, F.W. Circadian Clocks: Not Your Grandfather’s Clock. Science 2016, 354, 992–993. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Hai, R.; Liao, W.; Luo, X. The Role of Circadian Clocks in Cancer: Mechanisms and Clinical Implications. Genes Dis. 2023, 10, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Bishehsari, F.; Engen, P.A.; Voigt, R.M.; Swanson, G.; Shaikh, M.; Wilber, S.; Naqib, A.; Green, S.J.; Shetuni, B.; Forsyth, C.B. Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon Carcinogenesis. Cell. Mol. Gastroenterol. Hepatol. 2020, 9, 219–237. [Google Scholar] [CrossRef]
- Li, H.X. The Role of Circadian Clock Genes in Tumors. OncoTargets Ther. 2019, 12, 3645–3660. [Google Scholar] [CrossRef]
- Miro, C.; Docimo, A.; Barrea, L.; Verde, L.; Cernea, S.; Sojat, A.S.; Marina, L.V.; Docimo, G.; Colao, A.; Dentice, M.; et al. “Time” for Obesity-Related Cancer: The Role of the Circadian Rhythm in Cancer Pathogenesis and Treatment. Semin. Cancer Biol. 2023, 91, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, N.; Lu, C.; Bei, Y.; Qian, R.; Hua, L. Upregulation of Circadian Gene ‘hClock’ Contribution to Metastasis of Colorectal Cancer. Int. J. Oncol. 2017, 50, 2191–2199. [Google Scholar] [CrossRef]
- Fuhr, L.; El-Athman, R.; Scrima, R.; Cela, O.; Carbone, A.; Knoop, H.; Li, Y.; Hoffmann, K.; Laukkanen, M.O.; Corcione, F.; et al. The Circadian Clock Regulates Metabolic Phenotype Rewiring Via HKDC1 and Modulates Tumor Progression and Drug Response in Colorectal Cancer. EBioMedicine 2018, 33, 105–121. [Google Scholar] [CrossRef] [PubMed]
- He, A.; Huang, Z.; Zhang, R.; Lu, H.; Wang, J.; Cao, J.; Feng, Q. Circadian Clock Genes Are Correlated with Prognosis and Immune Cell Infiltration in Colon Adenocarcinoma. Comput. Math. Methods Med. 2022, 2022, 1709918. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, C.; Cao, Y.; Li, J.; Bi, F. Major Roles of the Circadian Clock in Cancer. Cancer Biol. Med. 2023, 20, 1–24. [Google Scholar] [CrossRef]
- Garcia-Saenz, A.; de Miguel, A.S.; Espinosa, A.; Costas, L.; Aragonés, N.; Tonne, C.; Moreno, V.; Pérez-Gómez, B.; Valentin, A.; Pollán, M.; et al. Association Between Outdoor Light-at-Night Exposure and Colorectal Cancer in Spain. Epidemiology 2020, 31, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Wichert, K.; Rabstein, S.; Stang, A.; Erbel, R.; Eisele, L.; Arendt, M.; Keimer, A.; Dragano, N.; Hoffmann, W.; Lerch, M.M.; et al. Associations between Shift Work and Risk of Colorectal Cancer in Two German Cohort Studies. Chronobiol. Int. 2020, 37, 1235–1243. [Google Scholar] [CrossRef]
- Bishehsari, F.; Preuss, F.; Mirbagheri, S.S.; Zhang, L.; Shaikh, M.; Keshavarzian, A. Interaction of Alcohol with Time of Eating on Markers of Circadian Dyssynchrony and Colon Tissue Injury. Chem. Biol. Interact. 2020, 325, 109132. [Google Scholar] [CrossRef] [PubMed]
- Oklejewicz, M.; Destici, E.; Tamanini, F.; Hut, R.A.; Janssens, R.; van der Horst, G.T.J. Phase Resetting of the Mammalian Circadian Clock by DNA Damage. Curr. Biol. 2008, 18, 286–291. [Google Scholar] [CrossRef]
- Huisman, S.A.; Oklejewicz, M.; Ahmadi, A.R.; Tamanini, F.; Ijzermans, J.N.; van der Horst, G.T.; de Bruin, R.W. Colorectal liver metastases with a disrupted circadian rhythm phase shift the peripheral clock in liver and kidney. Int. J. Cancer 2015, 136, 1024–1032. [Google Scholar] [CrossRef]
- Schrader, L.A.; Ronnekleiv-Kelly, S.M.; Hogenesch, J.B.; Bradfield, C.A.; Malecki, K.M. Circadian Disruption, Clock Genes, and Metabolic Health. J. Clin. Investig. 2024, 134, e170998. [Google Scholar] [CrossRef] [PubMed]
- Kervezee, L.; Cuesta, M.; Cermakian, N.; Boivin, D.B. Simulated Night Shift Work Induces Circadian Misalignment of the Human Peripheral Blood Mononuclear Cell Transcriptome. Proc. Natl. Acad. Sci. USA 2018, 115, 5540–5545. [Google Scholar] [CrossRef]
- Gaucher, J.; Montellier, E.; Sassone-Corsi, P. Molecular Cogs: Interplay between Circadian Clock and Cell Cycle. Trends Cell Biol. 2018, 28, 368–379. [Google Scholar] [CrossRef]
- Patel, J.A.; Kim, H. The TIMELESS Effort for Timely DNA Replication and Protection. Cell. Mol. Life Sci. 2023, 80, 84. [Google Scholar] [CrossRef]
- Qu, M.; Zhang, G.; Qu, H.; Vu, A.; Wu, R.; Tsukamoto, H.; Jia, Z.; Huang, W.; Lenz, H.J.; Rich, J.N.; et al. Circadian Regulator BMAL1::CLOCK Promotes Cell Proliferation in Hepatocellular Carcinoma by Controlling Apoptosis and Cell Cycle. Proc. Natl. Acad. Sci. USA 2023, 120, e2214829120. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Liu, L.; Meng, J.; Dai, M. Circular RNA circ_0068464 Combined with microRNA-383 Regulates Wnt/β-Catenin Pathway to Promote the Progression of Colorectal Cancer. Bioengineered 2022, 13, 5113–5125. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Pelicano, H.; Liu, J.; Huang, P.; Lee, C.C. The Circadian Gene Period2 Plays an Important Role in Tumor Suppression and DNA Damage Response In Vivo. Cell 2002, 111, 41–50, Erratum in Cell 2002, 111, 1055. [Google Scholar] [CrossRef]
- Basti, A.; Fior, R.; Yalҫin, M.; Póvoa, V.; Astaburuaga, R.; Li, Y.; Naderi, J.; Godinho Ferreira, M.; Relógio, A. The Core-Clock Gene NR1D1 Impacts Cell Motility In Vitro and Invasiveness in A Zebrafish Xenograft Colon Cancer Model. Cancers 2020, 12, 853. [Google Scholar] [CrossRef]
- Karpowicz, P.; Zhang, Y.; Hogenesch, J.B.; Emery, P.; Perrimon, N. The Circadian Clock Gates the Intestinal Stem Cell Regenerative State. Cell Rep. 2013, 3, 996–1004. [Google Scholar] [CrossRef]
- Neilsen, B.K.; Frodyma, D.E.; McCall, J.L.; Fisher, K.W.; Lewis, R.E. ERK-Mediated TIMELESS Expression Suppresses G2/M Arrest in Colon Cancer Cells. PLoS ONE 2019, 14, e0209224. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, M.; Karamichali, A.; Rossetti, G.G.; Freudenmann, A.; Iacovino, L.G.; Dionellis, V.S.; Sotiriou, S.K.; Halazonetis, T.D. Transcription-Replication Conflicts Underlie Sensitivity to PARP Inhibitors. Nature 2024, 628, 433–441. [Google Scholar] [CrossRef]
- Stokes, K.; Nunes, M.; Trombley, C.; Flôres, D.E.F.L.; Wu, G.; Taleb, Z.; Alkhateeb, A.; Banskota, S.; Harris, C.; Love, O.P.; et al. The Circadian Clock Gene, Bmal1, Regulates Intestinal Stem Cell Signaling and Represses Tumor Initiation. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 1847–1872.e0. [Google Scholar] [CrossRef]
- Cheng, L.T.; Tan, G.Y.T.; Chang, F.P.; Wang, C.K.; Chou, Y.C.; Hsu, P.H.; Hwang-Verslues, W.W. Core Clock Gene BMAL1 and RNA-Binding Protein MEX3A Collaboratively Regulate Lgr5 Expression in Intestinal Crypt Cells. Sci. Rep. 2023, 13, 17597. [Google Scholar] [CrossRef]
- Mazzoccoli, G.; Colangelo, T.; Panza, A.; Rubino, R.; De Cata, A.; Tiberio, C.; Valvano, M.R.; Pazienza, V.; Merla, G.; Augello, B.; et al. Deregulated Expression of Cryptochrome Genes in Human Colorectal Cancer. Mol. Cancer 2016, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Young, R.; Garvanska, D.H.; Song, C.; Zhai, Y.; Wang, Y.; Jiang, H.; Fang, J.; Nilsson, J.; Alfieri, C.; et al. Functional Analysis of Cdc20 Reveals a Critical Role of CRY Box in Mitotic Checkpoint Signaling. Commun. Biol. 2024, 7, 164. [Google Scholar] [CrossRef]
- van der Geest, L.G.; Lam-Boer, J.; Koopman, M.; Verhoef, C.; Elferink, M.A.; de Wilt, J.H. Nationwide Trends in Incidence, Treatment and Survival of Colorectal Cancer Patients with Synchronous Metastases. Clin. Exp. Metastasis 2015, 32, 457–465. [Google Scholar] [CrossRef]
- van Gestel, Y.R.; de Hingh, I.H.; van Herk-Sukel, M.P.; van Erning, F.N.; Beerepoot, L.V.; Wijsman, J.H.; Slooter, G.D.; Rutten, H.J.; Creemers, G.J.; Lemmens, V.E. Patterns of Metachronous Metastases after Curative Treatment of Colorectal Cancer. Cancer Epidemiol. 2014, 38, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Swartjes, H.; Sijtsma, F.P.C.; Elferink, M.A.G.; van Erning, F.N.; Moons, L.M.G.; Verheul, H.M.W.; Berbée, M.; Vissers, P.A.J.; de Wilt, J.H.W. Trends in Incidence, Treatment, and Relative Survival of Colorectal Cancer in the Netherlands Between 2000 and 2021. Eur. J. Cancer 2024, 205, 114104, Erratum in Eur. J. Cancer 2024, 207, 114155. https://doi.org/10.1016/j.ejca.2024.114155. [Google Scholar] [CrossRef] [PubMed]
- Engstrand, J.; Taflin, H.; Rystedt, J.L.; Hemmingsson, O.; Urdzik, J.; Sandström, P.; Björnsson, B.; Hasselgren, K. The Resection Rate of Synchronously Detected Liver and Lung Metastasis from Colorectal Cancer Is Low-A National Registry-Based Study. Cancers 2023, 15, 1434. [Google Scholar] [CrossRef]
- Basti, A.; Malhan, D.; Dumbani, M.; Dahlmann, M.; Stein, U.; Relógio, A. Core-Clock Genes Regulate Proliferation and Invasion via a Reciprocal Interplay with MACC1 in Colorectal Cancer Cells. Cancers 2022, 14, 3458. [Google Scholar] [CrossRef]
- Hwang-Verslues, W.W.; Chang, P.H.; Jeng, Y.M.; Kuo, W.H.; Chiang, P.H.; Chang, Y.C.; Hsieh, T.H.; Su, F.Y.; Lin, L.C.; Abbondante, S.; et al. Loss of Corepressor PER2 Under Hypoxia Up-Regulates OCT1-Mediated EMT Gene Expression and Enhances Tumor Malignancy. Proc. Natl. Acad. Sci. USA 2013, 110, 12331–12336. [Google Scholar] [CrossRef]
- Colangelo, T.; Carbone, A.; Mazzarelli, F.; Cuttano, R.; Dama, E.; Nittoli, T.; Albanesi, J.; Barisciano, G.; Forte, N.; Palumbo, O.; et al. Loss of Circadian Gene Timeless Induces EMT and Tumor Progression in Colorectal Cancer via Zeb1-Dependent Mechanism. Cell Death Differ. 2022, 29, 1552–1568. [Google Scholar] [CrossRef]
- Menche, C.; Schuhwerk, H.; Armstark, I.; Gupta, P.; Fuchs, K.; van Roey, R.; Mosa, M.H.; Hartebrodt, A.; Hajjaj, Y.; Clavel Ezquerra, A.; et al. ZEB1-Mediated Fibroblast Polarization Controls Inflammation and Sensitivity to Immunotherapy in Colorectal Cancer. EMBO Rep. 2024, 25, 3406–3431. [Google Scholar] [CrossRef]
- Rabinovich-Nikitin, I.; Kirshenbaum, L.A. BMAL1 Regulates Cell Cycle Progression and Angiogenesis of Endothelial Cells. Cardiovasc. Res. 2023, 119, 1889–1890. [Google Scholar] [CrossRef]
- Burgermeister, E.; Battaglin, F.; Eladly, F.; Wu, W.; Herweck, F.; Schulte, N.; Betge, J.; Härtel, N.; Kather, J.N.; Weis, C.A.; et al. Aryl Hydrocarbon Receptor Nuclear Translocator-like (ARNTL/BMAL1) is Associated with Bevacizumab Resistance in Colorectal Cancer via Regulation of Vascular Endothelial Growth Factor A. eBioMedicine 2019, 45, 139–154. [Google Scholar] [CrossRef]
- Han, M.; Zhou, X.; Cheng, H.; Qiu, M.; Qiao, M.; Geng, X. Chitosan and Hyaluronic Acid in Colorectal Cancer Therapy: A Review on EMT Regulation, Metastasis, and Overcoming Drug Resistance. Int. J. Biol. Macromol. 2025, 289, 138800. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Jiang, C.H.; Li, N. Altered Metabolism in Cancer: Insights into Energy Pathways and Therapeutic Targets. Mol. Cancer 2024, 23, 203. [Google Scholar] [CrossRef]
- Hay, N. Reprogramming Glucose Metabolism in Cancer: Can it be Exploited for Cancer Therapy? Nat. Rev. Cancer 2016, 16, 635. [Google Scholar] [CrossRef]
- Sahar, S.; Sassone-Corsi, P. Metabolism and Cancer: The Circadian Clock Connection. Nat. Rev. Cancer 2009, 9, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Eckel-Mahan, K.; Sassone-Corsi, P. Metabolism and the Circadian Clock Converge. Physiol. Rev. 2013, 93, 107–135. [Google Scholar] [CrossRef]
- Chen, M.; Lin, Y.; Dang, Y.; Xiao, Y.; Zhang, F.; Sun, G.; Jiang, X.; Zhang, L.; Du, J.; Duan, S.; et al. Reprogramming of Rhythmic Liver Metabolism by Intestinal Clock. Physiol. Rev. 2023, 79, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hu, Y.; Lu, S.; Lu, M.; Li, J.; Chang, H.; Jia, H.; Zhou, M.; Ren, F.; Zhong, J. IC261, A Specific Inhibitor of CK1δ/ε, Promotes Aerobic Glycolysis Through p53-Dependent Mechanisms in Colon Cancer. Int. J. Biol. Sci. 2020, 16, 882–892. [Google Scholar] [CrossRef]
- Chun, S.K.; Fortin, B.M.; Fellows, R.C.; Habowski, A.N.; Verlande, A.; Song, W.A.; Mahieu, A.L.; Lefebvre, A.E.Y.T.; Sterrenberg, J.N.; Velez, L.M.; et al. Disruption of the Circadian Clock Drives Apc Loss of Heterozygosity to Accelerate Colorectal Cancer. Sci. Adv. 2022, 8, eabo2389. [Google Scholar] [CrossRef]
- Liu, P.; Luo, Y.; Wu, H.; Han, Y.; Wang, S.; Liu, R.; Wen, S.; Huang, P. HKDC1 Functions as a Glucose Sensor and Promotes Metabolic Adaptation and Cancer Growth via Interaction with PHB2. Cell Death Differ. 2024, 31, 1595–1610. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Ye, L.; Shen, S.; Zhang, Y.; Qian, X.; Zhang, T.; Yuan, M.; Ye, Z.; Cai, J.; et al. HKDC1 Promotes Tumor Immune Evasion in Hepatocellular Carcinoma by Coupling Cytoskeleton to STAT1 Activation and PD-L1 Expression. Nat. Commun. 2024, 15, 1314. [Google Scholar] [CrossRef]
- Wang, Y.N.; Ruan, D.Y.; Wang, Z.X.; Yu, K.; Rong, D.L.; Liu, Z.X.; Wang, F.; Hu, J.J.; Jin, Y.; Wu, Q.N.; et al. Targeting the Cholesterol-RORα/γ Axis Inhibits Colorectal Cancer Progression Through Degrading c-myc. Oncogene 2022, 41, 5266–5278. [Google Scholar] [CrossRef]
- Krishnaiah, S.Y.; Wu, G.; Altman, B.J.; Growe, J.; Rhoades, S.D.; Coldren, F.; Venkataraman, A.; Olarerin-George, A.O.; Francey, L.J.; Mukherjee, S.; et al. Clock Regulation of Metabolites Reveals Coupling Between Transcription and Metabolism. Cell Metab. 2017, 25, 961–974.e4, Erratum in Cell Metab. 2017, 25, 1206. https://doi.org/10.1016/j.cmet.2017.04.023. [Google Scholar] [CrossRef]
- Chen Daniel, S.; Mellman, I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental Regulation of Tumor Progression and Metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Narasimamurthy, R.; Qu, M.; Shi, N.; Guo, H.; Xue, Y.; Barker, N. Circadian Regulation of Cancer Stem Cells and The Tumor Microenvironment During Metastasis. Nat. Cancer 2024, 5, 546–556, Erratum in Nat. Cancer 2024, 5, 809. https://doi.org/10.1038/s43018-024-00776-3. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, Q.; Gül, Z.M.; Wang, S.; Pick, R.; Cheng, P.; Bill, R.; Wu, Y.; Naulaerts, S.; Barnoud, C.; et al. Circadian Tumor Infiltration and Function of CD8+ T Cells Dictate Immunotherapy Efficacy. Cell 2024, 187, 2690–2702.e17. [Google Scholar] [CrossRef]
- Chen, P.; Hsu, W.H.; Chang, A.; Tan, Z.; Lan, Z.; Zhou, A.; Spring, D.J.; Lang, F.F.; Wang, Y.A.; DePinho, R.A. Circadian Regulator CLOCK Recruits Immune-Suppressive Microglia into the GBM Tumor Microenvironment. Cancer Discov. 2020, 10, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Guo, Z.; Wu, M.; Chen, F.; Chen, L. Circadian Rhythm Regulates the Function of Immune Cells and Participates in the Development of Tumors. Cell Death Discov. 2024, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, Y.; Chong, C.S.; Ma, X.; Tong, S.; He, X.; Li, Y.; Cai, S.; Mo, S.; Peng, J.; et al. The Genomic and Transcriptomic Landscapes of Clock Genes Reveal the Significance of Circadian Rhythm in the Progression and Immune Microenvironment of Metastatic Colorectal Cancer. Clin. Transl. Med. 2022, 12, e755. [Google Scholar] [CrossRef]
- Fortin, B.M.; Pfeiffer, S.M.; Insua-Rodríguez, J.; Alshetaiwi, H.; Moshensky, A.; Song, W.A.; Mahieu, A.L.; Chun, S.K.; Lewis, A.N.; Hsu, A.; et al. Circadian Control of Tumor Immunosuppression Affects Efficacy of Immune Checkpoint Blockade. Nat. Immunol. 2024, 25, 1257–1269. [Google Scholar] [CrossRef]
- Liu, J.L.; Wang, C.Y.; Cheng, T.Y.; Rixiati, Y.; Ji, C.; Deng, M.; Yao, S.; Yuan, L.H.; Zhao, Y.Y.; Shen, T.; et al. Circadian Clock Disruption Suppresses PDL1+ Intraepithelial B Cells in Experimental Colitis and Colitis-Associated Colorectal Cancer. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 251–276. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, T.; Wu, Z.; Zhu, D.; Gu, H. The Effects of MYC on Tumor Immunity and Immunotherapy. Cell Death Discov. 2023, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lin, Y.; Yuan, X.; Li, F.; Guo, L.; Wu, B. REV-ERBα Integrates Colon Clock with Experimental Colitis Through Regulation of NF-κB/NLRP3 Axis. Nat. Commun. 2018, 9, 4246. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Song, J.; Xu, K.; Tian, W.; Cai, X.; Mo, J.; Cao, Y.; Xiao, J. Homogalacturonan Enriched Pectin Based Hydrogel Enhances 6-gingerol’s Colitis Alleviation Effect via NF-κB/NLRP3 Axis. Int. J. Biol. Macromol. 2023, 245, 125282. [Google Scholar] [CrossRef] [PubMed]
- Narasimamurthy, R.; Hatori, M.; Nayak, S.K.; Liu, F.; Panda, S.; Verma, I.M. Circadian Clock Protein Cryptochrome Regulates the Expression of Proinflammatory Cytokines. Proc. Natl. Acad. Sci. USA 2012, 109, 12662–12667. [Google Scholar] [CrossRef]
- White, M.T.; Sears, C.L. The Microbial Landscape of Colorectal Cancer. Nat. Rev. Microbiol. 2023, 22, 240–254. [Google Scholar] [CrossRef]
- Wong, C.C.; Yu, J. Gut Microbiota in Colorectal Cancer Development and Therapy. Nat. Rev. Clin. Oncol. 2023, 20, 429–452. [Google Scholar] [CrossRef]
- Liu, J.L.; Xu, X.; Rixiati, Y.; Wang, C.Y.; Ni, H.L.; Chen, W.S.; Gong, H.M.; Zhang, Z.L.; Li, S.; Shen, T.; et al. Dysfunctional Circadian Clock Accelerates Cancer Metastasis by Intestinal Microbiota Triggering Accumulation of Myeloid-Derived Suppressor Cells. Cell Metab. 2024, 36, 1320–1334.e9. [Google Scholar] [CrossRef]
- Cui, Z.; Xu, H.; Wu, F.; Chen, J.; Zhu, L.; Shen, Z.; Yi, X.; Yang, J.; Jia, C.; Zhang, L.; et al. Maternal circadian rhythm disruption affects neonatal inflammation via metabolic reprograming of myeloid cells. Nat. Metab. 2024, 6, 899–913. [Google Scholar] [CrossRef]
- Niu, Y.; Fan, X.; Wang, Y.; Lin, J.; Hua, L.; Li, X.; Qian, R.; Lu, C. Genome-wide CRISPR Screening Reveals Pyrimidine Metabolic Reprogramming in 5-FU Chronochemotherapy of Colorectal Cancer. Front. Oncol. 2022, 12, 949715. [Google Scholar] [CrossRef]
- Ye, Y.; Xiang, Y.; Ozguc, F.M.; Kim, Y.; Liu, C.J.; Park, P.K.; Hu, Q.; Diao, L.; Lou, Y.; Lin, C.; et al. The Genomic Landscape and Pharmacogenomic Interactions of Clock Genes in Cancer Chronotherapy. Cell Syst. 2018, 6, 314–328.e2. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, S.; Huang, X.; Chai, R.; Tang, Q.; Yang, R.; Huang, X.; Wang, X.; Zheng, K. Dysregulation of circadian clock genes as significant clinic factor in the tumorigenesis of hepatocellular carcinoma. Computational and Mathematical Methods in Medicine. Comput. Math. Methods Med. 2021, 2021, 8238833. [Google Scholar] [CrossRef]
- Xian, H.; Li, Y.; Zou, B.; Chen, Y.; Yin, H.; Li, X.; Pan, Y. Identification of TIMELESS and RORA as key clock molecules of non-small cell lung cancer and the comprehensive analysis. BMC Cancer 2022, 22, 107. [Google Scholar] [CrossRef] [PubMed]
- Hasakova, K.; Vician, M.; Reis, R.; Zeman, M.; Herichova, I. The Expression of Clock Genes cry1 and cry2 in Human Colorectal Cancer and Tumor Adjacent Tissues Correlates Differently Dependent on Tumor Location. Neoplasma 2018, 65, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Dang, Y.; Yang, Z.; Liu, Y.; Zhang, L.; Xu, Y.; Zhou, W.; Ji, G. Comprehensive RNA Sequencing in Adenoma-Cancer Transition Identified Predictive Biomarkers and Therapeutic Targets of Human CRC. Mol. Ther. Nucleic Acids 2020, 20, 25–33. [Google Scholar] [CrossRef]
- Lévi, F.A.; Zidani, R.; Vannetzel, J.M.; Perpoint, B.; Focan, C.; Faggiuolo, R.; Chollet, P.; Garufi, C.; Itzhaki, M.; Dogliotti, L. Chronomodulated Versus Fixed-Infusion—Rate Delivery of Ambulatory Chemotherapy with Oxaliplatin, Fluorouracil, and Folinic Acid (Leucovorin) in Patients with Colorectal Cancer Metastases: A Randomized Multi-Institutional Trial. J. Natl. Cancer Inst. 1994, 86, 1608–1617. [Google Scholar] [CrossRef]
- Innominato, P.F.; Karaboué, A.; Focan, C.; Chollet, P.; Giacchetti, S.; Bouchahda, M.; Ulusakarya, A.; Torsello, A.; Adam, R.; Lévi, F.A.; et al. Efficacy and Safety of Chronomodulated Irinotecan, Oxaliplatin, 5-Fluorouracil and Leucovorin Combination as First- or Second-Line Treatment against Metastatic Colorectal Cancer: Results from the International EORTC 05011 Trial. Int. J. Cancer 2021, 148, 2512–2521. [Google Scholar] [CrossRef]
- Lévi, F. Circadian Chronotherapy for Human Cancers. Lancet Oncol. 2001, 2, 307–315. [Google Scholar] [CrossRef]
- Lévi, F.; Zidani, R.; Misset, J.L. Randomised Multicentre Trial of Chronotherapy with Oxaliplatin, Fluorouracil, and Folinic Acid in Metastatic Colorectal Cancer. Lancet 1997, 350, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Eriguchi, M.; Levi, F.; Hisa, T.; Yanagie, H.; Nonaka, Y.; Takeda, Y. Chronotherapy for Cancer. Biomed. Pharmacother. 2003, 57, 92–95. [Google Scholar] [CrossRef]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, K.; Stadler, Z.K.; Cercek, A.; Mendelsohn, R.B.; Shia, J.; Segal, N.H.; Diaz, L.A., Jr. Immunotherapy in Colorectal Cancer: Rationale, Challenges and Potential. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Lévi, F.A.; Okyar, A.; Hadadi, E.; Innominato, P.F.; Ballesta, A. Circadian Regulation of Drug Responses: Toward Sex-Specific and Personalized Chronotherapy. Annu. Rev. Pharmacol. Toxicol. 2024, 64, 89–114. [Google Scholar] [CrossRef]
- Leung, C.; Gérard, C.; Gonze, D. Modeling the Circadian Control of the Cell Cycle and Its Consequences for Cancer Chronotherapy. Biology 2023, 12, 612. [Google Scholar] [CrossRef]
- Ector, C.; Schmal, C.; Didier, J.; De Landtsheer, S.; Finger, A.M.; Müller-Marquardt, F.; Schulte, J.H.; Sauter, T.; Keilholz, U.; Herzel, H.; et al. Time-of-Day Effects of Cancer Drugs Revealed by High-Throughput Deep Phenotyping. Nat. Commun. 2024, 15, 7205. [Google Scholar] [CrossRef]
- Qian, D.C.; Kleber, T.; Brammer, B.; Xu, K.M.; Switchenko, J.M.; Janopaul-Naylor, J.R.; Zhong, J.; Yushak, M.L.; Harvey, R.D.; Paulos, C.M.; et al. Effect of Immunotherapy Time-of-Day Infusion on Overall Survival among Patients with Advanced Melanoma in the USA (MEMOIR): A Propensity Score-Matched Analysis of a Single-Centre, Longitudinal Study. Lancet Oncol. 2021, 22, 1777–1786. [Google Scholar] [CrossRef]
- Rousseau, A.; Tagliamento, M.; Auclin, E.; Aldea, M.; Frelaut, M.; Levy, A.; Benitez, J.C.; Naltet, C.; Lavaud, P.; Botticella, A.; et al. Clinical Outcomes by Infusion Timing of Immune Checkpoint Inhibitors in Patients with Advanced Non-Small Cell Lung Cancer. Eur. J. Cancer 2023, 182, 107–114. [Google Scholar] [CrossRef]
- Krugluger, W.; Brandstaetter, A.; Kállay, E.; Schueller, J.; Krexner, E.; Kriwanek, S.; Bonner, E.; Cross, H.S. Regulation of Genes of the Circadian Clock in Human Colon Cancer: Reduced Period-1 and Dihydropyrimidine Dehydrogenase Transcription Correlates in High-Grade Tumors. Cancer Res. 2007, 67, 7917–7922. [Google Scholar] [CrossRef]
- Gorbacheva, V.Y.; Kondratov, R.V.; Zhang, R.; Cherukuri, S.; Gudkov, A.V.; Takahashi, J.S.; Antoch, M.P. Circadian Sensitivity to the Chemotherapeutic Agent Cyclophosphamide Depends on the Functional Status of the CLOCK/BMAL1 Transactivation Complex. Proc. Natl. Acad. Sci. USA 2005, 102, 3407–3412. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, Q.; Hu, X.; Zhang, S.; Jiang, Y.; Yao, G.; Hu, K.; Xu, X.; Liang, B.; Wu, Q.; et al. Disrupting Circadian Rhythm via the PER1-HK2 Axis Reverses Trastuzumab Resistance in Gastric Cancer. Cancer Res. 2022, 82, 1503–1517. [Google Scholar] [CrossRef]
- Melocchi, V.; Cuttano, R.; Murgo, E.; Mazzoccoli, G.; Bianchi, F. The circadian clock circuitry deconvolutes colorectal cancer and lung adenocarcinoma heterogeneity in a dynamic time-related framework. Cancer Gene Ther. 2023, 30, 1323–1329. [Google Scholar] [CrossRef]
- Karantanos, T.; Theodoropoulos, G.; Pektasides, D.; Gazouli, M. Clock Genes: Their Role in Colorectal Cancer. World J. Gastroenterol. 2014, 20, 1986–1992. [Google Scholar] [CrossRef]
- Dong, P.; Wang, Y.; Liu, Y.; Zhu, C.; Lin, J.; Qian, R.; Hua, L.; Lu, C. BMAL1 Induces Colorectal Cancer Metastasis by Stimulating Exosome Secretion. Mol. Biol. Rep. 2022, 49, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, Y.; Xiao, Y.; Zheng, D.; Zhi, C.; Xia, X.; Yuan, X. Activation of the Clock Gene TIMELESS by H3k27 Acetylation Promotes Colorectal Cancer Tumorigenesis by Binding to Myosin-9. J. Exp. Clin. Cancer Res. 2021, 40, 162. [Google Scholar] [CrossRef]
- Adrover, J.M.; Del Fresno, C.; Crainiciuc, G.; Cuartero, M.I.; Casanova-Acebes, M.; Weiss, L.A.; Huerga-Encabo, H.; Silvestre-Roig, C.; Rossaint, J.; Cossío, I.; et al. A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity 2019, 50, 390–402.e10, Erratum in Immunity 2019, 51, 966–967. https://doi.org/10.1016/j.immuni.2019.11.001. [Google Scholar] [CrossRef]
- Lissoni, P.; Barni, S.; Mandalà, M.; Ardizzoia, A.; Paolorossi, F.; Vaghi, M.; Longarini, R.; Malugani, F.; Tancini, G. Decreased Toxicity and Increased Efficacy of Cancer Chemotherapy Using the Pineal Hormone Melatonin in Metastatic Solid Tumour Patients with Poor Clinical Status. Eur. J. Cancer 1999, 35, 1688–1692. [Google Scholar] [CrossRef]
- Mahalingam, D.; Wang, J.S.; Hamilton, E.P.; Sarantopoulos, J.; Nemunaitis, J.; Weems, G.; Carter, L.; Hu, X.; Schreeder, M.; Wilkins, H.J. Phase 1 Open-Label, Multicenter Study of First-in-Class RORγ Agonist LYC-55716 (Cintirorgon): Safety, Tolerability, and Preliminary Evidence of Antitumor Activity. Clin. Cancer Res. 2019, 25, 3508–3516. [Google Scholar] [CrossRef]
- Hermida, R.C.; Crespo, J.J.; Domínguez-Sardiña, M.; Otero, A.; Moyá, A.; Ríos, M.T.; Sineiro, E.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L.; et al. Bedtime Hypertension Treatment Improves Cardiovascular Risk Reduction: The Hygia Chronotherapy Trial. Eur. Heart J. 2019, 41, 4565–4576. [Google Scholar] [CrossRef] [PubMed]
- Damato, A.R.; Luo, J.; Katumba, R.G.N.; Talcott, G.R.; Rubin, J.B.; Herzog, E.D.; Campian, J.L. Temozolomide Chronotherapy in Patients with Glioblastoma: A Retrospective Single-Institute Study. Neuro-Oncol. Adv. 2021, 3, vdab041. [Google Scholar] [CrossRef] [PubMed]
- Cedernaes, J.; Osler, M.E.; Voisin, S.; Broman, J.E.; Vogel, H.; Dickson, S.L.; Zierath, J.R.; Schiöth, H.B.; Benedict, C. Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men. J. Clin. Endocrinol. Metab. 2015, 100, E1255–E1261. [Google Scholar] [CrossRef] [PubMed]
- Bellet, M.M.; Sassone-Corsi, P. Mammalian circadian clock and metabolism—The epigenetic link. J. Cell Sci. 2010, 123, 3837–3848. [Google Scholar] [CrossRef] [PubMed]


| Clock Genes | Downstream Effect | Expression Level in CRC | Target | Reference |
|---|---|---|---|---|
| BMAL1 | Cell cycle arrest | N/A | Wee1 | [58] |
| Decreased | yes-associated protein 1 | [29] | ||
| Promotes or inhibits tumor metastasis | N/A N/A | MACC1 exosome | [37] [95] | |
| Inhibits metabolic reprogramming (reduces aerobic glycolysis) | Decreased | HKDC1, other metabolism-associated genes | [10] | |
| Decreased | c-Myc | [54] | ||
| Maintains a noninflammatory tumor microenvironment and immune cells healthy | Decreased | IL-33, PDL1 | [63] | |
| Associated with the sensitivity of chemotherapeutic agent (5-FU, and CY) | N/A | 5-FU chronotherapy related genes, such as UPP2, UCK2 and UMPS | [72] | |
| N/A | CY-metabolizing B cells | [91] | ||
| CLOCK | Cell cycle arrest | N/A | Wee1 | [58] |
| Promotes tumor metastasis | Upregulated | HIF-1α, ARNT, VEGF | [9] | |
| PER1/2/3 | Cell cycle arrest | Decreased | c-Myc, cyclin D1 | [24] |
| Upregulated | c-Myc, Wee1 | [25] | ||
| Decreased | CLK/CYC | [35] | ||
| Inhibits tumor metastasis | N/A | MACC1 | [37] | |
| Decreased | TWSIT1, SLUG, SNAIL1 | [38] | ||
| CRY1/2 | Promotes cell cycle | N/A | Wee1 | [58] |
| Promotes tumor metastasis | Upregulated | unclear | [20] | |
| Associated with the location of CRC | N/A | unclear | [76] | |
| N/A | CY-metabolizing B cells | [91] | ||
| TIMELESS | Promotes the cell cycle | Decreased | CHK1, CDK1, Wee1 | [27] |
| An appropriate concentration would promote tumor | Decreased (facilitates EMT) | ZEB1 | [39] | |
| Upregulated (facilitates EMT) | Myosin-9 | [96] | ||
| CK1ε | Inhibits metabolic reprogramming (reduces aerobic glycolysis) | Upregulated | P53 | [51] |
| REV-ERBs | Promote or inhibit tumor metastasis | Decreased | SNAIL1 | [25] |
| N/A | MACC1 | [37] | ||
| Maintain a noninflammatory tumor microenvironment and immune cells healthy | Decreased | P65, Nlrp3 | [66] |
| Therapeutic Regimens | Clinical Research Methods | Outcomes | Limitation | Cancer Type | Reference |
|---|---|---|---|---|---|
| Cyclophosphamide | Nonclinical research | BMAL1/CLOCK transcriptional complex reduce the sensitivity of CY treatment by elevating the survival of cyclophosphamide CY-metabolite-responsive B cells | Animal model results may not be directly applicable to humans. Incomplete coverage of tumor types | N/A | [91] |
| Trastuzumab | Nonclinical research | PER1 induces high glycolysis and expression level of HK2, subsequently leading to trastuzumab resistance | Results may not be directly applicable to humans | Gastric cancer | [92] |
| ICIs | Nonclinical research | A higher rate of survival was observed in subjects who received ICIs in the morning compared with those who received it in the afternoon. | Animal model results may not be directly applicable to humans. Incomplete coverage of tumor types | Various cancer types | [58] |
| Irinotecan, Oxaliplatin, fluorouracil | Prospective study (Phase II) | Chronotherapy demonstrated improved efficacy with reduced hematologic toxicity | Small sample size. Lack of a control arm | mCRC | [97] |
| Oxaliplatin, Fluorouracil, Folinic Acid | Prospective study (Phase III) | Objective response was 51% versus 29% in the chronotherapy group and constant-rate infusion group, respectively, and lower neuropathy and mucosal toxicity was observed in the chronotherapy group | Small trial size. Different rate of surgery of metastases in two arms | mCRC | [81] |
| Nivolumab Pembrolizumab Atezolizumab | Retrospective study | Infusions at least 20% of ICI after 16:30 had a statistically significant shorter median PFS but no difference in OS | Small sample size variation in ICIs | NSCLC | [94] |
| Ipilimumab, Nivolumab, Pembrolizumab | Longitudinal study | Adaptive immune responses are not as strong in the evening to an initial stimulus as they are in the daytime | Lack of a control arm | Melanoma | [88] |
| Melatonin | Prospective study | The combination of chemotherapy and melatonin resulted in superior one-year survival and tumor regression rates. | The association with the circadian clock remains to be elucidated. The patients might have been melatonin-deficient | Various cancer types | [98] |
| LYC-55716 (cintirorgon) | Prospective study (Phase I) | The RORγ agonist works as an effective therapeutic reagent | Excessive variation exists among patient demographics. | Various cancer types | [99] |
| Angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers | Prospective study | The administration of antihypertensive medications prior to bedtime results in substantial improvements in blood pressure control and a reduction in adverse outcomes compared with the administration of these medications after waking. | The population is limited, and the applicability of the conclusions to younger groups is uncertain. | Hypertension | [100] |
| Temozolomide | Prospective study | A greater duration of survival was observed in subjects who received treatment during the morning hours as opposed to the evening hours. | Lack of a control arm. A comparison between the chronotherapy group and the general treatment group was not performed | Glioblastoma | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, H.; Zhou, J.; Pang, S.; Mei, Y.; Li, G.; Jin, Y.; Lin, R. Circadian Clock Genes in Colorectal Cancer: From Molecular Mechanisms to Chronotherapeutic Applications. Biomedicines 2026, 14, 110. https://doi.org/10.3390/biomedicines14010110
Wang H, Zhou J, Pang S, Mei Y, Li G, Jin Y, Lin R. Circadian Clock Genes in Colorectal Cancer: From Molecular Mechanisms to Chronotherapeutic Applications. Biomedicines. 2026; 14(1):110. https://doi.org/10.3390/biomedicines14010110
Chicago/Turabian StyleWang, Haoran, Jieru Zhou, Suya Pang, Yiqing Mei, Gangping Li, Yu Jin, and Rong Lin. 2026. "Circadian Clock Genes in Colorectal Cancer: From Molecular Mechanisms to Chronotherapeutic Applications" Biomedicines 14, no. 1: 110. https://doi.org/10.3390/biomedicines14010110
APA StyleWang, H., Zhou, J., Pang, S., Mei, Y., Li, G., Jin, Y., & Lin, R. (2026). Circadian Clock Genes in Colorectal Cancer: From Molecular Mechanisms to Chronotherapeutic Applications. Biomedicines, 14(1), 110. https://doi.org/10.3390/biomedicines14010110

