Copeptin, Routine Laboratory Parameters, and Ischemic Etiology of Heart Failure Predict Outcomes in Elderly Patients with Decompensated Heart Failure
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sunayama, T.; Matsue, Y.; Dotare, T.; Maeda, D.; Iso, T.; Morisawa, T.; Saitoh, M.; Yokoyama, M.; Jujo, K.; Takahashi, T.; et al. Multidomain Frailty as a Therapeutic Target in Elderly Patients with Heart Failure. Int. Heart J. 2022, 63, 1–7. [Google Scholar] [CrossRef]
- Liu, E.; Lampert, B.C. Heart Failure in Older Adults: Medical Management and Advanced Therapies. Geriatrics 2022, 7, 36. [Google Scholar] [CrossRef]
- Nadziakiewicz, P.; Szczurek-Wasilewicz, W.; Szyguła-Jurkiewicz, B. Heart Failure in Elderly Patients: Medical Management, Therapies and Biomarkers. Pharmaceuticals 2024, 18, 32. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, A.; Mostowik, M.; Szeliga, M.; Wilczyńska-Golonka, M.; Dębicka-Dąbrowska, D.; Nessler, J. Chronic Heart Failure in the Elderly: Still a Current Medical Problem. Folia Medica Cracoviensia 2018, 58, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Clemente, G.; Soldano, J.S.; Tuttolomondo, A. Heart Failure: Is There an Ideal Biomarker? Rev. Cardiovasc. Med. 2023, 24, 310. [Google Scholar] [CrossRef]
- Candeloro, M.; Di Nisio, M.; Balducci, M.; Genova, S.; Valeriani, E.; Pierdomenico, S.D.; Porreca, E. Prognostic Nutritional Index in Elderly Patients Hospitalized for Acute Heart Failure. ESC Heart Fail. 2020, 7, 2479–2484. [Google Scholar] [CrossRef]
- Manzano, L.; Babalis, D.; Roughton, M.; Shibata, M.; Anker, S.D.; Ghio, S.; Van Veldhuisen, D.J.; Cohen-Solal, A.; Coats, A.J.; Poole-Wilson, P.P.A.; et al. Predictors of Clinical Outcomes in Elderly Patients with Heart Failure. Eur. J. Heart Fail. 2011, 13, 528–536. [Google Scholar] [CrossRef]
- Pacho, C.; Domingo, M.; Núñez, R.; Lupón, J.; Núñez, J.; Barallat, J.; Moliner, P.; De Antonio, M.; Santesmases, J.; Cediel, G.; et al. Predictive Biomarkers for Death and Rehospitalization in Comorbid Frail Elderly Heart Failure Patients. BMC Geriatr. 2018, 18, 109. [Google Scholar] [CrossRef]
- Mu, D.; Cheng, J.; Qiu, L.; Cheng, X. Copeptin as a Diagnostic and Prognostic Biomarker in Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 901990. [Google Scholar] [CrossRef] [PubMed]
- Balling, L.; Goetze, J.P.; Jung, M.H.; Rossing, K.; Boesgaard, S.; Gustafsson, F. Copeptin Levels and Invasive Hemodynamics in Patients with Advanced Heart Failure. Biomark. Med. 2018, 12, 861–870. [Google Scholar] [CrossRef]
- Stoiser, B.; Mörtl, D.; Hülsmann, M.; Berger, R.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Pacher, R. Copeptin, a Fragment of the Vasopressin Precursor, as a Novel Predictor of Outcome in Heart Failure. Eur. J. Clin. Investig. 2006, 36, 771–778. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Shiomi, H.; Kuwahara, K.; Sowa, N.; Yaku, H.; Yamashita, Y.; Tazaki, J.; Imai, M.; Kato, T.; Saito, N.; et al. Utility of Copeptin for Predicting Long-Term Clinical Outcomes in Patients with Heart Failure. J. Cardiol. 2019, 73, 379–385. [Google Scholar] [CrossRef]
- Ianos, R.D.; Iancu, M.; Pop, C.; Lucaciu, R.L.; Hangan, A.C.; Rahaian, R.; Cozma, A.; Negrean, V.; Mercea, D.; Procopciuc, L.M. Predictive Value of NT-proBNP, FGF21, Galectin-3 and Copeptin in Advanced Heart Failure in Patients with Preserved and Mildly Reduced Ejection Fraction and Type 2 Diabetes Mellitus. Medicina 2024, 60, 1841. [Google Scholar] [CrossRef]
- Zimodro, J.M.; Gasecka, A.; Jaguszewski, M.; Amanowicz, S.; Szkiela, M.; Denegri, A.; Pruc, M.; Duchnowski, P.; Peacock, F.W.; Rafique, Z.; et al. Role of Copeptin in Diagnosis and Outcome Prediction in Patients with Heart Failure: A Systematic Review and Meta-Analysis. Biomarkers 2022, 27, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Alehagen, U. Association of Copeptin and N-Terminal proBNP Concentrations With Risk of Cardiovascular Death in Older Patients With Symptoms of Heart Failure. JAMA 2011, 305, 2088. [Google Scholar] [CrossRef]
- Holmström, A.; Sigurjonsdottir, R.; Fu, M.L.X.; Gustafsson, D.; Petzold, M.; Hammarsten, O. Levels of Copeptin among Elderly Patients in Relation to Systolic Heart Failure and Heart Failure with Normal Ejection Fraction. Eur. Geriatr. Med. 2013, 4, 139–144. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, X.; Li, G.; Sun, H.; Shi, J. Prognostic Role of Copeptin with All-Cause Mortality after Heart Failure: A Systematic Review and Meta-Analysis. TCRM 2017, 13, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Dobsa, L.; Cullen Edozien, K. Copeptin and Its Potential Role in Diagnosis and Prognosis of Various Diseases. Biochem. Medica 2013, 23, 172–192. [Google Scholar] [CrossRef] [PubMed]
- Strait, J.B.; Lakatta, E.G. Aging-Associated Cardiovascular Changes and Their Relationship to Heart Failure. Heart Fail. Clin. 2012, 8, 143–164. [Google Scholar] [CrossRef]
- Regan, J.A.; Kitzman, D.W.; Leifer, E.S.; Kraus, W.E.; Fleg, J.L.; Forman, D.E.; Whellan, D.J.; Wojdyla, D.; Parikh, K.; O’Connor, C.M.; et al. Impact of Age on Comorbidities and Outcomes in Heart Failure With Reduced Ejection Fraction. JACC Heart Fail. 2019, 7, 1056–1065. [Google Scholar] [CrossRef]
- Krane, V.; Genser, B.; Kleber, M.E.; Drechsler, C.; März, W.; Delgado, G.; Allolio, B.; Wanner, C.; Fenske, W. Copeptin Associates with Cause-Specific Mortality in Patients with Impaired Renal Function: Results from the LURIC and the 4D Study. Clin. Chem. 2017, 63, 997–1007. [Google Scholar] [CrossRef]
- Fukuzawa, J.; Haneda, T.; Kikuchi, K. Arginine Vasopressin Increases the Rate of Protein Synthesis in Isolated Perfused Adult Rat Heart via the V1 Receptor. Mol. Cell. Biochem. 1999, 195, 93–98. [Google Scholar] [CrossRef]
- Smaradottir, M.I.; Andersen, K.; Gudnason, V.; Näsman, P.; Rydén, L.; Mellbin, L.G. Copeptin Is Associated with Mortality in Elderly People. Eur. J. Clin. Investig. 2021, 51, e13516. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, N.G.; Müller, B.; Struck, J.; Bergmann, A.; Redl, H.; Christ-Crain, M. Copeptin, A Stable Peptide Of The Arginine Vasopressin Precursor, Is Elevated In Hemorrhagic And Septic Shock. Shock 2007, 28, 219–226. [Google Scholar] [CrossRef]
- Klein, L.; O’Connor, C.M.; Leimberger, J.D.; Gattis-Stough, W.; Piña, I.L.; Felker, G.M.; Adams, K.F.; Califf, R.M.; Gheorghiade, M. Lower Serum Sodium Is Associated With Increased Short-Term Mortality in Hospitalized Patients With Worsening Heart Failure: Results From the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) Study. Circulation 2005, 111, 2454–2460. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Puente, P.; Marino-Genicio, R.; Martín-Sánchez, F.J.; Vázquez-Alvarez, J.; Jacob, J.; Bermudez, M.; Llorens, P.; Miró, Ò.; Pérez-Durá, M.J.; Gil, V.; et al. Characteristics of Acute Heart Failure in Very Elderly Patients—EVE Study (EAHFE Very Elderly). Eur. J. Intern. Med. 2014, 25, 463–470. [Google Scholar] [CrossRef]
- Greenberg, B. Managing Hyponatremia in Patients with Heart Failure. J. Hosp. Med. 2010, 5, S33–S39. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Makri, A.; Elisaf, M.S.; Liamis, G. Hyponatremia in the Elderly: Challenges and Solutions. CIA 2017, 12, 1957–1965. [Google Scholar] [CrossRef]
- Clark, B.A.; Shannon, R.P.; Rosa, R.M.; Epstein, F.H. Increased Susceptibility to Thiazide-Induced Hyponatremia in the Elderly. J. Am. Soc. Nephrol. 1994, 5, 1106–1111. [Google Scholar] [CrossRef]
- Gheorghiade, M.; Abraham, W.T.; Albert, N.M.; Gattis Stough, W.; Greenberg, B.H.; O’Connor, C.M.; She, L.; Yancy, C.W.; Young, J.; Fonarow, G.C.; et al. Relationship between admission serum sodium concentration and clinical outcomes in patients hospitalized for heart failure: An analysis from the OPTIMIZE-HF registry. Eur. Heart J. 2007, 28, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Maisel, A.; Xue, Y.; Shah, K.; Mueller, C.; Nowak, R.; Peacock, W.F.; Ponikowski, P.; Mockel, M.; Hogan, C.; Wu, A.H.; et al. Increased 90-day mortality in patients with acute heart failure with elevated copeptin: Secondary results from the Biomarkers in Acute Heart Failure (BACH) study. Circ. Heart Fail. 2011, 4, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, A.P.; Tang, W.H.W.; Hsu, A.; Felker, G.M.; Hernandez, A.F.; Troughton, R.W.; Voors, A.A.; Anker, S.D.; Metra, M.; McMurray, J.J.V.; et al. High-Sensitivity C-Reactive Protein in Acute Heart Failure: Insights From the ASCEND-HF Trial. J. Card. Fail. 2014, 20, 319–326. [Google Scholar] [CrossRef]
- Zhang, L.; He, G.; Huo, X.; Tian, A.; Ji, R.; Pu, B.; Peng, Y. Long-Term Cumulative High-Sensitivity C-Reactive Protein and Mortality Among Patients With Acute Heart Failure. JAHA 2023, 12, e029386. [Google Scholar] [CrossRef] [PubMed]
- Santas, E.; Villar, S.; Palau, P.; Llàcer, P.; De La Espriella, R.; Miñana, G.; Lorenzo, M.; Núñez-Marín, G.; Górriz, J.L.; Carratalá, A.; et al. High-Sensitivity C-Reactive Protein and Risk of Clinical Outcomes in Patients with Acute Heart Failure. Sci. Rep. 2024, 14, 21672. [Google Scholar] [CrossRef] [PubMed]
- Habibi, D.; Daneshpour, M.S.; Asgarian, S.; Kohansal, K.; Hadaegh, F.; Mansourian, M.; Akbarzadeh, M. Effect of C-Reactive Protein on the Risk of Heart Failure: A Mendelian Randomization Study. BMC Cardiovasc. Disord. 2023, 23, 112. [Google Scholar] [CrossRef]
- Huang, G.; Qin, J.; Deng, X.; Luo, G.; Yu, D.; Zhang, M.; Zhou, S.; Wang, L. Prognostic Value of Serum Uric Acid in Patients with Acute Heart Failure: A Meta-Analysis. Medicine 2019, 98, e14525. [Google Scholar] [CrossRef]
- Chintanaboina, J.; Haner, M.S.; Sethi, A.; Patel, N.; Tanyous, W.; Lalos, A.; Pancholy, S. Serum Bilirubin as a Prognostic Marker in Patients with Acute Decompensated Heart Failure. Korean J. Intern. Med. 2013, 28, 300. [Google Scholar] [CrossRef]
- Okada, A.; Sugano, Y.; Nagai, T.; Honda, Y.; Iwakami, N.; Nakano, H.; Takashio, S.; Honda, S.; Asaumi, Y.; Aiba, T.; et al. Usefulness of the Direct and/or Total Bilirubin to Predict Adverse Outcomes in Patients With Acute Decompensated Heart Failure. Am. J. Cardiol. 2017, 119, 2035–2041. [Google Scholar] [CrossRef]
- Shinagawa, H.; Inomata, T.; Koitabashi, T.; Nakano, H.; Takeuchi, I.; Naruke, T.; Ohsaka, T.; Nishii, M.; Takehana, H.; Izumi, T. Prognostic Significance of Increased Serum Bilirubin Levels Coincident With Cardiac Decompensation in Chronic Heart Failure. Circ. J. 2008, 72, 364–369. [Google Scholar] [CrossRef]
- Allen, L.A.; Felker, G.M.; Pocock, S.; McMurray, J.J.V.; Pfeffer, M.A.; Swedberg, K.; Wang, D.; Yusuf, S.; Michelson, E.L.; Granger, C.B.; et al. Liver Function Abnormalities and Outcome in Patients with Chronic Heart Failure: Data from the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) Program. Eur. J. Heart Fail. 2009, 11, 170–177. [Google Scholar] [CrossRef]
- Nikolaou, M.; Parissis, J.; Yilmaz, M.B.; Seronde, M.-F.; Kivikko, M.; Laribi, S.; Paugam-Burtz, C.; Cai, D.; Pohjanjousi, P.; Laterre, P.-F.; et al. Liver Function Abnormalities, Clinical Profile, and Outcome in Acute Decompensated Heart Failure. Eur. Heart J. 2013, 34, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Samsky, M.D.; Patel, C.B.; DeWald, T.A.; Smith, A.D.; Felker, G.M.; Rogers, J.G.; Hernandez, A.F. Cardiohepatic Interactions in Heart Failure. J. Am. Coll. Cardiol. 2013, 61, 2397–2405. [Google Scholar] [CrossRef]
- Lau, G.T.; Tan, H.C.; Kritharides, L. Type of Liver Dysfunction in Heart Failure and Its Relation to the Severity of Tricuspid Regurgitation. Am. J. Cardiol. 2002, 90, 1405–1409. [Google Scholar] [CrossRef]
- Alimonda, A.L.; Núñez, J.; Núñez, E.; Husser, O.; Sanchis, J.; Bodí, V.; Miñana, G.; Robles, R.; Mainar, L.; Merlos, P.; et al. Hyperuricemia in Acute Heart Failure. More than a Simple Spectator? Eur. J. Intern. Med. 2009, 20, 74–79. [Google Scholar] [CrossRef]
- Kumrić, M.; Borovac, J.A.; Kurir, T.T.; Božić, J. Clinical Implications of Uric Acid in Heart Failure: A Comprehensive Review. Life 2021, 11, 53. [Google Scholar] [CrossRef]
- Remme, W.J. Overview of the Relationship between Ischemia and Congestive Heart Failure. Clin. Cardiol. 2000, 23, IV-4–IV-8. [Google Scholar] [CrossRef] [PubMed]
- Canepa, M.; Anastasia, G.; Ameri, P.; Vergallo, R.; O’Connor, C.M.; Sinagra, G.; Porto, I. Characterization of Ischemic Etiology in Heart Failure with Reduced Ejection Fraction Randomized Clinical Trials: A Systematic Review and Meta-Analysis. European J. Intern. Med. 2025, 134, 51–58. [Google Scholar] [CrossRef]
- Kajimoto, K.; Minami, Y.; Sato, N.; Kasanuki, H. Etiology of Heart Failure and Outcomes in Patients Hospitalized for Acute Decompensated Heart Failure With Preserved or Reduced Ejection Fraction. Am. J. Cardiol. 2016, 118, 1881–1887. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, J.D.; Bax, J.J.; De Luca, L.; Rossi, J.S.; Davidson, C.J.; Filippatos, G.; Liu, P.P.; Konstam, M.A.; Greenberg, B.; Mehra, M.R.; et al. Acute Heart Failure Syndromes in Patients With Coronary Artery Disease. J. Am. Coll. Cardiol. 2009, 53, 254–263. [Google Scholar] [CrossRef]
All Included Patients N = 279 | Without Composite Endpoint * N = 169 (60.6%) | With Composite Endpoint * N = 110 (39.4%) | p | |
---|---|---|---|---|
Baseline data | ||||
Age, years | 77.0 (69.0–79.0) | 72.0 (68.0–77.0) | 79.0 (77.0–81.0) | <0.0001 |
Male, n (%) | 221 (79.2) | 132 (78.1) | 89 (80.9) | 0.5729 |
Ischemic etiology of HF, n (%) | 156 (55.9) | 70 (41.4) | 86 (78.2) | <0.0001 |
BMI, kg/m2 | 26.6 (23.8–29.5) | 27.1 (23.8–30.4) | 26.1 (24.3–28.1) | 0.0376 |
NYHA III, n (%) | 123 (44.1) | 105 (62.1) | 18 (16.4) | <0.0001 |
NYHA IV, n (%) | 156 (55.9) | 64 (37.9) | 92 (83.6) | <0.0001 |
Comorbidities | ||||
Hypertension, n (%) | 185 (66.3) | 106 (62.7) | 79 (71.8) | 0.1162 |
Type 2 diabetes, n (%) | 144 (51.6) | 66 (39.1) | 78 (70.9) | <0.0001 |
Persistent AF, n (%) | 138 (49.5) | 83 (49.1) | 55 (50.0) | 0.8848 |
COPD, n (%) | 70 (25.1) | 35 (20.7) | 35 (31.8) | 0.0365 |
Laboratory parameters | ||||
Copeptin, pmol/L | 4.66 (3.05–8.77) | 3.46 (2.28–4.58) | 9.11 (7.36–11.80) | <0.001 |
WBC, ×109/L | 7.3 (6.1–8.4) | 6.58 (5.40–7.92) | 5.6 (4.70–6.73) | 0.0007 |
Platelets, ×109/L | 194.0 (171.0–225.0) | 179.0 (152.0–210.00) | 157.5 (143.0–206.0) | 0.0048 |
Hemoglobin, mmol/L | 8.8 (8.2–9.7) | 8.8 (8.3–9.7) | 8.9 (8.2–10.0) | 0.5572 |
Glucose, mmol/L | 5.7 (5.3–6.1) | 5.6 (5.2–6.1) | 5.8 (5.4–6.1) | 0.2183 |
HbA1c, % | 5.8 (5.4–6.3) | 5.8 (5.5–6.3) | 5.8 (5.4–6.4) | 0.5946 |
Creatinine, µmol/L | 117.0 (90.0–134.0) | 98.0 (87.0–126.0) | 125.0 (111.0–146.0) | <0.0001 |
GFR, mL/min/1.73 m2 | 58.5 (50.3–71.4) | 65.1 (54.0–78.6) | 53.9 (45.1–60.1) | <0.0001 |
Total bilirubin, µmol/L | 22.9 (17.3–28.6) | 19.4 (13.3–23.0) | 27.8 (25.1–32.2) | <0.0001 |
Albumin, g/L | 44.0 (41.0–46.0) | 44.0 (41.0–46.0) | 45.0 (41.0–47.0) | 0.0946 |
Uric acid, µmol/L | 440.0 (378.0–515.0) | 400.5 (341.0–465.00) | 512.00 (433.0–603.0) | <0.0001 |
Urea, µmol/L | 7.7 (5.8–11.3) | 7.6 (5.9–11.9) | 7.7 (5.7–11.3) | 0.6649 |
Fibrinogen, mg/dL | 329.0 (380.0–436.0) | 347.0(306.0–398.00) | 420.0 (345.0–51.0) | <0.0001 |
AST, U/L | 32.0 (26.0–35.0) | 31.0 (23.2–34.0) | 30.0 (21.0–35.0) | 0.8003 |
ALT, U/L | 25.0 (20.0–33.0) | 23.0 (18.1–31.5) | 29.0 (19.0–33.1) | 0.0598 |
ALP, U/L | 79.0 (64.0–93.0) | 78.0 (62.0–97.0) | 80.5 (72.0–91.0) | 0.1266 |
GGTP, U/L | 80.0 (49.0–125.0) | 71.0 (43.0–121.0) | 89.0 (75.0–132.0) | 0.0081 |
Cholesterol, mmol/L | 4.3 (3.9–4.9) | 4.2 (3.8–4.8) | 4.5 (4.1–5.3) | <0.0001 |
hs-CRP, mg/L | 2.3 (1.9–5.1) | 2.95 (1.88–4.36) | 4.5 (3.76–5.60) | <0.0001 |
Sodium, mmol/L | 135.0 (133.0–138.0) | 137.0(134.0–139.0) | 133.5 (132.0–135.0) | <0.0001 |
NT-proBNP, pg/mL | 4832 (3491.0–7191.0) | 4625.0 (3500.0–7089.0) | 5563.0 (3491.0–7191.0) | 0.6488 |
Echocardiographic parameters | ||||
LA, mm | 45.0 (45.0–50.0) | 45.0 (45.0–49.0) | 45.0 (45.0–50.0) | 0.7206 |
RVEDd, mm | 35.00 (32.0–38.0) | 35.0 (31.0–37.0) | 35.0 (32.0–39.0) | 0.0563 |
LVEDd, mm | 75.0 (70.0–78.0) | 71.0 (69.0–77.0) | 77.0 (75.0–79.0) | <0.0001 |
LVEF, % | 25.0 (23.0–30.0) | 27.0 (25.0–30.0) | 23.5 (20.0–26.0) | <0.001 |
All Included Patients N = 279 | Without Composite Endpoint * N = 169 (60.6%) | With Composite Endpoint * N = 110 (39.4%) | P | |
---|---|---|---|---|
B-blockers, n (%) | 219 (78.5) | 139 (82.2) | 80 (72.7) | 0.05 |
Bisoprolol, mg/day | 5.00 (2.50–5.00) | 5.00 (2.50–5.00) | 5.00 (5.00–5.00) | 0.13 |
Nebivolol, mg/day | 5.00 (2.50–5.00) | 2.50 (2.50–5.00) | 5.00 (2.50–5.00) | 0.6 |
Carvedilol, mg/day | 25.00 (25.00–25.00) | 25.00 (25.00–25.00) | 25.00 (12.50–25.00) | 0.2 |
Metoprolol succinate, mg/day | 90.00 (47.50–90.00) | 90.00 (47.50–90.00) | 90.00 (47.50–90.00) | 0.4 |
ACEI, n (%) | 148 (53) | 89 (52.7) | 59 (53.6) | 0.87 |
Ramipril, mg/day | 5.00 (2.50–5.00) | 5.00 (2.50–5.00) | 3.75 (2.50–5.00) | 0.2 |
Perindopril, mg/day | 5.00 (2.50–5.00) | 5.00 (2.50–5.00) | 5.00 (2.50–5.00) | 0.3 |
ARB, n (%) | 51 (18.3) | 37 (21.9) | 14 (12.7) | 0.05 |
Valsartan, mg/day | 80.00 (80.00–160.00) | 80.00 (80.00–160.00) | 80.00 (80.00–160.00) | >0.9 |
Telmisartan, mg/day | 40.00 (40.00–40.00) | 40.00 (30.00–40.00) | 40.00 (40.00–40.00) | 0.2 |
ARNI, n (%) | 56 (20.1) | 27 (16) | 29 (26.4) | 0.03 |
Sacubitril/valsartan, sacubitril, mg/day | 48.60 (24.30–48.60) | 48.60 (24.30–48.60) | 48.60 (48.60–48.60) | 0.4 |
Sacubitril/valsartan, valsartan, mg/day | 51.40 (25.70–51.40) | 51.40 (25.70–51.40) | 51.40 (51.40–51.40) | 0.5 |
Loop diuretics, n (%) | 273 (97.8%) | 168 (99.4%) | 105 (95.5%) | 0.037 |
Furosemide #, mg/day | 80.00 (80.00–160.00) | 90.00 (80.00–160.00) | 80.00 (40.00–120.00) | 0.062 |
MRA, n (%) | 101 (36.2) | 89 (52.7) | 12 (10.9) | <0.001 |
Spironolactone/eplerenone, mg/day | 25.00 (25.00–50.00) | 25.00 (12.50–50.00) | 25.00 (25.00–50.00) | 0.4 |
SGLT2, n (%) | 129 (46.2) | 63 (37.3) | 66 (60) | 0.0002 |
NOAC, n (%) | 141 (50.5) | 82 (48.5) | 59 (53.6) | 0.40 |
Digoxin, n (%) | 76 (27.2) | 39 (23.1) | 37 (33.6) | 0.05 |
Statin, n (%) | 167 (59.9) | 101 (59.8) | 66 (60) | 0.96 |
ASA, n (%) | 95 (34.1) | 66 (39.1) | 29 (26.4) | 0.03 |
ICD/CRT-D, n (%) | 238 (85.3) | 144 (85.2) | 94 (85.5) | 0.95 |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
Parameter | HR (95% CI) | p | HR (95% CI) | p |
Age | 1.317 [1.239–1.400] | <0.0001 | ||
Bilirubin | 1.119 [1.096–1.144] | <0.0001 | 1.085 [1.057–1.114] | <0.0001 |
Creatinine | 1.019 [1.012–1.025] | <0.0001 | ||
CRP | 1.357 [1.252–1.470] | <0.0001 | 1.208 [1.088–1.342] | <0.0001 |
Fibrinogen | 1.011 [1.009–1.013] | <0.0001 | ||
Uric acid | 1.006 [1.005–1.008] | <0.0001 | 1.005 [1.003–1.006] | <0.0001 |
Copeptin | 1.025 [1.016–1.035] | <0.0001 | 1.053 [1.042–1.064] | <0.0001 |
BMI ↓ | 1.067 [1.012–1.126] | 0.017 | ||
Albumin | 1.052 [1.014–1.092] | 0.007 | ||
Sodium ↓ | 1.341 [1.246–1.444] | <0.0001 | 1.111 [1.025–1.203] | 0.01 |
LVEDD | 1.162 [1.115–1.213] | <0.0001 | ||
EF ↓ | 1.238 [1.177–1.302] | <0.0001 | ||
Ischemic etiology | 3.738 [2.375–5.884] | <0.0001 | 3.969 [2.396–6.575] | <0.0001 |
Diabetes mellitus | 2.858 [1.892–4.317] | <0.0001 |
AUC [±95 CI] | Cut-off | Sens. [±95 CI] | Spec. [±95 CI] | |
---|---|---|---|---|
Copeptin | 0.866 [0.816–0.916] | 5.365 | 0.864 [0.785–0.922] | 0.846 [0.783–0.897] |
Bilirubin | 0.857 [0.811–0.902] | 24.7 | 0.800 [0.713–0.87] | 0.84 [0.776–0.892] |
Sodium | 0.821 [0.774–0.868] | 135 | 0.918 [0.85–0.962] | 0.627 [0.55–0.7] |
hs-CRP | 0.75 [0.694–0.806] | 3.4 | 0.845 [0.764–0.907] | 0.592 [0.514–0.667] |
Uric acid | 0.822 [0.772–0.872] | 425 | 0.909 [0.839–0.956] | 0.669 [0.592–0.739] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadziakiewicz, P.; Szczurek-Wasilewicz, W.; Jurkiewicz, M.; Skrzypek, M.; Gorzkowska, A.; Gąsior, M.; Szyguła-Jurkiewicz, B. Copeptin, Routine Laboratory Parameters, and Ischemic Etiology of Heart Failure Predict Outcomes in Elderly Patients with Decompensated Heart Failure. Biomedicines 2025, 13, 2048. https://doi.org/10.3390/biomedicines13092048
Nadziakiewicz P, Szczurek-Wasilewicz W, Jurkiewicz M, Skrzypek M, Gorzkowska A, Gąsior M, Szyguła-Jurkiewicz B. Copeptin, Routine Laboratory Parameters, and Ischemic Etiology of Heart Failure Predict Outcomes in Elderly Patients with Decompensated Heart Failure. Biomedicines. 2025; 13(9):2048. https://doi.org/10.3390/biomedicines13092048
Chicago/Turabian StyleNadziakiewicz, Paulina, Wioletta Szczurek-Wasilewicz, Michał Jurkiewicz, Michał Skrzypek, Agnieszka Gorzkowska, Mariusz Gąsior, and Bożena Szyguła-Jurkiewicz. 2025. "Copeptin, Routine Laboratory Parameters, and Ischemic Etiology of Heart Failure Predict Outcomes in Elderly Patients with Decompensated Heart Failure" Biomedicines 13, no. 9: 2048. https://doi.org/10.3390/biomedicines13092048
APA StyleNadziakiewicz, P., Szczurek-Wasilewicz, W., Jurkiewicz, M., Skrzypek, M., Gorzkowska, A., Gąsior, M., & Szyguła-Jurkiewicz, B. (2025). Copeptin, Routine Laboratory Parameters, and Ischemic Etiology of Heart Failure Predict Outcomes in Elderly Patients with Decompensated Heart Failure. Biomedicines, 13(9), 2048. https://doi.org/10.3390/biomedicines13092048