Recent Advances in Parkinson’s Disease Research: From Pathophysiology to Novel Therapeutic Approaches
1. Introduction
2. Molecular Genetic Mechanisms and Cellular Pathways
2.1. Genetic Heterogeneity and Population-Specific Variants
2.2. Mitochondrial Dysfunction and Neuroinflammatory Cascades
2.3. α-Synuclein Proteostasis and Aggregation Pathways
3. Neuroprotective Strategies and Therapeutic Innovations
3.1. Natural Compound-Based Neuroprotection
3.2. Precision Radiosurgical Interventions
4. Metabolomic Biomarker Discovery
5. Future Directions and Clinical Translation
5.1. Precision Medicine Implementation
5.2. Disease-Modifying Therapeutic Development
5.3. Early Detection and Intervention
6. Conclusions
Acknowledgments
Conflicts of Interest
List of Contributions
- Salemi, M.; Lanza, G.; Salluzzo, M.G.; Schillaci, F.A.; Di Blasi, F.D.; Cordella, A.; Caniglia, S.; Lanuzza, B.; Morreale, M.; Marano, P.; et al. A Next-Generation Sequencing Study in a Cohort of Sicilian Patients with Parkinson’s Disease. Biomedicines 2023, 11, 3118. https://doi.org/10.3390/biomedicines11123118.
- Lakshmi, Y.S.; Prasanth, D.; Kumar, K.T.S.; Ahmad, S.F.; Ramanjaneyulu, S.; Rahul, N.; Pasala, P.K. Unravelling the Molecular Mechanisms of a Quercetin Nanocrystal for Treating Potential Parkinson’s Disease in a Rotenone Model: Supporting Evidence of Network Pharmacology and In Silico Data Analysis. Biomedicines 2023, 11, 2756. https://doi.org/10.3390/biomedicines11102756.
- Bispo, A.G.; Silva, C.S.; Sena-Dos-Santos, C.; Moura, D.D.; Koshimoto, B.H.B.; Santos-Lobato, B.L.; Ribeiro-Dos-Santos, Â.; Cavalcante, G.C. Investigation of PRKN Mutations in Levodopa-Induced Dyskinesia in Parkinson’s Disease Treatment. Biomedicines 2023, 11, 2230. https://doi.org/10.3390/biomedicines11082230.
- Seo, M.H.; Yeo, S. The Effects of Serping1 siRNA in alpha-Synuclein Regulation in MPTP-Induced Parkinson’s Disease. Biomedicines 2023, 11, 1952. https://doi.org/10.3390/biomedicines11071952.
- Gatarek, P.; Sekulska-Nalewajko, J.; Bobrowska-Korczaka, B.; Pawełczyk, M.; Jastrzębski, K.; Głąbiński, A.; Kałużna-Czaplińska, J. Plasma Metabolic Disturbances in Parkinson’s Disease Patients. Biomedicines 2022, 10, 3005. https://doi.org/10.3390/biomedicines10123005.
- Rehman, I.U.; Khan, A.; Ahmad, R.; Choe, K.; Park, H.Y.; Lee, H.J.; Atiq, A.; Park, J.; Hahm, J.R.; Kim, M.O. Neuroprotective Effects of Nicotinamide against MPTP-Induced Parkinson’s Disease in Mice: Impact on Oxidative Stress, Neuroinflammation, Nrf2/HO-1 and TLR4 Signaling Pathways. Biomedicines 2022, 10, 2929. https://doi.org/10.3390/biomedicines10112929.
- Cordaro, M.; Modafferi, S.; D’amico, R.; Fusco, R.; Genovese, T.; Peritore, A.F.; Gugliandolo, E.; Crupi, R.; Interdonato, L.; Di Paola, D.; et al. Natural Compounds Such as Hericium erinaceus and Coriolus versicolor Modulate Neuroinflammation, Oxidative Stress and Lipoxin A4 Expression in Rotenone-Induced Parkinson’s Disease in Mice. Biomedicines 2022, 10, 2505. https://doi.org/10.3390/biomedicines10102505.
References
- Brakedal, B.; Toker, L.; Haugarvoll, K.; Tzoulis, C. A nationwide study of the incidence, prevalence and mortality of Parkinson’s disease in the Norwegian population. NPJ Park. Dis. 2022, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Surmeier, D.J. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 2018, 285, 3657–3668. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Okuzumi, A.; Matsumoto, G.; Tsunemi, T.; Hattori, N. alpha-Synuclein: A Promising Biomarker for Parkinson’s Disease and Related Disorders. J. Mov. Disord. 2024, 17, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Caminiti, S.P.; Presotto, L.; Baroncini, D.; Garibotto, V.; Moresco, R.M.; Gianolli, L.; Volonte, M.A.; Antonini, A.; Perani, D. Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson’s disease. Neuroimage Clin. 2017, 14, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Park, A.; Stacy, M. Non-motor symptoms in Parkinson’s disease. J. Neurol. 2009, 256 (Suppl. 3), 293–298. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Fu, Y.; Halliday, G.M.; Sue, C.M. PARK Genes Link Mitochondrial Dysfunction and Alpha-Synuclein Pathology in Sporadic Parkinson’s Disease. Front. Cell Dev. Biol. 2021, 9, 612476. [Google Scholar] [CrossRef] [PubMed]
- Hely, M.A.; Morris, J.G.; Reid, W.G.; Trafficante, R. Sydney Multicenter Study of Parkinson’s disease: Non-L-dopa-responsive problems dominate at 15 years. Mov. Disord. 2005, 20, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Manson, A.; Stirpe, P.; Schrag, A. Levodopa-induced-dyskinesias clinical features, incidence, risk factors, management and impact on quality of life. J. Park. Dis. 2012, 2, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Guedes, B.F.S.; Cardoso, S.M.; Esteves, A.R. The Impact of microRNAs on Mitochondrial Function and Immunity: Relevance to Parkinson’s Disease. Biomedicines 2023, 11, 1349. [Google Scholar] [CrossRef] [PubMed]
- Jenner, P. The rationale for the use of dopamine agonists in Parkinson’s disease. Neurology 1995, 45 (Suppl. 3), S6–S12. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.; Nam, J.; Baek, A.; Seo, J.H.; Chae, J.I.; Lee, S.Y.; Chung, S.K.; Park, B.C.; Park, S.G.; Kim, J.; et al. Neuroprotective Effects of Licochalcone D in Oxidative-Stress-Induced Primitive Neural Stem Cells from Parkinson’s Disease Patient-Derived iPSCs. Biomedicines 2023, 11, 228. [Google Scholar] [CrossRef] [PubMed]
- Goc, B.; Roch-Zniszczol, A.; Larysz, D.; Zarudzki, L.; Stapor-Fudzinska, M.; Rozek, A.; Wozniak, G.; Boczarska-Jedynak, M.; Miszczyk, L.; Napieralska, A. The Effectiveness and Toxicity of Frameless CyberKnife Based Radiosurgery for Parkinson’s Disease-Phase II Study. Biomedicines 2023, 11, 288. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, S. Recent Advances in Parkinson’s Disease Research: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2025, 13, 2283. https://doi.org/10.3390/biomedicines13092283
Yeo S. Recent Advances in Parkinson’s Disease Research: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines. 2025; 13(9):2283. https://doi.org/10.3390/biomedicines13092283
Chicago/Turabian StyleYeo, Sujung. 2025. "Recent Advances in Parkinson’s Disease Research: From Pathophysiology to Novel Therapeutic Approaches" Biomedicines 13, no. 9: 2283. https://doi.org/10.3390/biomedicines13092283
APA StyleYeo, S. (2025). Recent Advances in Parkinson’s Disease Research: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines, 13(9), 2283. https://doi.org/10.3390/biomedicines13092283