Editorial for the Special Issue “Anticancer Activity and Metabolic Pathways of Natural Products 2.0”
1. Editorial Summary
2. Anticancer Potential of Steroidal Saponins
3. Protective and Adjuvant Roles of Cytokinin-Related Molecules
4. Targeting Transcription Factors with Small Molecule Inhibitors
5. Flavonoids: Multifunctional Modulators of Cancer Signaling and Metabolism
6. Dual Induction of Apoptosis and Ferroptosis by Alkaloids
7. Emerging Roles of Triterpenoids and Polysaccharide-Peptides
8. Nanoparticles and Thermal Enhancement in Cancer Treatment
9. Emergent Biomarkers and Therapeutic Targets
10. Glutathione Metabolism and Implications for Cancer Therapy
11. Small Molecule Steroid Derivatives with Epoxy Functionality
12. Conclusions and Perspectives
Funding
Conflicts of Interest
References
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Seoane, J.; Gomis, R.R. TGF-beta Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harb. Perspect. Biol. 2017, 9, a022277. [Google Scholar] [CrossRef] [PubMed]
- Tokizaki, S.; Podyma-Inoue, K.A.; Matsumoto, T.; Takahashi, K.; Kobayashi, M.; Ibi, H.; Uchida, S.; Iwabuchi, S.; Harada, H.; Hashimoto, S.; et al. Inhibition of Transforming Growth Factor-β Signals Suppresses Tumor Formation by Regulation of Tumor Microenvironment Networks. Cancer Sci. 2024, 115, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Xelwa, N.; Candy, G.P.; Devar, J.; Omoshoro-Jones, J.; Smith, M.; Nweke, E.E. Targeting Growth Factor Signaling Pathways in Pancreatic Cancer: Towards Inhibiting Chemoresistance. Front. Oncol. 2021, 11, 683788. [Google Scholar] [CrossRef] [PubMed]
- Diepstraten, S.T.; Anderson, M.A.; Czabotar, P.E.; Lessene, G.; Strasser, A.; Kelly, G.L. The Manipulation of Apoptosis for Cancer Therapy Using BH3-Mimetic Drugs. Nat. Rev. Cancer 2022, 22, 45–64. [Google Scholar] [CrossRef] [PubMed]
- Townsend, P.A.; Kozhevnikova, M.V.; Cexus, O.N.F.; Zamyatnin, A.A.; Soond, S.M. BH3-Mimetics: Recent Developments in Cancer Therapy. J. Exp. Clin. Cancer Res. 2021, 40, 355. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Maugeri, A.; De Luca, L.; Gitto, R.; Lombardo, G.E.; Musumeci, L.; De Sarro, G.; Cirmi, S.; Navarra, M. The SIRT2 Pathway Is Involved in the Antiproliferative Effect of Flavanones in Human Leukemia Monocytic THP-1 Cells. Biomedicines 2022, 10, 2383. [Google Scholar] [CrossRef] [PubMed]
- Budek, M.; Nuszkiewicz, J.; Piórkowska, A.; Czuczejko, J.; Szewczyk-Golec, K. Inflammation Related to Obesity in the Etiopathogenesis of Gastroenteropancreatic Neuroendocrine Neoplasms. Biomedicines 2022, 10, 2660. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.R.; Ha, I.J.; Kim, J.E.; Ahn, K.S.; Park, J.; Baek, S.H. Inhibiting AGS Cancer Cell Proliferation through the Combined Application of Aucklandiae Radix and Hyperthermia: Investigating the Roles of Heat Shock Proteins and Reactive Oxygen Species. Antioxidants 2024, 13, 564. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Baek, S.H. Combination Therapy with Cinnamaldehyde and Hyperthermia Induces Apoptosis of A549 Non-Small Cell Lung Carcinoma Cells via Regulation of Reactive Oxygen Species and Mitogen-Activated Protein Kinase Family. Int. J. Mol. Sci. 2020, 21, 6229. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.Y.; Kim, M.J.; Kim, H.I.; Park, J.; Baek, S.H. Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants 2022, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Jung, S.; Baek, S.H. Combination Therapy of Radiation and Hyperthermia, Focusing on the Synergistic Anti-Cancer Effects and Research Trends. Antioxidants 2023, 12, 924. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, S.; Karnad, A.; Freeman, J.W. The biology and role of CD44 in cancer progression: Therapeutic implications. J. Hematol. Oncol. 2018, 11, 64. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.H. Editorial for the Special Issue “Anticancer Activity and Metabolic Pathways of Natural Products 2.0”. Biomedicines 2025, 13, 2083. https://doi.org/10.3390/biomedicines13092083
Baek SH. Editorial for the Special Issue “Anticancer Activity and Metabolic Pathways of Natural Products 2.0”. Biomedicines. 2025; 13(9):2083. https://doi.org/10.3390/biomedicines13092083
Chicago/Turabian StyleBaek, Seung Ho. 2025. "Editorial for the Special Issue “Anticancer Activity and Metabolic Pathways of Natural Products 2.0”" Biomedicines 13, no. 9: 2083. https://doi.org/10.3390/biomedicines13092083
APA StyleBaek, S. H. (2025). Editorial for the Special Issue “Anticancer Activity and Metabolic Pathways of Natural Products 2.0”. Biomedicines, 13(9), 2083. https://doi.org/10.3390/biomedicines13092083