Targeting Yeast Pathogens with Lectins: A Narrative Review from Mechanistic Insights to the Need for Addressing Translational Challenges
Abstract
1. Introduction
2. Pathogenic Yeasts: Candida and Cryptococcus
3. Antifungal Activity of Lectins on Candida Species
4. Antifungal Activity of Lectins on Cryptococcus Species
5. Antibiofilm Activity of Lectins on Yeasts
6. Combination Effects of Lectins with Antifungal Drugs
7. Translational Challenges
7.1. Assessment of Lectin Toxicity
7.2. Immunogenicity and Immunomodulatory Effects of Lectins
7.3. Formulation and Delivery of Lectins
7.4. Knowledge Gaps and Future Directions
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kainz, K.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. Fungal infections in humans: The silent crisis. Microb. Cell 2020, 7, 143. [Google Scholar] [CrossRef]
- Jenks, J.D.; Cornely, O.A.; Chen, S.C.A.; Thompson, G.R., III; Hoenigl, M. Breakthrough invasive fungal infections: Who is at risk? Mycoses 2020, 63, 1021–1032. [Google Scholar] [CrossRef]
- Lass-Flörl, C.; Steixner, S. The changing epidemiology of fungal infections. Mol. Asp. Med. 2023, 94, 101215. [Google Scholar] [CrossRef] [PubMed]
- Hossain, C.M.; Ryan, L.K.; Gera, M.; Choudhuri, S.; Lyle, N.; Ali, K.A.; Diamond, G. Antifungals and drug resistance. Encyclopedia 2022, 2, 1722–1737. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, J.; Yang, Y.; Zeng, X.; Xiao, G. Virulence factors, biofilm formation and antifungal resistance in Candida albicans from recurrent vulvovaginal candidiasis patients: A comparative study. Sci Rep. 2025, 15, 37557. [Google Scholar] [CrossRef]
- Henriques, M.; Silva, S. Candida albicans virulence factors and its pathogenicity. Microorganisms 2021, 9, 704. [Google Scholar] [CrossRef]
- Hui, S.T.; Gifford, H.; Rhodes, J. Emerging antifungal resistance in fungal pathogens. Curr. Clin. Microbiol. Rep. 2024, 11, 43–50. [Google Scholar] [CrossRef]
- Chop, M.; Del Rio, M.; Radicioni, M.B.; Cevey, Á.C.; Hernández-Chávez, M.J.; Mora-Montes, H.M.; Regente, M.; Rodriguez Rodrigues, C. Helja lectin inhibits Candida albicans phagocytosis and induces pro-inflammatory responses in dendritic cells. Phytomedicine 2025, 143, 156637. [Google Scholar] [CrossRef]
- El-Maradny, Y.A.; El-Fakharany, E.M.; Abu-Serie, M.M.; Hashish, M.H.; Selim, H.S. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int. J. Biol. Macromol. 2021, 179, 239–258. [Google Scholar] [CrossRef]
- Lira, T.L.S.; Almeida, C.F.; Farias, L.A.S.; Santos, E.C.F.; Ferreira, M.R.A.; Soares, L.A.L.; Napoleão, T.H.; Paiva, P.M.G.; Coelho, L.C.B.B. Insecticidal activity of saline extract, protein fraction, and lectin (BmoLL) from Bauhinia monandra Kurz (Fabaceae) leaves on Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Dryophthoridae). Biocatal. Agric. Biotechnol. 2026, 71, 103893. [Google Scholar] [CrossRef]
- Arruda, M.C.S.; Silva, M.R.O.B.; Cavalcanti, V.L.R.; Brandão, R.M.P.B.; Marques, D.A.V.; Lima, L.R.A.; Porto, A.L.F.; Bezerra, R.P. Antitumor lectins from algae: A systematic review. Algal Res. 2023, 70, 102962. [Google Scholar] [CrossRef]
- Batista, K.L.R.; Silva, L.S.; Silva, I.S.S.; Paiva, M.Y.M.; Santos, J.L.S.; Sousa, C.E.M.; Branco, S.J.S.C.; Paiva, F.E.A.; Roma, R.R.; Oliveira, F.S.A.; et al. Wound healing and anti-inflammatory effects of LAA, the N-acetyl-D-galactosamine-binding lectin from seeds of Luetzelburgia auriculata (Allemão) ducke. Histochem. Cell Biol. 2025, 163, 36. [Google Scholar] [CrossRef]
- Coelho, L.C.B.B.; Silva, P.M.S.; Oliveira, W.F.; Moura, M.C.; Pontual, E.V.; Gomes, F.S.; Paiva, P.M.G.; Napoleão, T.H.; Correia, M.T.S. Lectins as antimicrobial agents. J. Appl. Microbiol. 2018, 125, 1238–1252. [Google Scholar] [CrossRef] [PubMed]
- Napoleão, T.H.; Lira, T.L.S.; Pontual, E.V.; Ferreira, G.R.S.; Silva, P.M. Lectins as natural antibiofilm agents in the fight against antibiotic resistance: A review. Molecules 2025, 30, 3395. [Google Scholar] [CrossRef]
- Del Río, M.; de la Canal, L.; Regente, M. Plant Antifungal Lectins: Mechanism of Action and Targets on Human Pathogenic Fungi. Curr. Prot. Pept. Sci. 2020, 21, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Papon, N.; Courdavault, V.; Clastre, M.; Bennett, R.J. Emerging and emerged pathogenic Candida species: Beyond the Candida albicans paradigm. PLoS Pathog. 2013, 9, e1003550. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Mahmood, M.S.; Ullah, M.A.; Araf, Y.; Rahaman, T.I.; Moin, A.T.; Hosen, M.J. COVID-19-associated candidiasis: Possible patho-mechanism, predisposing factors, and prevention strategies. Curr. Microbiol. 2022, 79, 127. [Google Scholar] [CrossRef]
- Malinovská, Z.; Čonková, E.; Váczi, P. Biofilm formation in medically important Candida species. J. Fungi 2023, 9, 955. [Google Scholar] [CrossRef]
- Briano, F.; Magnasco, L.; Sepulcri, C.; Dettori, S.; Dentone, C.; Mikulska, M.; Ball, L.; Vena, A.; Robba, C.; Patroniti, N.; et al. Candida auris candidemia in critically ill, colonized patients: Cumulative incidence and risk factors. Infect. Dis. Ther. 2022, 11, 1149–1160. [Google Scholar] [CrossRef]
- Czajka, K.M.; Venkataraman, K.; Brabant-Kirwan, D.; Santi, S.A.; Verschoor, C.; Appanna, V.D.; Singh, R.; Saunders, D.P.; Tharmalingam, S. Molecular mechanisms associated with antifungal resistance in pathogenic Candida species. Cells 2023, 12, 2655. [Google Scholar] [CrossRef]
- Tóth, R.; Nosek, J.; Mora-Montes, H.M.; Gabaldon, T.; Bliss, J.M.; Nosanchuk, J.D.; Gácser, A. Candida parapsilosis: From genes to the bedside. Clin. Microbiol. Rev. 2019, 32, e10-1128. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rubio, R.; Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front. Microbiol. 2020, 10, 2993. [Google Scholar] [CrossRef]
- Mourad, A.; Perfect, J.R. Present and future therapy of Cryptococcus infections. J. Fungi 2018, 4, 79. [Google Scholar] [CrossRef]
- Zaragoza, O. Basic principles of the virulence of Cryptococcus. Virulence 2019, 10, 490–501. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, M.; Moraes Nicola, A.; Chow, S.-K.; Lee, I.R.; Nong, S.; Specht, C.A.; Levitz, S.M.; Casadevall, A. Glucuronoxylomannan, galactoxylomannan and mannoprotein occupy spatially separate and discrete regions in the capsule of Cryptococcus neoformans. Virulence 2010, 1, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef]
- Casadevall, A.; Coelho, C.; Cordero, R.J.; Dragotakes, Q.; Jung, E.; Vij, R.; Wear, M.P. The capsule of Cryptococcus neoformans. Virulence 2019, 10, 822–831. [Google Scholar] [CrossRef]
- Bermas, A.; Geddes-McAlister, J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol. Microbiol. 2020, 114, 721–734. [Google Scholar] [CrossRef]
- Rhodes, J.; Beale, M.A.; Vanhove, M.; Jarvis, J.N.; Kannambath, S.; Simpson, J.A.; Bicanic, T. A population genomics approach to assessing the genetic basis of within-host microevolution underlying recurrent cryptococcal meningitis infection. G3 Genes Genomes Genet. 2017, 7, 1165–1176. [Google Scholar] [CrossRef]
- Smith, K.D.; Achan, B.; Hullsiek, K.H.; McDonald, T.R.; Okagaki, L.H.; Alhadab, A.A.; Nielsen, K. Increased antifungal drug resistance in Cryptococcus neoformans in Uganda. Antimicrob. Agents Chemother. 2015, 59, 7197–7204. [Google Scholar] [CrossRef]
- Klafke, G.B.; Moreira, G.M.; Monte, L.G.; Pereira, J.L.; Brandolt, T.M.; Xavier, M.O.; Santi-Gadelha, T.; Dellagostin, O.A.; Pinto, L.S. Assessment of plant lectin antifungal potential against yeasts of major importance in medical mycology. Mycopathologia 2013, 175, 147–151. [Google Scholar] [CrossRef]
- Sharma, S.; Raj, K.; Riyaz, M.; Singh, D.D. Antimicrobial studies on garlic lectin. Probiotics Antimicrob. Proteins 2023, 15, 1501–1512. [Google Scholar] [CrossRef]
- Kumar, S.; Jitendra, K.; Singh, K.; Kapoor, V.; Sinha, M.; Xess, I.; Das, S.N.; Sharma, S.; Singh, T.P.; Dey, S. Biological Properties and Characterization of ASL50 Protein from Aged Allium sativum Bulbs. Appl. Biochem. Biotechnol. 2015, 176, 1914–1927. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.R.S.; Brito, J.S.; Procópio, T.F.; Santos, N.D.L.; Lima, B.J.R.C.; Coelho, L.C.B.B.; Napoleão, T.H. Antimicrobial potential of Alpinia purpurata lectin (ApuL): Growth inhibitory action, synergistic effects in combination with antibiotics, and antibiofilm activity. Microb. Pathog. 2018, 124, 152–162. [Google Scholar] [CrossRef]
- Procópio, T.F.; Patriota, L.L.S.; Moura, M.C.; Silva, P.M.; Oliveira, A.P.S.; Carvalho, L.V.N.; Lima, T.A.; Soares, T.; Silva, T.D.; Coelho, L.C.B.B.; et al. CasuL: A new lectin isolated from Calliandra surinamensis leaf pinnulae with cytotoxicity to cancer cells, antimicrobial activity and antibiofilm effect. Int. J. Biol. Macromol. 2017, 98, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.S.; Siqueira, A.B.S.; Maia, R.D.C.C.; Giampaoli, V.; Teixeira, E.H.; Arruda, F.V.S.; Porto, A.L.F. Antifungal activity of lectins against yeast of vaginal secretion. Braz. J. Microbiol. 2012, 43, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.J.A.; Braga, A.L.; Almeida, R.S.; Silva, T.G.; Silva, J.C.P.; Lima, L.F.; Morais-Braga, M.F.B. Lectins ConA and ConM extracted from Canavalia ensiformis (L.) DC and Canavalia rosea (Sw.) DC inhibit planktonic Candida albicans and Candida tropicalis. Arch. Microbiol. 2022, 204, 346. [Google Scholar] [CrossRef]
- Silva, R.R.S.; Malveira, E.A.; Aguiar, T.K.; Neto, N.A.; Roma, R.R.; Santos, M.H.; Teixeira, C.S. DVL lectin from Dioclea violacea seeds acts against Candida spp. via carbohydrate recognition domain. Chem.-Biol. Interact. 2023, 382, 110639. [Google Scholar] [CrossRef]
- Silva, R.R.S.; Santos, M.H.C.; Santos, A.L.E.; Freitas, C.D.T.; Carneiro, R.F.; Nagano, C.S.; Mesquita, F.P.; Souza, P.F.N.; Teixeira, C.S. Proteomic analysis reveals that DVL lectin from Dioclea violacea seeds alters the protein profile of Candida albicans. ACS Omega 2025, 10, 40046–40055. [Google Scholar] [CrossRef]
- Silva, R.R.S.; Carvalho, R.J.P.; Santos, M.H.C.; Santos, A.L.E.; Carneiro, R.F.; Nagano, C.S.; Souza, P.F.N.; Teixeira, C.S. DVL, a lectin from Dioclea violacea seeds, disturbs the proteomic profile of Candida krusei, leading to cell death. Antibiotics 2025, 14, 1228. [Google Scholar] [CrossRef]
- Del Río, M.V.; Radicioni, M.B.; Mello, É.O.; Ribeiro, S.F.; Taveira, G.B.; Carvalho, A.O.; Regente, M. A plant mannose-binding lectin and fluconazole: Key targets combination against Candida albicans. J. Appl. Microbiol. 2022, 132, 4310–4320. [Google Scholar] [CrossRef] [PubMed]
- Del Río, M.V.; Radicioni, M.B.; Cutine, A.M.; Mariño, K.V.; Mora-Montes, H.M.; Cagnoni, A.J.; Regente, M.C. The sunflower jacalin Helja: Biological and structural insights of its antifungal activity against Candida albicans. Glycobiology 2024, 34, cwae058. [Google Scholar] [CrossRef]
- Dias, L.P.; Santos, A.L.; Araújo, N.M.; Silva, R.R.; Santos, M.H.; Roma, R.R.; Teixeira, C.S. Machaerium acutifolium lectin alters membrane structure and induces ROS production in Candida parapsilosis. Int. J. Biol. Macromol. 2020, 163, 19–25. [Google Scholar] [CrossRef]
- Oliveira, R.M.V.V.; Junior, A.R.C.; Silva, P.M.; Ferreira, G.R.S.; Amorim, P.K.; Paiva, P.M.G.; Silva, L.C.N.; Patriota, L.L.S.; Pontual, E.V.; Napoleão, T.H. Evaluation of the antifungal activity of Microgramma vacciniifolia frond lectin (MvFL) against pathogenic yeasts. Macromol 2025, 5, 44. [Google Scholar] [CrossRef]
- Neto, J.X.S.; Dias, L.P.; Souza, L.A.L.; Costa, H.P.S.; Vasconcelos, I.M.; Pereira, M.L.; Oliveira, J.T.A.; Cardozo, C.J.P.; Moura, L.F.W.G.; Sousa, J.S.; et al. Insights into the structure and mechanism of action of the anti-candidal lectin Mo-CBP2 and evaluation of its synergistic effect and antibiofilm activity. Process Biochem. 2022, 121, 661–673. [Google Scholar] [CrossRef]
- Neto, J.X.S.; Leite, L.O.; Silva, A.P.A.; Guedes, M.I.F.; Sousa, D.O.B. Advancing the Understanding of the Mo-CBP2 Protein: Unraveling Its Antifungal and Antibiofilm Properties Against Candida Species. Probiotics Antimicrob. Proteins 2025. [Google Scholar] [CrossRef]
- Silva, S.P.; Silva, J.D.F.; Costa, C.B.L.; Silva, P.M.; Freitas, A.F.S.; Silva, C.E.S.; Silva, A.R.; Oliveira, A.M.; Sá, R.A.; Peixoto, A.R.; et al. Purification and antimicrobial activity of Portulaca elatior leaf lectin (PeLL). Probiotics Antimicrob. Proteins 2023, 15, 287–299. [Google Scholar] [CrossRef]
- Silva, J.D.F.; Silva, S.P.; Silva, P.M.; Vieira, A.M.; Araújo, L.C.C.; Lima, T.A.; Oliveira, A.P.S.; Carvalho, L.V.N.; Pitta, M.G.R.; Rêgo, M.J.B.M.; et al. Portulaca elatior root contains a trehalose-binding lectin with antimicrobial activities. Int. J. Biol. Macromol. 2019, 126, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.M.; Moura, M.C.; Gomes, F.S.; Trentin, D.S.; Oliveira, A.P.S.; Mello, G.S.V.; Pitta, M.G.R.; Rego, M.J.B.M.; Coelho, L.C.B.B.; Macedo, A.J.; et al. PgTeL, the lectin in Punica granatum juice, is an antifungal agent against Candida albicans and Candida krusei. Int. J. Biol. Macromol. 2018, 108, 391–400. [Google Scholar] [CrossRef]
- Nabeta, H.W.; Kouokam, J.C.; Lasnik, A.B.; Fuqua, J.L.; Palmer, K.E. Novel antifungal activity of Q-Griffithsin, a broad-spectrum antiviral lectin. Microbiol. Spectr. 2021, 9, e00957-21. [Google Scholar] [CrossRef]
- Gomes, F.S.; Procópio, T.F.; Napoleão, T.H.; Coelho, L.C.B.B.; Paiva, P.M.G. Antimicrobial lectin from Schinus terebinthifolius leaf. J. Appl. Microbiol. 2013, 114, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.M.M.; Silva, P.M.; Moura, M.C.; Junior, A.C.; Amorim, P.K.; Procópio, T.F.; Napoleão, T.H. Anti-Candida activity of the water-soluble lectin from Moringa oleifera seeds (WSMoL). J. Med. Mycol. 2021, 31, 101074. [Google Scholar] [CrossRef]
- Nabeta, H.W.; Lasnik, A.B.; Fuqua, J.L.; Wang, L.; Rohan, L.C.; Palmer, K.E. Antiviral lectin Q-Griffithsin suppresses fungal infection in murine models of vaginal candidiasis. Front. Cell. Infect. Microbiol. 2022, 12, 976033. [Google Scholar] [CrossRef]
- Bazán, J.M.N.; Chagas, V.L.; Silva, R.G.; Silva, I.S.S.; Araujo, J.G.N.; Silva, L.S.; Batista, K.L.R.; Silva, R.R.S.; Correia, M.T.S.; Sousa, J.C.S.; et al. Development and characterization of alginate-derived bioadhesive films incorporated with anti-infective lectins for application in the treatment of oral candidiasis. Journal of Drug Delivery Science and Technology 2023, 90, 105114. [Google Scholar] [CrossRef]
- Moura, K.S.; Silva, H.R.C.; Dornelles, L.P.; Coelho, L.C.B.B.; Napoleão, T.H.; Oliveira, M.D.L.; Paiva, P.M.G. Coagulant activity of water-soluble Moringa oleifera lectin is linked to lowering of electrical resistance and inhibited by monosaccharides and magnesium ions. Appl. Biochem. Biotechnol. 2016, 180, 1361–1371. [Google Scholar] [CrossRef]
- Brito, J.S.; Ferreira, G.R.S.; Klimczak, E.; Gryshuk, L.; Santos, N.D.L.; Patriota, L.L.S.; Moreira, L.R.; Soares, A.K.A.; Barboza, B.R.; Paiva, P.M.G.; et al. Lectin from inflorescences of ornamental crop Alpinia purpurata acts on immune cells to promote Th1 and Th17 responses, nitric oxide release, and lymphocyte activation. Biomed. Pharmacother. 2017, 94, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.C.; Silva, S.S.S.; Gagliano, E.P.; Santos, A.N.S.; Patriota, L.L.S.; Ferreira, G.R.S.; Silva, P.M.; Alves, S.D.P.L.; Maux, J.M.L.; Silva Neto, J.C.; et al. Acute toxicity and genotoxicity of cMoL, a lectin from Moringa oleifera seeds with antifungal activity against Cryptococcus strains. J. Appl. Toxicol. 2026. [Google Scholar] [CrossRef]
- Videres, L.C.C.A.; Barros, M.C.; Procópio, T.F.; Ferreira, G.R.S.; Silva, P.M.; Batista, A.M.; Guerra, M.M.P.; Vainstein, M.H.; Aguiar, J.S.; Lima, T.A.; et al. Myracrodruon urundeuva lectins present anticancer and anticryptococcal activities with low cytotoxic effects. S. Afr. J. Bot. 2023, 157, 614–621. [Google Scholar] [CrossRef]
- Ferreira, G.R.S.; Silva, P.M.; Lopes, W.; Feitosa, A.P.S.; Coelho, L.C.B.B.; Brayner, F.A.; Alves, L.C.; Paiva, P.M.G.; Moura, M.C.; Vainstein, M.H.; et al. Pomegranate sarcotesta lectin (PgTeL) inhibits planktonic growth and disrupts biofilm formed by Cryptococcus neoformans. J. Appl. Microbiol. 2023, 134, lxad150. [Google Scholar] [CrossRef]
- Jones, T.H.; McClelland, E.E.; McFeeters, H.; McFeeters, R.L. Novel antifungal activity for the lectin scytovirin: Inhibition of Cryptococcus neoformans and Cryptococcus gattii. Front. Microbiol. 2017, 8, 755. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.M.M.; Ferreira, G.R.S.; Oliveira, W.F.; Silva, S.P.; Coelho, L.C.B.B.; Correia, M.T.S.; Paiva, P.M.G.; Fontes, A.; Filho, P.E.C.; Vainstein, M.H.; et al. Moringa oleifera seed lectin (WSMoL) exerts fungistatic and antibiofilm effects on Cryptococcus yeast, causing lysosomal and mitochondrial damage. S. Afr. J. Bot. 2024, 171, 209–215. [Google Scholar] [CrossRef]
- Hamid, Z.M.; Hussin, Z.S.; Muslim, S.N.; Mohammed, E.S.; Sabre, H.M. Antibiofilm formation activity of purified lectin from wheat seeds (Triticum aestivum) against Candida albicans causing oral candidiasis. Tex. J. Multidiscip. Stud. 2023, 15, 150–156. [Google Scholar]
- Procópio, T.F.; Patriota, L.L.S.; Barros, B.R.S.; Aguiar, L.M.S.; Lorena, V.M.B.; Paiva, P.M.G.; Melo, C.M.L.; Napoleão, T.H. Calliandra surinamensis lectin (CasuL) does not impair the functionality of mice splenocytes, promoting cell signaling and cytokine production. Biomed. Pharmacother. 2018, 107, 650–655. [Google Scholar] [CrossRef]
- Santos, A.J.C.A.; Barros, B.R.S.; Aguiar, L.M.S.; Patriota, L.L.S.; Lima, T.A.; Zingali, R.B.; Paiva, P.M.G.; Napoleão, T.H.; Melo, C.M.L.; Pontual, E.V. Schinus terebinthifolia leaf lectin (SteLL) is an immunomodulatory agent by altering cytokine release by mice splenocytes. 3 Biotech 2020, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.L.E.; Júnior, C.P.S.; Neto, R.N.M.; Santos, M.H.C.; Santos, V.F.; Rocha, B.A.M.; Sousa, E.M.; Carvalho, R.C.; Menezes, I.R.A.; Oliveira, M.R.C.; et al. Machaerium acutifolium lectin inhibits inflammatory responses through cytokine modulation. Process Biochem. 2020, 97, 149–157. [Google Scholar] [CrossRef]
- Silva, A.R.; Alves, R.R.V.; Silva, S.P.; Branco, S.J.S.C.; Marinho, A.O.; Souza, T.G.S.; Chagas, C.A.; Paiva, P.M.G.; Oliveira, A.M.; Napoleão, T.H. Acute toxicity and genotoxicity assessment of PgTeL, a lectin from pomegranate sarcotesta, in mice. S. Afr. J. Bot. 2022, 151, 301–308. [Google Scholar] [CrossRef]
- Bisneto, A.V.M.; Fernandes, A.S.; Silva, L.C.; Silva, L.S.; Araújo, D.P.; Santos, I.C.; Melo, M.R.; Silva, R.R.d.S.; Franchi, L.P.; Cardoso, C.G.; et al. Dioclea violacea lectin inhibits tumorigenesis and tumor angiogenesis in vivo. Biochimie 2024, 222, 18–27. [Google Scholar] [CrossRef]
- Marinho, A.O.; Costa, J.A.; Santos, A.N.S.; Barros, M.C.; Pimentel, C.N.; Silva, A.A.; Paiva, P.M.G.; Napoleão, T.H.; Patriota, L.L.S. Assessment of acute toxicity, genotoxicity, and anti-inflammatory activity of SteLL, a lectin from Schinus terebinthifolia Raddi. leaves, in mice. J. Ethnopharmacol. 2024, 333, 118496. [Google Scholar] [CrossRef] [PubMed]
- Barton, C.; Kouokam, J.C.; Lasnik, A.B.; Foreman, O.; Cambon, A.; Brock, G.; Montefiori, D.C.; Vojdani, F.; McCormick, A.A.; O’Keefe, B.R.; et al. Activity of and Effect of Subcutaneous Treatment with the Broad-Spectrum Antiviral Lectin Griffithsin in Two Laboratory Rodent Models. Antimicrob. Agents Chemother. 2014, 58, 120–127. [Google Scholar] [CrossRef]
- Kouokam, J.C.; Lasnik, A.B.; Palmer, K.E. Studies in a Murine Model Confirm the Safety of Griffithsin and Advocate Its Further Development as a Microbicide Targeting HIV-1 and Other Enveloped Viruses. Viruses 2016, 8, 311. [Google Scholar] [CrossRef]
- Brito, J.S.; Marinho, A.O.; Coelho, L.C.B.B.; Oliveira, A.M.; Paiva, P.M.G.; Patriota, L.L.S.; Napoleão, T.H. Toxicity and antitumor activity of the water-soluble lectin from Moringa oleifera Lam. seeds (WSMoL) in sarcoma 180-bearing mice. Toxicon 2023, 234, 107306. [Google Scholar] [CrossRef]
- Heymann, F.; Hamesch, K.; Weiskirchen, R.; Tacke, F. The concanavalin A model of acute hepatitis in mice. Lab. Anim. 2015, 49, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.; Arruda, S.; Cavada, B.; Grangeiro, T.B.; de Freitas, L.A.R.; Barral-Netto, M. In vivo lymphocyte activation and apoptosis by lectins of the Diocleinae subtribe. Mem. Inst. Oswaldo Cruz 2001, 96, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Patriota, L.L.S.; Ramos, D.B.M.; Silva, Y.A.; Amorim dos Santos, A.C.L.; Araújo, M.T.M.F.; Brito, J.S.; Torres, D.J.L.; Oliveira, A.M.; Silva, D.C.N.; Lorena, V.M.B.; et al. Microgramma vacciniifolia frond lectin (MvFL) exhibits antitumor activity against sarcoma 180 in mice. Phytomedicine Plus 2021, 1, 100013. [Google Scholar] [CrossRef]
- Soares, G.S.F.; Assreuy, A.M.S.; Gadelha, C.A.A.; Gomes, V.M.; Delatorre, P.; Simões, R.C.C.; Cavada, B.S.; Leite, J.F.; Nagano, C.S.; Pinto, N.V.; et al. Purification and Biological Activities of Abelmoschus esculentus Seed Lectin. Protein J. 2012, 31, 674–680. [Google Scholar] [CrossRef]
- Neto, L.G.N.; Pinto, L.S.; Bastos, R.M.; Evaristo, F.F.V.; Vasconcelos, M.A.V.; Carneiro, V.A.; Arruda, F.V.S.; Porto, A.L.F.; Leal, R.B.; Júnior, V.A.S.; et al. Effect of the Lectin of Bauhinia variegata and Its Recombinant Isoform on Surgically Induced Skin Wounds in a Murine Model. Molecules 2011, 16, 9298–9315. [Google Scholar] [CrossRef] [PubMed]
- Russi, M.A.; Vandresen-Filho, S.; Rieger, D.K.; Costa, A.P.; Lopes, M.W.; Cunha, R.M.S.; Teixeira, E.H.; Nascimento, K.S.; Cavada, B.S.; Tasca, C.I.; et al. ConBr, a Lectin from Canavalia brasiliensis Seeds, Protects Against Quinolinic Acid-Induced Seizures in Mice. Neurochem. Res. 2012, 37, 288–297. [Google Scholar] [CrossRef]
- Barauna, S.C.; Kaster, M.P.; Heckert, B.T.; Nascimento, K.S.; Rossi, F.M.; Teixeira, E.H.; Cavada, B.S.; Rodrigues, A.L.S.; Leal, R.B. Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice. Pharmacol. Biochem. Behav. 2006, 85, 160–169. [Google Scholar] [CrossRef]
- Oliveira, S.R.B.D.; Franco, Á.X.; Quaresma, M.P.; de Carvalho, C.M.M.; Marques, F.C.J.; Pantoja, P.D.S.; Mendonça, V.A.; Osterne, V.J.S.; Correia, J.L.A.; Assreuy, A.M.S.; et al. Anti-inflammatory and anti-necrotic effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in experimental acute pancreatitis. Glycoconj. J. 2022, 39, 599–608. [Google Scholar] [CrossRef]
- Aguiar, L.M.S.; Alves, M.M.M.; Sobrinho, E.P.C., Jr.; Paiva, P.M.G.; Carvalho, F.A.A.; Albuquerque, L.P.; Patriota, L.L.S.; Napoleão, T.H. Microgramma vacciniifolia frond lectin: In vitro anti-leishmanial activity and immunomodulatory effects against internalized amastigote forms of Leishmania amazonensis. Acta Parasitol. 2023, 68, 869–879. [Google Scholar] [CrossRef]
- Patriota, L.L.S.; Ramos, D.B.M.; Silva, M.G.E.; Amorim dos Santos, A.C.L.; Silva, Y.A.; Paiva, P.M.G.; Pontual, E.V.; de Albuquerque, L.P.; Mendes, R.L.; Napoleão, T.H. Inhibition of Carrageenan-Induced Acute Inflammation in Mice by the Microgramma vacciniifolia Frond Lectin (MvFL). Polymers 2022, 14, 1609. [Google Scholar] [CrossRef]
- Barbosa, F.E.V.; Sousa, V.C.; Lima, D.B.; Santos, A.L.E.; Carvalho, R.C.V.; Alves, M.M.M.; Lima, M.A.P.; Silva, C.G.L.; Souza, R.O.S.; Teixeira, C.S. Dioclea violacea lectin has potent in vitro leishmanicidal activity against Leishmania infantum via carbohydrate recognition domain. Int. J. Biol. Macromol. 2024, 280, 135665. [Google Scholar] [CrossRef]
- Lavelle, E.C.; Grant, G.; Pusztai, A.; Pfuller, U.; O’Hagan, D.T. Mucosal immunogenicity of plant lectins in mice. Immunology 2000, 99, 30–37. [Google Scholar] [CrossRef]
- Lavelle, E.C.; Grant, G.; Pfuller, U.; O’Hagan, D.T. Immunological implications of the use of plant lectins for drug and vaccine targeting to the gastrointestinal tract. J. Drug Target. 2004, 12, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Konozy, E.H.E.; Osman, M.E.M. From inflammation to immune regulation: The dual nature of dietary lectins in health and disease. Heliyon 2024, 10, e39471. [Google Scholar] [CrossRef]
- Clement, F.; Venkatesh, Y.P. Dietary garlic (Allium sativum) lectins, ASA I and ASA II, are highly stable and immunogenic. Int. Immunopharmacol. 2010, 10, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Padiyappa, S.D.; Avalappa, H.; Somegowda, M.; Sridhara, S.; Venkatesh, Y.P.; Prabhakar, B.T.; Pramod, S.N.; Almujaydil, M.S.; Shokralla, S.; Abdelbacki, A.M.M.; et al. Immunoadjuvant and Humoral Immune Responses of Garlic (Allium sativum L.) Lectins upon Systemic and Mucosal Administration in BALB/c Mice. Molecules 2022, 27, 1375. [Google Scholar] [CrossRef] [PubMed]
- Baral, K.C.; Choi, K.Y. Barriers and strategies for oral peptide and protein therapeutics delivery: Update on clinical advances. Pharmaceutics 2025, 17, 397. [Google Scholar] [CrossRef]
- Chen, G.; Kang, W.; Li, W.; Chen, S.; Gao, Y. Oral delivery of protein and peptide drugs: From non-specific formulation approaches to intestinal cell targeting strategies. Theranostics 2022, 12, 1419–1439. [Google Scholar] [CrossRef]
- Menacho-Melgar, R.; Decker, J.S.; Hennigan, J.N.; Lynch, M.D. A review of lipidation in the development of advanced protein and peptide therapeutics. J. Control. Release 2019, 295, 1–12. [Google Scholar] [CrossRef]
- Mu, J.; Vong, E.; Carmali, S. Artificial lipidation of proteins and peptides: From mechanism to clinical applications. FEBS J. 2025. [Google Scholar] [CrossRef]
- Santos, J.H.P.M.; Torres-Obreque, K.M.; Meneguetti, G.P.; Amaro, B.P.; Rangel-Yagui, C.O. Protein PEGylation for the design of biobetters: From reaction to purification processes. Braz. J. Pharm. Sci. 2018, 54, e01009. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Cespi, M.; Pucciarelli, S.; Vincenzetti, S.; Casettari, L.; Lam, J.K.W.; Logrippo, S.; Canala, E.; Soliman, M.E.; Bonacucina, G.; et al. Water-in-oil microemulsions for protein delivery: Loading optimization and stability. Curr. Pharm. Biotechnol. 2017, 18, 410–414. [Google Scholar] [CrossRef]
- Salawi, A. Self-emulsifying drug delivery systems: A novel approach to deliver drugs. Drug Deliv. 2022, 29, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.R.A.; Silva, L.C.N.; Almeida, F.J.F.; Ferraz, M.S.; Varejão, N.; Cartaxo, M.F.S.; Miranda, R.C.M.; Aguiar, F.C.A., Jr.; Santos, N.P.S.; Coelho, L.C.B.B.; et al. Encapsulation into stealth liposomes enhances the antitumor action of recombinant Cratylia mollis lectin expressed in Escherichia coli. Front. Microbiol. 2016, 7, 1355. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.M.; El-Shatoury, E.H.; El-Araby, M.M.I. Antibacterial and anticancer activities of three novel lectin-conjugated chitosan nanoparticles. Appl. Microbiol. Biotechnol. 2024, 108, 524. [Google Scholar] [CrossRef]
- Izadiyan, Z.; Misran, M.; Kalantari, K.; Webster, T.J.; Basrowi, N.A.; Rasouli, E.; Shameli, K. Advancements in liposomal nanomedicines: Innovative formulations, therapeutic applications, and future directions in precision medicine. Int. J. Nanomed. 2025, 20, 1213–1262. [Google Scholar] [CrossRef]
- Santos, M.C.; Kroetz, T.; Dora, C.L.; Giacomelli, F.C.; Frizon, T.E.A.; Pich, C.T.; Pinto, L.S.; Soares, A.S.; Rodembusch, F.S.; Lima, V.R.; et al. Elucidating Bauhinia variegata lectin/phosphatidylcholine interactions in lectin-containing liposomes. J. Colloid Interface Sci. 2018, 519, 232–241. [Google Scholar] [CrossRef]
- Osterne, V.J.S.; Verduijn, J.; Lossio, C.F.; Parakhonskiy, B.; Oliveira, M.V.; Pinto-Junior, V.R.; Nascimento, K.S.; Skirtach, A.G.; Van Damme, E.J.M.; Cavada, B.S. Antiproliferative activity of Dioclea violacea lectin in CaCO3 particles on cancer cells after controlled release. J. Mater. Sci. 2022, 57, 8854–8868. [Google Scholar] [CrossRef]
- Bodenberger, N.; Kubiczek, D.; Halbgebauer, D.; Rimola, V.; Wiese, S.; Mayer, D.; Rodriguez Alfonso, A.A.; Ständker, L.; Stenger, S.; Rosenau, F. Lectin-functionalized composite hydrogels for “capture-and-killing” of carbapenem-resistant Pseudomonas aeruginosa. Biomacromolecules 2018, 19, 2472–2482. [Google Scholar] [CrossRef]





| Lectin | Binding Carbohydrates | Protocol | Target Fungi | Endpoint (Incubation Time) | Effects | Reference |
|---|---|---|---|---|---|---|
| Abelmoschus esculentus leaf lectin (AEL) | Lactose, fructose, mannose | Broth microdilution (CLSI M27-A2) | C. parapsilosis FAMED-FURG | MIC: 0.97 µg/mL (48 h) MFC: 31.25 µg/mL (48 h) | Fungistatic Fungicidal | [31] |
| Allium sativum agglutinin (ASA) | Mannose, oligosaccharides | Broth microdilution (CLSI M100) | C. auris NCCPF470153 | MIC: 42 µg/mL (24 h) | Fungistatic Oxidative stress Morphological alterations Cell wall disruption | [32] |
| C. auris NCCPF470197 | MIC: 69 µg/mL (24 h) | |||||
| C. auris NCCPF470200 | MIC: 30 µg/mL (24 h) | |||||
| N. glabratus NCCPF100037 | MIC: 43 µg/mL (24 h) | |||||
| N. glabratus NCCPF100033 | MIC: 56 µg/mL (24 h) | |||||
| N. glabratus ATCC2001 | MIC: 33 µg/mL (24 h) | |||||
| N. glabratus MTCC3019 | MIC: 49 µg/mL (24 h) | |||||
| Allium sativum bulb lectin 50 (ASL50) | Mannose | Broth microdilution (CLSI M27-A3) | C. krusei ATCC6258 | MIC: 40 µg/mL (24 h) | Fungistatic Cell wall disruption | [33] |
| C. parapsilosis ATCC22019 | MIC: 10 µg/mL (24 h) | |||||
| C. tropicalis ATCC13803 | MIC: 20 µg/mL (24 h) | |||||
| N. glabratus ATCC15126 | MIC: 80 µg/mL (24 h) | |||||
| Clinical isolates | MIC: 10–40 µg/mL (24 h) | |||||
| Alpinia purpurata inflorescence lectin (ApuL) | Oligosaccharide chains | Broth microdilution | C. albicans URM 5901 | MIC: 200 µg/mL (24 h) | Fungistatic Morphological alterations | [34] |
| C. parapsilosis URM 6345 | MIC: 400 µg/mL (24 h) | |||||
| Bauhinia variegata seed lectin (BVL) | Galactose, N-acetyl-galactosamine | Broth microdilution (CLSI M27-A2) | C. parapsilosis FAMED-FURG | MIC: 125 µg/mL (48 h) MFC: 500 µg/mL (48 h) | Fungistatic Fungicidal | [31] |
| Calliandra surinamensis leaf pinnulae lectin (CasuL) | Oligosaccharide chains | Broth microdilution | C. krusei URM 6391 | MIC: 125 μg/mL (24 h) MFC: 250 μg/mL (24 h) | Fungistatic Fungicidal Cell wall disruption | [35] |
| Canavalia brasiliensis seed lectin (ConBr) | Glucose, mannose | Broth microdilution (CLSI M27-A2) | C. parapsilosis FAMED-FURG | MIC: 125 µg/mL (48 h) MFC: 500 µg/mL (48 h) | Fungistatic Fungicidal | [31,36] |
| C. albicans URM 4987 | MIC: 8 µg/mL (48 h) | |||||
| C. guilliermondii URM 4975 | MIC: 8 µg/mL (48 h) | |||||
| C. membranaefaciens URM 4983 | MIC: 2 µg/mL (48 h) | |||||
| C. shehatae URM 4978 | MIC: 2 µg/mL (48 h) | |||||
| C. tropicalis URM 4989 | MIC: 8 µg/mL (48 h) | |||||
| Canavalia ensiformis agglutinin (ConA) | Glucose, Mannose | Broth microdilution | C. albicans ATCC 10231 | IC50: 539.1 µg/mL (24 h) | Fungistatic Inhibition of yeast-to-hyphae transition | [37] |
| C. tropicalis ATCC 13803 | IC50: 502.5 µg/mL (24 h) | |||||
| Canavalia rosea seed lectin (ConM) | Trehalose, Maltose, Glucose, Fructose, Sacarose, Mannose | Broth microdilution | C. albicans ATCC 10231 | IC50: 607.2 µg/mL (24 h) | Fungistatic Inhibition of yeast-to-hyphae transition | [37] |
| C. tropicalis ATCC 13803 | IC50: 405.5 µg/mL (24 h) | |||||
| Clitoria fairchildiana seed lectin | N.I. | Broth microdilution (CLSI M27-A2) | C. parapsilosis FAMED-FURG | MIC: 1.95 µg/mL (48 h) MFC: 3.90 µg/mL (48 h) | Fungistatic Fungicidal | [31] |
| Dioclea rostrata seed lectin (DRL) | Glucose, Mannose | Broth microdilution (CLSI M27-A2) | C. guilliermondii URM4975 | MIC: 128 µg/mL (48 h) | Fungistatic | [36] |
| C. membranaefaciens URM4983 | MIC: 64 µg/mL (48 h) | |||||
| C. shehatae URM4978 | MIC: 4 µg/mL (48 h) | |||||
| Dioclea virgata seeds lectin | Complex sugars | Broth microdilution (CLSI M27-A2) | C. parapsilosis FAMED-FURG | MIC: 3.9 µg/mL (48 h) | Fungistatic | [31] |
| Dioclea violacea seed lectin (DvL) a | Glucose, Mannose | Broth microdilution (CLSI M27-A3) | C. albicans ATCC 10231 | MIC: 0.6 µM (24 h) | Fungistatic effect Cell wall damage Oxidative stress Inhibition of ergosterol biosynthesis Apoptosis | [38,39,40] |
| C. krusei ATCC 6258 | MIC: 9.8 µM (24 h) | |||||
| C. parapsilosis ATCC 22019 | MIC: 0.6 µM (24 h) | |||||
| Helianthus annuus jacalin (Helja) | Mannose | Broth microdilution | C. albicans NGY152 | MIC: 65 µg/mL (30 h) | Morphological alterations Binding to mannans | [41,42] |
| Machaerium acutifolium seed lectin (MaL) a | Mannose, N-acetyl-glucosamine | Broth microdilution | C. parapsilosis ATCC 22019 | MIC/MFC: 18 µM (24 h) | Fungistatic Fungicidal Increased membrane permeability Disruption of H+-ATPase Oxidative stress DNA damage | [43] |
| Microgramma vacciniifolia frond lectin (MvFL) | Oligosaccharide chains | Broth microdilution | C. albicans URM-5901 | MIC: 20 µg/mL (24 h) | For N. glabratus: Fungistatic Lysosomal disruption Impairment of mitochondrial membrane potential. | [44] |
| C. krusei URM-6391 | MIC: 1.25 µg/mL (24 h) | |||||
| C. tropicalis URM-6551 | MIC: 40 µg/mL (24 h) | |||||
| C. parapsilosis URM-6951 | MIC: 40 µg/mL (24 h) | |||||
| N. glabratus URM-4246 | MIC: 0.625 µg/mL (24 h) | |||||
| Moringa oleifera chitin-binding protein 2 (Mo-CBP-2) a | Chitin | Broth microdilution | C. albicans ATCC 10231 | MIC: 18.9 μM (48 h) MFC: 100 μM (48 h) | Fungistatic Fungicidal Reduced metabolism | [45,46] |
| C. krusei ATCC 6258 | MIC: 20–45 μM (48 h) MFC: 100 μM (48 h) | |||||
| C. parapsilosis ATCC 22019 | ||||||
| C. tropicalis (clinical isolate) | ||||||
| Mucuna pruriens seeds | Carrageenan | CLSI M27-A2 | C. parapsilosis FAMED-FURG | MIC: 1.95 µg/mL (48 h) MFC: 3.9 µg/mL (48 h) | Fungistatic Fungicidal | [31] |
| Portulaca elatior leaf lectin (PeLL) | Chitin, Mannose, Galactose | Broth microdilution | C. albicans URM 5901 | MIC: 1.48 µg/mL (48 h) | Fungistatic Fungicidal | [47] |
| C. krusei URM 6351 | MIC: 1.48 µg/mL (48 h) | |||||
| C. tropicalis URM 6551 | MIC: 1.48 µg/mL (48 h) | |||||
| C. parapsilosis URM 6345 | MIC: 0.74 µg/mL (48 h) | |||||
| Portulaca elatior root lectin (PeRoL) | Threalose, Glucose, Galactose, Mannose N-acetyl-glucosamine Oligosaccharide chains | Broth microdilution | C. albicans URM-7098 | MIC/MFC: 16 µg/mL (24 h) | Fungistatic and fungicidal effects | [48] |
| C. tropicalis URM-7092 | ||||||
| C. krusei URM-6391 | ||||||
| C. parapsilosis URM-7087 | ||||||
| Punica granatum sarcotesta lectin (PgTeL) | Chitin, Oligosaccharide chains | Broth microdilution | C. albicans URM 5901 | MIC: 25 µg/mL (24 h) MFC: 50 µg/mL (24 h) | Fungistatic Fungicidal Decrease in ATP levels Lipid peroxidation Cell wall damage | [49] |
| C. krusei URM 6391 | MIC: 12.5 μg/mL (24 h) MFC: 12.5 µg/mL (24 h) | |||||
| Q-Griffithsin | Glucose, Mannose, N-acetyl-glucosamine | EUCAST EDef 7.1 | Candida albicans ATCC 32020 | MIC: 6 µg/mL (48 h) | Fungistatic Fungicidal Binding to α-mannan Cell wall disruption Oxidative stress | [50] |
| C. glabrata CDC316 | MIC: 95 µg/mL (48 h) | |||||
| C. parapsilosis CDC337 | MIC: 24 µg/mL (48 h) | |||||
| C. krusei CDC397 | MIC: 95 µg/mL (48 h) | |||||
| C. auris CDC388 | MIC: 48 µg/mL (48 h) | |||||
| C. auris CDC389 | MIC: 95 µg/mL (48 h) | |||||
| Schinus terebinthifolia leaf lectin (SteLL) | Chitin, Oligosaccharide chains | Broth microdilution | C. albicans | MIC: 6.5 µg/mL (24 h) MFC: 26 µg/mL (24 h) | Fungistatic Fungicidal | [51] |
| Water-soluble Moringa oleifera seed lectin (WSMoL) | Chitin, N-acetyl-glucosamine, Glucose, Fructose | Broth microdilution | C. albicans URM 5901 | MIC: 20 µg/mL (48 h) MFC: 80 µg/mL (48 h) | Fungistatic Fungicidal Necrosis Apoptosis Disruption of mitochondrial membrane potential | [52] |
| C. parapsilosis URM 6345 | MIC: 20 µg/mL (48 h) MFC: 80 µg/mL (48 h) | |||||
| C. krusei URM 6391 | MIC: 20 µg/mL (48 h) MFC: 40 µg/mL (48 h) | |||||
| N. glabratus URM 4246 | MIC: 20 µg/mL (48 h) MFC: 20 µg/mL (48 h) |
| Lectin | Binding Carbohydrates | Protocol | Target Fungi | Endpoint (Incubation Time) | Effects | Reference |
|---|---|---|---|---|---|---|
| Coagulant Moringa oleifera seed lectin (cMoL) | Galactose, Glucose, Raffinose, Lactose, Arabinose, Trehalose, Oligosaccharide chains | Broth microdilution | C. neoformans B3501 | MIC: 7.5 μg/mL (48 h) | Fungistatic Apoptosis Necrosis | [57] |
| C. neoformans H99 | MIC: 7.5 μg/mL (48 h) | |||||
| C. gattii R265 | MIC: 7.5 μg/mL (48 h) | |||||
| Myracrodruon urundeuva heartwood lectin (MuHL) | Chitin, N-acetyl-glucosamine, Oligosaccharide chains | Broth microdilution | C. neoformans B3501 | MIC: 6.25 µg/mL (48 h) MFC: 12.5 µg/mL (48 h) | Fungistatic Fungicidal | [58] |
| C. gattii R265 | MIC: 12.5 µg/mL (48 h) MFC: 25 µg/mL (48 h) | |||||
| PgTeL | Chitin, Oligosaccharide chains | Broth microdilution | C. neoformans B3501 | MIC: 172 µg/mL (24 h) | Fungistatic | [59] |
| Scytovirin | Tetramannose | Broth microdilution (CLSI M27-A2) | C. neoformans serotype A (various strains) | MFC: 0.5–20 µM (48 h) | Fungicidal Decreased capsule size | [60] |
| C. neoformans serotype D (various strains) | MFC: 20 µM (48 h) | |||||
| C. gattii R265 | MFC: 10 µM (48 h) | |||||
| C. gattii R272 | MFC: 0.5 µM (48 h) | |||||
| WSMoL | Chitin, N-acetyl-glucosamine, Glucose, Fructose | Broth microdilution | C. neoformans B3501 | MIC: 6.25 μg/mL (48 h) | Fungistatic Lysosomal damage Reduced mitochondrial membrane potential | [61] |
| C. neoformans H99 | MIC: 6.25 μg/mL (48 h) | |||||
| C. gattii R265 | MIC: 6.25 μg/mL (48 h) |
| Lectin | Drug | Method | Target Fungi | Synergy Metric | Effect | Reference |
|---|---|---|---|---|---|---|
| ApuL | Fluconazole | Checkerboard | C. albicans URM 5901 | FICI = 1.0 | Additive | [34] |
| C. parapsilosis URM 6345 | FICI = 0.12 | Synergism | ||||
| cMoL | Fluconazole | Checkerboard | C. neoformans B3501 | FICI = 2.01 | Antagonism | [57] |
| C. neoformans H99 | FICI = 0.26 | Synergism | ||||
| C. gattii R265 | FICI = 108.67 | Antagonism | ||||
| ConA | Fluconazole | Checkerboard | C. albicans ATCC 10231 | Reduced antifungal MIC | Additive | [37] |
| ConM | Fluconazole | Checkerboard | C. albicans ATCC 10231 | Reduced antifungal MIC | Additive | [37] |
| Helja | Fluconazole | Checkerboard | C. albicans NGY152 | FICI = 0.75 | Synergism | [41] |
| MvFL | Fluconazole | Checkerboard | C. albicans URM-5901 | FICI > 2.0 | Antagonism | [44] |
| C. krusei URM-6391 | FICI = 1.0 | Additive | ||||
| C. parapsilosis URM-6951 | FICI = 0.14 | Synergism | ||||
| C. tropicalis URM-6551 | FICI = 1.0 | Additive | ||||
| N. glabratus URM-4246 | FICI > 2.0 | Antagonism | ||||
| PgTeL | Amphotericin B | Checkerboard | C. neoformans B3501 | FICI = 2.0 | Indifferent | [59] |
| Scytovirin | Amphotericin B | Checkerboard | C. neoformans serotype D 24067 | FICI = 0.3 | Synergism | [60] |
| Fluconazole | FICI = 0.75 | Synergism | ||||
| 5-flucytosine | FICI = 0.56 | Synergism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ferreira, G.R.S.; Lira, T.L.d.S.; Napoleão, T.H. Targeting Yeast Pathogens with Lectins: A Narrative Review from Mechanistic Insights to the Need for Addressing Translational Challenges. Biomedicines 2026, 14, 105. https://doi.org/10.3390/biomedicines14010105
Ferreira GRS, Lira TLdS, Napoleão TH. Targeting Yeast Pathogens with Lectins: A Narrative Review from Mechanistic Insights to the Need for Addressing Translational Challenges. Biomedicines. 2026; 14(1):105. https://doi.org/10.3390/biomedicines14010105
Chicago/Turabian StyleFerreira, Gustavo Ramos Salles, Thiago Lucas da Silva Lira, and Thiago Henrique Napoleão. 2026. "Targeting Yeast Pathogens with Lectins: A Narrative Review from Mechanistic Insights to the Need for Addressing Translational Challenges" Biomedicines 14, no. 1: 105. https://doi.org/10.3390/biomedicines14010105
APA StyleFerreira, G. R. S., Lira, T. L. d. S., & Napoleão, T. H. (2026). Targeting Yeast Pathogens with Lectins: A Narrative Review from Mechanistic Insights to the Need for Addressing Translational Challenges. Biomedicines, 14(1), 105. https://doi.org/10.3390/biomedicines14010105

