Prognostic Significance of Venous-to-Arterial CO2 Difference in Critically Ill Patients After Major Abdominal Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Enrollment
2.2. Measurement of ΔP(v-a) CO2
2.3. Data Collection and Study Outcomes
2.4. Acute Kidney Injury
2.5. Anastomosis Leakage
2.6. Bile Leakage
2.7. Intra-Abdominal Fluid Collection
2.8. Pleural Effusion
2.9. Pneumonia
2.10. Statistical Analysis
3. Results
Patients with P(v-a)CO2 at T0 Greater than 6 mmHg
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABGA | arterial blood gas analysis |
AKI | acute kidney injury |
BMI | body mass index |
CI | confidence interval |
CO2 | carbon dioxide |
ICU | intensive care unit |
MAP | mean arterial pressure |
OR | odds ratio |
PCO2 | partial pressure of CO2 |
P(v-a)CO2 | venous-to-arterial carbon dioxide tension difference |
ScvO2 | central venous oxygen saturation |
T0 | within 1 h after admission to ICU |
T1 | within 24 h after admission to ICU |
VBGA | venous blood gas analysis |
References
- Ospina-Tascon, G.; Neves, A.P.; Occhipinti, G.; Donadello, K.; Büchele, G.; Simion, D.; Chierego, M.L.; Silva, T.O.; Fonseca, A.; Vincent, J.L.; et al. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med. 2010, 36, 949–955. [Google Scholar] [CrossRef]
- Pottecher, J.; Deruddre, S.; Teboul, J.L.; Georger, J.F.; Laplace, C.; Benhamou, D.; Vicaut, E.; Duranteau, J. Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med. 2010, 36, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
- Mallat, J.; Lemyze, M.; Tronchon, L.; Vallet, B.; Thevenin, D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J. Crit. Care Med. 2016, 5, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Jozwiak, M.; Mercado, P.; Teboul, J.L.; Benmalek, A.; Gimenez, J.; Dépret, F.; Richard, C.; Monnet, X. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit. Care 2019, 23, 116. [Google Scholar] [CrossRef]
- van Beest, P.A.; Lont, M.C.; Holman, N.D.; Loef, B.; Kuiper, M.A.; Boerma, E.C. Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013, 39, 1034–1039. [Google Scholar] [CrossRef]
- Cuschieri, J.; Rivers, E.P.; Donnino, M.W.; Katilius, M.; Jacobsen, G.; Nguyen, H.B.; Pamukov, N.; Horst, H.M. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005, 31, 818–822. [Google Scholar] [CrossRef]
- Seldinger, S.I. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 1953, 39, 368–376. [Google Scholar] [CrossRef]
- Stevens, P.E.; Levin, A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef]
- Rahbari, N.N.; Weitz, J.; Hohenberger, W.; Heald, R.J.; Moran, B.; Ulrich, A.; Holm, T.; Wong, W.D.; Tiret, E.; Moriya, Y.; et al. Definition and grading of anastomotic leakage following anterior resection of the rectum: A proposal by the International Study Group of Rectal Cancer. Surgery 2010, 147, 339–351. [Google Scholar] [CrossRef]
- Koch, M.; Garden, O.J.; Padbury, R.; Rahbari, N.N.; Adam, R.; Capussotti, L.; Fan, S.T.; Yokoyama, Y.; Crawford, M.; Makuuchi, M.; et al. Bile leakage after hepatobiliary and pancreatic surgery: A definition and grading of severity by the International Study Group of Liver Surgery. Surgery 2011, 149, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Sierzega, M.; Kulig, P.; Kolodziejczyk, P.; Kulig, J. Natural history of intra-abdominal fluid collections following pancreatic surgery. J. Gastrointest. Surg. 2013, 17, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.H.; Jepsen, S.B.; Olsen, A.D. Postoperative pleural effusion following upper abdominal surgery. Chest 1989, 96, 1133–1135. [Google Scholar] [CrossRef]
- Abbott, T.E.F.; Fowler, A.J.; Pelosi, P.; Gama de Abreu, M.; Møller, A.M.; Canet, J.; Creagh-Brown, B.; Mythen, M.; Gin, T.; Lalu, M.M.; et al. A systematic review and consensus definitions for standardised end-points in perioperative medicine: Pulmonary complications. Br. J. Anaesth. 2018, 120, 1066–1079. [Google Scholar] [CrossRef] [PubMed]
- Donati, A.; Loggi, S.; Preiser, J.C.; Orsetti, G.; Münch, C.; Gabbanelli, V.; Pelaia, P.; Pietropaoli, P. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest 2007, 132, 1817–1824. [Google Scholar] [CrossRef]
- Pearse, R.; Dawson, D.; Fawcett, J.; Rhodes, A.; Grounds, R.M.; Bennett, E.D. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit. Care 2005, 9, R687–R693. [Google Scholar] [CrossRef]
- Georgakas, I.; Boutou, A.K.; Pitsiou, G.; Kioumis, I.; Bitzani, M.; Matei, K.; Argyropoulou, P.; Stanopoulos, I. Central Venous Oxygen Saturation as a Predictor of a Successful Spontaneous Breathing Trial from Mechanical Ventilation: A Prospective, Nested Case-Control Study. Open Respir. Med. J. 2018, 12, 11–20. [Google Scholar] [CrossRef]
- Pope, J.V.; Jones, A.E.; Gaieski, D.F.; Arnold, R.C.; Trzeciak, S.; Shapiro, N.I. Multicenter study of central venous oxygen saturation (ScvO2) as a predictor of mortality in patients with sepsis. Ann. Emerg. Med. 2010, 55, 40–46.e41. [Google Scholar] [CrossRef]
- Patterson, E.K.; Cepinskas, G.; Fraser, D.D. Endothelial Glycocalyx Degradation in Critical Illness and Injury. Front. Med. 2022, 9, 898592. [Google Scholar] [CrossRef]
- Duranteau, J.; De Backer, D.; Donadello, K.; Shapiro, N.I.; Hutchings, S.D.; Rovas, A.; Legrand, M.; Harrois, A.; Ince, C. The future of intensive care: The study of the microcirculation will help to guide our therapies. Crit. Care 2023, 27, 190. [Google Scholar] [CrossRef]
- Ospina-Tascón, G.A.; Bautista-Rincón, D.F.; Umaña, M.; Tafur, J.D.; Gutiérrez, A.; García, A.F.; Bermúdez, W.; Granados, M.; Arango-Dávila, C.; Hernández, G. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit. Care 2013, 17, R294. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.R.; Kim, H.S.; Chung, Y.J.; Kim, E.Y. Venous-to-arterial carbon-dioxide tension difference as a useful predictor of patient prognosis after major surgery. Asian J. Surg. 2024, 47, 2152–2160. [Google Scholar] [CrossRef] [PubMed]
- Futier, E.; Paugam-Burtz, C.; Constantin, J.M.; Pereira, B.; Jaber, S. The OPERA trial—Comparison of early nasal high flow oxygen therapy with standard care for prevention of postoperative hypoxemia after abdominal surgery: Study protocol for a multicenter randomized controlled trial. Trials 2013, 14, 341. [Google Scholar] [CrossRef] [PubMed]
Variables | ΔP(v-a)CO2 ≤ 0 (n = 49) | ΔP(v-a)CO2 > 0 (n = 37) | p-Value |
---|---|---|---|
Age, years | 67.5 (31–96) | 70.2 (30–85) | 0.339 |
Sex, male, n (%) | 18 (36.7%) | 19 (51.4%) | 0.194 |
BMI (Kg/m2) | 0.613 | ||
APACHE II (mean, ± SD) | 0.56 | ||
Total SOFA score at T0 (mean, ±SD) | 0.243 | ||
Total SOFA score at T1 (mean, ±SD) | 0.699 | ||
ΔSOFA score at T1-T0 (mean, ±SD) | −0.1 | 0.3 | |
Total SOFA score at T2 (mean, ±SD) | 0.317 | ||
Total SOFA score at T3 (mean, ±SD) | 0.389 | ||
Sepsis status at T0 | 29 (59.2%) | 18 (48.6%) | 0.385 |
Septic shock status at T0 | 8 (16.3%) | 2 (5.4%) | 0.117 |
Underlying disease, n (%) | |||
Diabetes mellitus | 9 (18.4%) | 11 (29.7%) | 0.303 |
HBP | 22 (44.9%) | 19 (51.4%) | 0.664 |
CVA | 9 (18.4%) | 0 | 0.009 |
Liver cirrhosis | 2 (4.1%) | 1 (2.7%) | 1.000 |
Chronic renal failure | 5 (10.2%) | 4 (10.8%) | 1.000 |
Intake and Output (mean, ±SD) | |||
Total intake at POD 0, mL | 0.625 | ||
Total output at POD 0, mL | 0.148 | ||
Total intake at POD 1, mL | 0.725 | ||
Total output at POD 1, mL | 0.646 | ||
Hemodynamic value (mean, ±SD) | |||
Lactate at T0, mmol/L | 0.617 | ||
Lactate at T1, mmol/L | 0.327 | ||
ΔLactate at T1-T0, mmol/L | −0.9 | −0.2 | 0.13 |
ScvO2 at T0, % | 0.249 | ||
ScvO2 at T1, % | 0.949 | ||
pH of ABGA at T0 | 0.135 | ||
pH of ABGA at T1 | 0.116 | ||
ΔpH at T1-T0 | 0.03 | 0.03 | 0.931 |
Bicarbonate at T0, mmol/L | 0.947 | ||
Bicarbonate at T1, mmol/L | 0.002 | ||
ΔBicarbonate at T1-T0, mmol/L | 3.6 | 0.002 | |
P(v-a)CO2 at T0, mmHg | <0.001 | ||
P(v-a)CO2 at T1, mmHg | <0.001 | ||
ΔP(v-a)CO2 at T1-T0, mmHg | −4.7 | <0.001 | |
Clinical outcomes | |||
Use of mechanical ventilation, n (%) | 12 (24.5%) | 7 (18.9%) | 0.607 |
Use of CRRT, n (%) | 5 (10.2%) | 7 (18.9%) | 0.348 |
Length of mechanical ventilation, day | 0.624 | ||
Length of CRRT, day | 0.343 | ||
Length of ICU stay, day | 0.534 | ||
Length of postoperative stay, day | 0.431 | ||
Length of hospital stay, day | 3.3 | 0.124 | |
Postoperative morbidities | |||
Acute kidney injury | 6 (12.2%) | 7 (18.9%) | 0.545 |
Anastomosis leakage | 1 (2%) | 1 (2.7%) | 1.000 |
Bile leakage | 1 (2%) | 0 | 1.000 |
Intra-abdominal fluid collection | 2 (4.1%) | 2 (5.4%) | 1.000 |
Pleural effusion/Pneumonia | 3 (6.1%) | 4 (10.8%) | 0.457 |
7 days mortality, n (%) | 0 | 1 (2.7%) | 0.43 |
28 days mortality, n (%) | 2 (4.1%) | 2 (5.4%) | 1.000 |
In-hospital mortality, n (%) | 2 (4.1%) | 3 (8.1%) | 0.648 |
Variables | ΔP(v-a)CO2 ≤ 0 (n = 45) | ΔP(v-a)CO2 > 0 (n = 11) | p-Value |
---|---|---|---|
Age, years | 67.8 (31–96) | 74 (56–85) | 0.139 |
Sex, male, n (%) | 17 (37.8%) | 7 (63.6%) | 0.176 |
BMI (Kg/m2) | 23.9 | 24.2 | 0.854 |
APACHE II (mean, ± SD) | 0.051 | ||
Total SOFA score at T0 (mean, ±SD) | 0.152 | ||
Total SOFA score at T1 (mean, ±SD) | 0.054 | ||
ΔSOFA score at T1-T0 (mean, ±SD) | −0.1 | 0.447 | |
Total SOFA score at T2 (mean, ±SD) | 0.032 | ||
Total SOFA score at T3 (mean, ±SD) | 0.085 | ||
Sepsis status at T0 | 25 (55.6%) | 8 (72.7%) | 0.496 |
Septic shock status at T0 | 8 (17.8%) | 1 (9.1%) | 0.671 |
Underlying disease, n (%) | |||
Diabetes mellitus | 6 (13.3%) | 2 (18.2%) | 0.649 |
HBP | 20 (44.4%) | 6 (54.5%) | 0.738 |
CVA | 8 (17.8%) | 0 | 0.333 |
Liver cirrhosis | 1 (2.2%) | 0 | 1.000 |
Chronic renal failure | 3 (6.7%) | 2 (18.2%) | 0.251 |
Intake and Output (mean, ±SD) | |||
Total intake at POD 0, mL | 0.127 | ||
Total output at POD 0, mL | 0.213 | ||
Total intake at POD 1, mL | 0.557 | ||
Total output at POD 1, mL | 0.282 | ||
Hemodynamic value (mean, ±SD) | |||
Lactate at T0, mmol/L | 0.985 | ||
Lactate at T1, mmol/L | 0.011 | ||
ΔLactate at T1-T0, mmol/L | −0.9 | 0.006 | |
ScvO2 at T0,% | 0.195 | ||
ScvO2 at T1,% | 0.101 | ||
pH of ABGA at T0 | 0.583 | ||
pH of ABGA at T1 | 0.894 | ||
ΔpH at T1-T0 | 0.03 | 0.04 | 0.693 |
Bicarbonate at T0, mmol/L | 0.324 | ||
Bicarbonate at T1, mmol/L | 0.001 | ||
ΔBicarbonate at T1-T0, mmol/L | 3.5 | 9 | 0.018 |
P(v-a)CO2 at T0, mmHg | 0.036 | ||
P(v-a)CO2 at T1, mmHg | 0.003 | ||
ΔP(v-a)CO2 at T1-T0, mmHg | −4.8 | <0.001 |
Variables | ΔP(v-a)CO2 ≤ 0 (n = 45) | ΔP(v-a)CO2 > 0 (n = 11) | p-Value |
---|---|---|---|
Clinical outcomes | |||
Use of mechanical ventilation, n (%) | 10 (22.2%) | 7 (54.5%) | 0.033 |
Use of CRRT, n (%) | 4 (8.9%) | 4 (36.4%) | 0.020 |
Length of mechanical ventilation, day | 0.011 | ||
Length of CRRT, day | 0.016 | ||
Length of ICU stay, day | 0.014 | ||
Length of postoperative stay, day | 0.744 | ||
Length of hospital stay, day | 3.6 | 0.307 | |
Postoperative morbidities | |||
Acute kidney injury | 5 (11.1%) | 4 (36.4%) | 0.041 |
Anastomosis leakage | 1 (2.2%) | 1 (9.1%) | 0.357 |
Bile leakage | 1 (2.2%) | 0 | 1.000 |
Intra-abdominal fluid collection | 2 (4.4%) | 1 (9.1%) | 0.488 |
Pleural effusion/Pneumonia | 2 (4.4%) | 1 (9.1%) | 0.488 |
7 days mortality, n (%) | 0 | 1 (9.1%) | 0.041 |
28 days mortality, n (%) | 2 (4.4%) | 2 (18.2%) | 0.113 |
In-hospital mortality, n (%) | 2 (4.4%) | 2 (18.2%) | 0.113 |
Composite mortality, n (%) | 2(4.4%) | 2(18.2%) | 0.113 |
Parameters | Partial Correlation Coefficients | p-Value |
---|---|---|
ΔSOFA score at T1-T0 | −0.136 | 0.325 |
ΔLactate at T1-T0 | 0.133 | 0.339 |
Total SOFA at T0 | 0.206 | 0.135 |
Total SOFA at T1 | 0.093 | 0.503 |
Lactate level at T0 | −0.015 | 0.912 |
Lactate level at T1 | 0.106 | 0.444 |
ScvO2 at T0 | −0.13 | 0.349 |
ScvO2 at T1 | −0.273 | 0.045 |
Parameters | β ± SE | Correlation Coefficients | p-Value |
---|---|---|---|
ΔSOFA score at T1-T0 | −0.018 ± 0.055 | −0.044 | 0.799 |
ΔLactate at T1-T0 | 0.089 ± 0.064 | 0.185 | 0.173 |
Total SOFA at T0 | 0.106 ± 0.074 | 0.192 | 0.157 |
Total SOFA at T1 | 0.088 ± 0.088 | 0.135 | 0.323 |
Lactate level at T0 | −0.015 ± 0.068 | −0.031 | 0.823 |
Lactate level at T1 | 0.073 ± 0.069 | 0.142 | 0.295 |
ScvO2 at T0 | −0.29 ± 0.231 | −0.168 | 0.215 |
ScvO2 at T1 | −0.522 ± 0.221 | −0.305 | 0.022 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Parameters | OR (95% CI) | p-value | OR (95% CI) | p-value |
Total SOFA score at T0 | 1.385 (1.026–1.871) | 0.034 | 1.02 (0.615–1.692) | 0.94 |
Total SOFA score at T1 | 1.473 (1.08–2.008) | 0.014 | 1.471 (0.936–2.313) | 0.094 |
ΔBicarbonate at T1-T0 | 0.667 (0.466–0.955) | 0.027 | ||
Lactate level at T1 | 1.28 (1.007–1.625) | 0.044 | 0.864 (0.566–1.318) | 0.498 |
ΔLactate at T1-T0 | 2.158 (1.184–3.931) | 0.012 | ||
ScvO2 level at T1 | 0.823 (0.698–0.971) | 0.021 | 0.806 (0.636–1.022) | 0.218 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Parameters | OR (95% CI) | p-value | OR (95% CI) | p-value |
ΔP(v-a)CO2 Increase/Decrease status | 0.238 (0.060–0.946) | 0.041 | 0.265 (0.049–1.43) | 0.123 |
ΔSOFA score at T1-T0 | 1.621 (1.087–2.416) | 0.018 | 1.778 (1.136–2.784) | 0.012 |
ScvO2 level at T1 | 0.908 (0.839–0.982) | 0.015 | 0.898 (0.819–0.985) | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.R.; Kim, E.Y. Prognostic Significance of Venous-to-Arterial CO2 Difference in Critically Ill Patients After Major Abdominal Surgery. Biomedicines 2025, 13, 2295. https://doi.org/10.3390/biomedicines13092295
Lee GR, Kim EY. Prognostic Significance of Venous-to-Arterial CO2 Difference in Critically Ill Patients After Major Abdominal Surgery. Biomedicines. 2025; 13(9):2295. https://doi.org/10.3390/biomedicines13092295
Chicago/Turabian StyleLee, Gyeo Ra, and Eun Young Kim. 2025. "Prognostic Significance of Venous-to-Arterial CO2 Difference in Critically Ill Patients After Major Abdominal Surgery" Biomedicines 13, no. 9: 2295. https://doi.org/10.3390/biomedicines13092295
APA StyleLee, G. R., & Kim, E. Y. (2025). Prognostic Significance of Venous-to-Arterial CO2 Difference in Critically Ill Patients After Major Abdominal Surgery. Biomedicines, 13(9), 2295. https://doi.org/10.3390/biomedicines13092295