Thoracic MRI in Pediatric Oncology: Feasibility and Image Quality of Post-Contrast Free-Breathing Radial 3D T1 Weighted Imaging
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. MR Examinations
2.3. Technical Advantages of the 3D T1w VANE mDIXON Sequence
2.4. Image Quality Data
2.5. Statistical Methods
2.6. Anesthetic Protocols
3. Results
3.1. Patients’ Characteristics
3.2. MR Examination, Image Times and Image Quality
3.3. Analysis of Anesthetic Protocols
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BH | Conventional cartesian breath-hold T1w sequence |
CT | Computed tomography |
DICOM | Digital Imaging and Communications in Medicine |
DWI | Diffusion-weighted imaging |
MRI | Magnetic resonance imaging |
ROI | Region of interest |
SNR | Signal-to-noise-ratio |
SNRliver | Signal-to-noise-ratio of the apex of the liver |
SNRmuscle | Signal-to-noise-ratio of the paraspinal musculature |
SPIR | Spectral presaturation with inversion recovery |
VANE | Variable Number of Excitations |
References
- Schenk, J.-P.; Graf, N.; Günther, P.; Ley, S.; Göppl, M.; Kulozik, A.; Rohrschneider, W.K.; Tröger, J. Role of mri in the management of patients with nephroblastoma. Eur. Radiol. 2008, 18, 683–691. [Google Scholar] [CrossRef]
- Renz, D.M.; Mentzel, H. Imaging of abdominal tumors in childhood and adolescence: Part i: Background, hepatic, splenic and pancreatic tumors. Der Radiol. 2018, 58, 595–608. [Google Scholar] [CrossRef]
- Michael, R. Potential of mr-imaging in the paediatric abdomen. Eur. J. Radiol. 2008, 68, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Wild, J.M.; Marshall, H.; Bock, M.; Schad, L.R.; Jakob, P.M.; Puderbach, M.; Molinari, F.; Van Beek, E.J.R.; Biederer, J. Mri of the lung (1/3): Methods. Insights Imaging 2012, 3, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Biederer, J.; Mirsadraee, S.; Beer, M.; Molinari, F.; Hintze, C.; Bauman, G.; Both, M.; Van Beek, E.J.R.; Wild, J.; Puderbach, M. Mri of the lung (3/3)-current applications and future perspectives. Insights Imaging 2012, 3, 373–386. [Google Scholar] [CrossRef]
- Kapur, S.; Jana, M.; Gupta, L.; Bhalla, A.S.; Naranje, P.; Gupta, A.K. Chest mri using multivane-xd, a novel t2-weighted free breathing mr sequence. Curr. Probl. Diagn. Radiol. 2021, 50, 41–47. [Google Scholar] [CrossRef]
- Glutig, K.; Mentzel, H.-J.; Prüfer, F.; Teichgräber, U.; Obmann, M.; Krämer, M. Rave-t2/t1—feasibility of a new hybrid mr-sequence for free-breathing abdominal mri in children and adolescents. Eur. J. Radiol. 2021, 143, 109903. [Google Scholar] [CrossRef]
- Bruegel, M.; Gaa, J.; Woertler, K.; Ganter, C.; Waldt, S.; Hillerer, C.; Rummeny, E.J. Mri of the lung: Value of different turbo spin-echo, single-shot turbo spin-echo, and 3d gradient-echo pulse sequences for the detection of pulmonary metastases. J. Magn. Reson. Imaging 2007, 25, 73–81. [Google Scholar] [CrossRef]
- Landini, N. Mri and zero or ultra-short echo-time sequences in secondary interstitial lung diseases: Current applicability and future perspectives. Eur. Radiol. 2025, 35, 2955–2957. [Google Scholar] [CrossRef]
- Liszewski, M.C.; Ciet, P.; Winant, A.J.; Lee, E.Y. Magnetic resonance imaging of pediatric lungs and airways: New paradigm for practical daily clinical use. J. Thorac. Imaging 2024, 39, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Renz, D.M.; Herrmann, K.-H.; Kraemer, M.; Boettcher, J.; Waginger, M.; Krueger, P.-C.; Pfeil, A.; Streitparth, F.; Kentouche, K.; Gruhn, B.; et al. Ultrashort echo time mri of the lung in children and adolescents: Comparison with non-enhanced computed tomography and standard post-contrast t1w mri sequences. Eur. Radiol. 2022, 32, 1833–1842. [Google Scholar] [CrossRef]
- Jiang, Y.; Pu, D.; Zhang, X.; Ren, Z.; Yu, N. Comparison of diagnostic performance for pulmonary nodule detection between free-breathing spiral ultrashort echo time and free-breathing radial volumetric interpolated breath-hold examination. BMC Med. Imaging 2025, 25, 15. [Google Scholar] [CrossRef]
- Machado-Rivas, F.; Leitman, E.; Jaimes, C.; Conklin, J.; Caruso, P.A.; Liu, C.A.; Gee, M.S. Predictors of anesthetic exposure in pediatric mri. Am. J. Roentgenol. 2021, 216, 799–805. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Ing, C.; Li, G.; Sun, L.S. Analysis of mri utilization in pediatric patients. J. Neurosurg. Anesthesiol. 2016, 28, 413–418. [Google Scholar] [CrossRef]
- Chandarana, H.; Block, T.K.; Rosenkrantz, A.B.; Lim, R.P.M.; Kim, D.; Mossa, D.J.B.; Babb, J.S.; Kiefer, B.; Lee, V.S. Free-breathing radial 3d fat-suppressed t1-weighted gradient echo sequence: A viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Investig. Radiol. 2011, 46, 648–653. [Google Scholar] [CrossRef]
- Browne, L.P.; Malone, L.J.; Englund, E.K.; Fujiwara, T.; Fluta, C.; Lu, Q.; Grover, T.R.; Fuhr, P.G.; Barker, A.J. Free-breathing magnetic resonance imaging with radial k-space sampling for neonates and infants to reduce anesthesia. Pediatr. Radiol. 2022, 52, 1326–1337. [Google Scholar] [CrossRef]
- Chandarana, H.; Block, K.T.; Winfeld, M.J.; Lala, S.V.; Mazori, D.; Giuffrida, E.; Babb, J.S.; Milla, S.S. Free-breathing contrast-enhanced t1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic mri. Eur. Radiol. 2014, 24, 320–326. [Google Scholar] [CrossRef]
- Vermersch, M.; Emsen, B.; Monnet, A.; Chalaye, J.; Pregliasco, A.G.; Baranes, L.; Rahmouni, A.; Luciani, A.; Itti, E.; Mulé, S. Chest pet/mri in solid cancers: Comparing the diagnostic performance of a free-breathing 3d-t1-gre stack-of-stars volume interpolated breath-hold examination (starvibe) acquisition with that of a 3d-t1-gre volume interpolated breath-hold examination (vibe) for chest staging during whole-body pet/mri. J. Magn. Reson. Imaging 2022, 55, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Duffy, P.B.; Stemmer, A.; Callahan, M.J.; Cravero, J.P.; Johnston, P.R.; Warfield, S.K.; Bixby, S.D. Free-breathing radial stack-of-stars three-dimensional dixon gradient echo sequence in abdominal magnetic resonance imaging in sedated pediatric patients. Pediatr. Radiol. 2021, 51, 1645–1653. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, K.S.; Bhatia, A.; Lee, E.Y. Prospective evaluation of free-breathing fast t2-weighted multivane xd sequence at 3-t mri for large airway assessment in pediatric patients. Am. J. Roentgenol. 2021, 216, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Feng, L. Golden-angle radial mri: Basics, advances, and applications. J. Magn. Reson. Imaging 2022, 56, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, S.; Motosugi, U.; Kromrey, M.-L.; Tamada, D.; Wakayama, T.; Wang, K.; Cashen, T.A.; Ersoz, A.; Onishi, H. Utility of stack-of-stars acquisition for hepatobiliary phase imaging without breath-holding. Magn. Reson. Med. Sci. 2020, 19, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, L.; Kramer, D.M.; Crooks, L.E.; Ortendahl, D.A. Measuring signal-to-noise ratios in mr imaging. Radiology 1989, 173, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Shin, H.; Kim, M.-J.; Lee, M.-J.; Kim, H. Comparison of image quality between conventional vibe and radial vibe in free-breathing paediatric abdominal mri. Clin. Radiol. 2016, 71, 1044–1049. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, Y.H.; Cheon, J.E.; Lee, S.M.; Cho, H.H.; Shin, S.M.; Kim, W.S.; Kim, I.O. Improved abdominal mri in non-breath-holding children using a radial k-space sampling technique. Pediatr. Radiol. 2015, 45, 840–846. [Google Scholar] [CrossRef]
- Tischendorf, P.; Beck, L.; Krähling, T.; Lange, J.H.; Heindel, W. Innovative 4d freebreathing technique in pediatric abdominal mri improves feasibility and image quality. Eur. Radiol. 2025, 35, 1–9. [Google Scholar] [CrossRef]
MRI Parameters | 3D T1w VANE mDIXON | Cartesian T1w mDIXON |
---|---|---|
Acq voxel size (mm3) | 1.35 × 1.35 × 4.00 | 1.41 × 1.70 × 4.00 |
Recon voxel size (mm3) | 0.78 × 0.78 × 2.00 | 1.2 × 1.2 × 2.00 |
Field of view (mm) | 250 | 300 |
Repetition time/echo time 1/echo time 2 (ms) | 4.8/1.5/2.6 | 5.7/1.8/4.0 |
Flip angle (°) | 10 | 15 |
Number of averages | 1 | 1 |
Spacing between acq. slices (mm) | −2 | −2 |
Respiratory motion compensation technique | diaphragm navigated | breath-hold (10 s) |
Median scan time (s) | 150 | 60 |
All | VANE Group | BH Group | p Value | |
---|---|---|---|---|
Patients’ characteristic’s | ||||
Age (years) | 5.3 ± 3.7 | 4.3 ± 3.1 | 6.3 ± 4.1 | 0.05 |
Female | 34 | 19 | 15 | 0.2 |
Neuroblastoma | 19 | 10 | 9 | 0.76 |
Lymphoma | 7 | 4 | 3 | 0.68 |
Rhabdomyosarcoma | 6 | 2 | 4 | 0.16 |
Tumor lesions findings | 20 | 7 | 13 | 0.08 |
Anesthetic procedure | ||||
Sedation | 21 | 19 | 2 | <0.001 |
General anesthesia | 12 | 0 | 12 | <0.001 |
No anesthesia | 15 | 5 | 10 | 0.12 |
All | VANE Group | BH Group | p Value | |
---|---|---|---|---|
MR Examinations | ||||
T1 repeating | 8 | 1 | 7 | 0.02 |
Respiratory artifacts | 11 | 0 | 11 | <0.001 |
Diagnostic image quality | 42 | 24 | 18 | 0.009 |
Thoracoabdominal MRI | 29 | 16 | 13 | 0.37 |
Imaging Time | ||||
T1 imaging time (s) | 112 ± 50.7 | 155 ± 23.6 | 68.2 ± 28.7 | <0.001 |
Examination time (min) | 41.9 ± 10.8 | 41.1 ± 11.3 | 42.7 ± 10.8 | 0.4 |
Examination time (min) thoracic | 40.5 ± 10.7 | 38.6 ± 10.1 | 41.8 ± 11.4 | 0.6 |
Examination time (min) thoracoabdominal | 42.9 ± 11.2 | 42.4 ± 11.9 | 43.5 ± 10.8 | 0.69 |
Examination time (min) general anesthesia | 47.9 ± 10.2 | - | 47.9 ± 10.2 | - |
Examination time (min) sedation | 40.8 ± 11.6 | 40.7 ± 12.1 | 41.5 ± 6.4 | 0.5 |
Examination time (min) no anesthesia or sedation | 38.8 ± 9.4 | 42.8 ± 8.2 | 36.8 ± 9.7 | 0.064 |
3D T1w VANE mDIXON | Cartesian 3D T1w mDIXON | |||||||
---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | ϰ | R1 | R2 | R3 | ϰ | |
Diagnostic image quality | 4.58 ± 0.5 | 4.46 ± 0.59 | 4.5 ± 0.51 | 0.67 | 3.28 ± 1.06 | 3.24 ± 1.05 | 3.3 ± 1.07 | 0.86 |
Respiratory motion robustness | 4.54 ± 0.51 | 4.45 ± 0.49 | 4.64 ± 0.51 | 0.84 | 3.12 ± 0.97 | 3.2 ± 0.91 | 3.1 ± 1 | 0.88 |
Pulmonary vessel clarity | 4.42 ± 0.65 | 4.51 ± 0.65 | 4.33 ± 0.7 | 0.71 | 3.1 ± 0.9 | 3.08 ± 0.91 | 2.96 ± 0.84 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tischendorf, P.; Künnemann, M.-D.; Krähling, T.; Lange, J.H.; Heindel, W.; Beck, L. Thoracic MRI in Pediatric Oncology: Feasibility and Image Quality of Post-Contrast Free-Breathing Radial 3D T1 Weighted Imaging. Biomedicines 2025, 13, 2302. https://doi.org/10.3390/biomedicines13092302
Tischendorf P, Künnemann M-D, Krähling T, Lange JH, Heindel W, Beck L. Thoracic MRI in Pediatric Oncology: Feasibility and Image Quality of Post-Contrast Free-Breathing Radial 3D T1 Weighted Imaging. Biomedicines. 2025; 13(9):2302. https://doi.org/10.3390/biomedicines13092302
Chicago/Turabian StyleTischendorf, Patricia, Marc-David Künnemann, Tobias Krähling, Jan Hendrik Lange, Walter Heindel, and Laura Beck. 2025. "Thoracic MRI in Pediatric Oncology: Feasibility and Image Quality of Post-Contrast Free-Breathing Radial 3D T1 Weighted Imaging" Biomedicines 13, no. 9: 2302. https://doi.org/10.3390/biomedicines13092302
APA StyleTischendorf, P., Künnemann, M.-D., Krähling, T., Lange, J. H., Heindel, W., & Beck, L. (2025). Thoracic MRI in Pediatric Oncology: Feasibility and Image Quality of Post-Contrast Free-Breathing Radial 3D T1 Weighted Imaging. Biomedicines, 13(9), 2302. https://doi.org/10.3390/biomedicines13092302