Agnostic Biomarkers and Molecular Signatures in Colorectal Cancer—Guiding Chemotherapy and Predicting Response
Abstract
1. Introduction
2. Materials and Methods
- Included multiple tumor types without providing a clearly differentiated analysis for CRC patients;
- Lacked clinical implications of the molecular findings (e.g., purely mechanistic or preclinical studies without patient outcome data);
- Were review articles, editorials, or conference abstracts; or
- Were not published in English.
3. Results
3.1. Most Frequently Altered Genes and Pathways in Sporadic CRC–Agnostic Targets
3.2. Correlation Between the MMR-MSI Status and Distinct Gene Fusions
3.3. Agnostic Biomarkers and Pathological Characteristics of CRC
3.4. Agnostic Biomarkers of Oncological Outcomes and Response to CRC Treatments
4. Discussion
4.1. Emerging Agnostic Biomarkers
4.1.1. BRAF V600E Mutations
4.1.2. NTRK Fusions
4.1.3. RET Fusions
4.1.4. KRAS Mutations
4.1.5. PIK3CA Gene Mutations
4.2. Established Agnostic Biomarkers in CRC
4.2.1. High Tumor Mutation Burden (TMB)
4.2.2. Deficient Mismatch Repair/High Microsatellite Instability (dMMR/MSI-H)
4.3. Limitations of Tumor-Agnostic Biomarker Applications in CRC
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Kim, H.S.; Nam, M.; Chae, Y.K. Tissue-agnostic biomarkers in solid tumors: Current approvals and emerging candidates. Cancer Metastasis Rev. 2025, 44, 58. [Google Scholar] [CrossRef]
- Tan, A.C. Tumor-Agnostic Biomarkers: Heed Caution, and Why Cell of Origin Still Matters. Onco 2021, 1, 95–100. [Google Scholar] [CrossRef]
- Lemery, S.; Keegan, P.; Pazdur, R. First FDA Approval Agnostic of Cancer Site–When a Biomarker Defines the Indication. N. Engl. J. Med. 2017, 377, 1409–1412. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Thawani, R. Tumor-Agnostic Therapies in Practice: Challenges, Innovations, and Future Perspectives. Cancers 2025, 17, 801. [Google Scholar] [CrossRef] [PubMed]
- Manea, C.A.; Badiu, D.C.; Ploscaru, I.C.; Zgura, A.; Bacinschi, X.; Smarandache, C.G.; Serban, D.; Popescu, C.G.; Grigorean, V.T.; Botnarciuc, V. A review of NTRK fusions in cancer. Ann. Med. Surg. 2022, 79, 103893. [Google Scholar] [CrossRef]
- Prahallad, A.; Sun, C.; Huang, S.; Di Nicolantonio, F.; Salazar, R.; Zecchin, D.; Beijersbergen, R.L.; Bardelli, A.; Bernards, R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012, 483, 100–103. [Google Scholar] [CrossRef]
- Boussios, S.; Ozturk, M.A.; Moschetta, M.; Karathanasi, A.; Zakynthinakis-Kyriakou, N.; Katsanos, K.H.; Christodoulou, D.K.; Pavlidis, N. The Developing Story of Predictive Biomarkers in Colorectal Cancer. J. Pers. Med. 2019, 9, 12. [Google Scholar] [CrossRef]
- Sartore-Bianchi, A.; Agostara, A.G.; Patelli, G.; Mauri, G.; Pizzutilo, E.G.; Siena, S. Application of histology-agnostic treatments in metastatic colorectal cancer. Dig. Liver Dis. 2022, 54, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
- Veen, T.; Kanani, A.; Lea, D.; Søreide, K. Clinical trials of neoadjuvant immune checkpoint inhibitors for early-stage operable colon and rectal cancer. Cancer Immunol. Immunother. 2023, 72, 3135–3147. [Google Scholar] [CrossRef]
- Osseis, M.; Nehmeh, W.A.; Rassy, N.; Derienne, J.; Noun, R.; Salloum, C.; Rassy, E.; Boussios, S.; Azoulay, D. Surgery for T4 Colorectal Cancer in Older Patients: Determinants of Outcomes. J. Pers. Med. 2022, 12, 1534. [Google Scholar] [CrossRef]
- Tateo, V.; Marchese, P.V.; Mollica, V.; Massari, F.; Kurzrock, R.; Adashek, J.J. Agnostic Approvals in Oncology: Getting the Right Drug to the Right Patient with the Right Genomics. Pharmaceuticals 2023, 16, 614. [Google Scholar] [CrossRef]
- Chatila, W.K.; Kim, J.K.; Walch, H.; Marco, M.R.; Chen, C.T.; Wu, F.; Omer, D.M.; Khalil, D.N.; Ganesh, K.; Qu, X.; et al. Genomic and transcriptomic determinants of response to neoadjuvant therapy in rectal cancer. Nat. Med. 2022, 28, 1646–1655. [Google Scholar] [CrossRef]
- Gouda, M.A.; Duose, D.Y.; Lapin, M.; Zalles, S.; Huang, H.J.; Xi, Y.; Zheng, X.; Aldesoky, A.I.; Alhanafy, A.M.; Shehata, M.A.; et al. Mutation-Agnostic Detection of Colorectal Cancer Using Liquid Biopsy-Based Methylation-Specific Signatures. Oncologist 2023, 28, 368–372. [Google Scholar] [CrossRef]
- Zhu, M.; Taylor, W.R.; Mahoney, D.W.; Then, S.S.; Berger, C.K.; Burger, K.N.; Gonser, A.M.; Doering, K.A.; Xie, H.; Foote, P.H.; et al. Plasma Assay of Cell-Free Methylated DNA Markers of Colorectal Cancer: A Tumor-Agnostic Approach to Monitor Recurrence and Response to Anticancer Therapies. Cancers 2023, 15, 5778. [Google Scholar] [CrossRef]
- Loree, J.M.; Titmuss, E.; Topham, J.T.; Kennecke, H.F.; Feilotter, H.; Virk, S.; Lee, Y.S.; Banks, K.; Quinn, K.; Karsan, A.; et al. Plasma versus Tissue Tumor Mutational Burden as Biomarkers of Durvalumab plus Tremelimumab Response in Patients with Metastatic Colorectal Cancer in the CO.26 Trial. Clin. Cancer Res. 2024, 30, 3189–3199. [Google Scholar] [CrossRef] [PubMed]
- Arter, Z.L.; Lee, A.T.M.; Nagasaka, M.; Ou, S.I. Tumor Mutation Burden Survey of AACR GENIE Database Revealed NTRK (NTRK+) and RET (RET+) Fusions Positive Colorectal Carcinoma (CRC) as Distinct Subsets. Cancer Med. 2025, 14, e70665. [Google Scholar] [CrossRef] [PubMed]
- Pietrantonio, F.; Di Nicolantonio, F.; Schrock, A.B.; Lee, J.; Morano, F.; Fucà, G.; Nikolinakos, P.; Drilon, A.; Hechtman, J.F.; Christiansen, J.; et al. RET fusions in a small subset of advanced colorectal cancers at risk of being neglected. Ann. Oncol. 2018, 29, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, B.; Gao, Z.; Schukking, M.; Menor, M.; Khadka, V.S.; Fabbri, M.; Fei, P.; Deng, Y. The miRNA Profile of Inflammatory Colorectal Tumors Identify TGF-β as a Companion Target for Checkpoint Blockade Immunotherapy. Front. Cell Dev. Biol. 2021, 9, 754507. [Google Scholar] [CrossRef]
- Piha-Paul, S.A.; Taylor, M.H.; Spitz, D.; Schwartzberg, L.; Beck, J.T.; Bauer, T.M.; Meric-Bernstam, F.; Purkayastha, D.; Karpiak, L.; Szpakowski, S.; et al. Efficacy and safety of buparlisib, a PI3K inhibitor, in patients with malignancies harboring a PI3K pathway activation: A phase 2, open-label, single-arm study. Oncotarget 2019, 10, 6526–6535. [Google Scholar] [CrossRef]
- Svrcek, M.; Cayre, A.; Samaille, T.; Colle, R.; Mas, L.; Bourgoin, P.; Guillerm, E.; Cohen, R.; Penault-Llorca, F.; André, T.; et al. High prevalence of NTRK fusions in sporadic dMMR/MSI mCRC RAS/RAF wild-type: An opportunity for a post-immune checkpoint inhibitors progression rescue strategy. ESMO Gastrointest. Oncol. 2024, 5, 100084. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.W.; Ou, Q.; Wu, X.; Nagasaka, M.; Shao, Y.; Ou, S.I.; Yang, Y. NTRK fusion positive colorectal cancer is a unique subset of CRC with high TMB and microsatellite instability. Cancer Med. 2022, 11, 2541–2549. [Google Scholar] [CrossRef] [PubMed]
- Wan, P.T.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; Barford, D.; et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004, 116, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.-J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef]
- Wang, P.; Chen, Y.; Wang, C. Beyond Tumor Mutation Burden: Tumor Neoantigen Burden as a Biomarker for Immunotherapy and Other Types of Therapy. Front. Oncol. 2021, 11, 672677. [Google Scholar] [CrossRef]
- Caputo, F.; Santini, C.; Bardasi, C.; Cerma, K.; Casadei-Gardini, A.; Spallanzani, A.; Andrikou, K.; Cascinu, S.; Gelsomino, F. BRAF-Mutated Colorectal Cancer: Clinical and Molecular Insights. Int. J. Mol. Sci. 2019, 20, 5369. [Google Scholar] [CrossRef]
- Guerrero, R.M.; Labajos, V.A.; Ballena, S.L.; Macha, C.A.; Lezama, M.S.; Roman, C.P.; Beltran, P.M.; Torrejon, A.F. Targeting BRAF V600E in metastatic colorectal cancer: Where are we today? Ecancermedicalscience 2022, 16, 1489. [Google Scholar] [CrossRef]
- Gu, R.; Fang, H.; Wang, R.; Dai, W.; Cai, G. A comprehensive overview of the molecular features and therapeutic targets in BRAFV600E-mutant colorectal cancer. Clin. Transl. Med. 2024, 14, e1764. [Google Scholar] [CrossRef]
- Fariña-Sarasqueta, A.; van Lijnschoten, G.; Moerland, E.; Creemers, G.J.; Lemmens, V.E.P.P.; Rutten, H.J.T.; van den Brule, A.J.C. The BRAFV600E mutation is an independent prognostic factor for survival in stage II and stage III colon cancer patients. Ann. Oncol. 2010, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Roth, A.D.; Tejpar, S.; Delorenzi, M.; Yan, P.; Fiocca, R.; Klingbiel, D.; Dietrich, D.; Biesmans, B.; Bodoky, G.; Barone, C.; et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: Translational study on PETACC-3, EORTC 40993, SAK 60-00 trials. J. Clin. Oncol. 2010, 28, 466–474. [Google Scholar] [CrossRef]
- Loupakis, F.; Intini, R.; Cremolini, C.; Orlandi, A.; Sartore-Bianchi, A.; Pietrantonio, F.; Pella, N.; Spallanzani, A.; Dell’Aquila, E.; Scartozzi, M.; et al. A validated prognostic classifier for V600EBRAF-mutated metastatic colorectal cancer: The ‘BRAF BeCool’ study. Eur. J. Cancer 2019, 118, 121–130. [Google Scholar] [CrossRef]
- Salama, A.K.S.; Li, S.; Macrae, E.R.; Park, J.I.; Mitchell, E.P.; Zwiebel, J.A.; Chen, H.X.; Gray, R.J.; McShane, L.M.; Rubinstein, L.V.; et al. Dabrafenib and Trametinib in Patients With Tumors With BRAFV600E Mutations: Results of the NCI-MATCH Trial Subprotocol, H. J. Clin. Oncol. 2020, 38, 3895–3904. [Google Scholar] [CrossRef]
- Subbiah, V.; Puzanov, I.; Blay, J.Y.; Chau, I.; Lockhart, A.C.; Raje, N.S.; Wolf, J.; Baselga, J.; Meric-Bernstam, F.; Roszik, J.; et al. Pan-Cancer Efficacy of Vemurafenib in BRAFV600-Mutant Non-Melanoma Cancers. Cancer Discov. 2020, 10, 657–663. [Google Scholar] [CrossRef]
- Stintzing, S.; Heinrich, K.; Tougeron, D.; Modest, D.P.; Schwaner, I.; Eucker, J.; Pihusch, R.; Stauch, M.; Kaiser, F.; Kahl, C.; et al. FOLFOXIRI Plus Cetuximab or Bevacizumab as First-Line Treatment of BRAFV600E-Mutant Metastatic Colorectal Cancer: The Randomized Phase II FIRE-4.5 (AIO KRK0116) Study. J. Clin. Oncol. 2023, 41, 4143–4153. [Google Scholar] [CrossRef]
- Raez, L.E.; Rolfo, C. Neurotrophic tyrosine kinase gene fusions: Another opportunity for targeting in lung cancer. Lung Cancer Manag. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Ratti, M.; Grizzi, G.; Passalacqua, R.; Lampis, A.; Cereatti, F.; Grassia, R.; Hahne, J.C. NTRK fusions in colorectal cancer: Clinical meaning and future perspective. Expert Opin. Ther. Targets 2021, 25, 677–683. [Google Scholar] [CrossRef]
- Bazhenova, L.; Lokker, A.; Snider, J.; Castellanos, E.; Fisher, V.; Fellous, M.; Nanda, S.; Zong, J.; Keating, K.; Jiao, X. TRK Fusion Cancer: Patient Characteristics and Survival Analysis in the Real-World Setting. Target. Oncol. 2021, 16, 389–399. [Google Scholar] [CrossRef]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Laetsch, T.W.; DuBois, S.G.; Mascarenhas, L.; Turpin, B.; Federman, N.; Albert, C.M.; Nagasubramanian, R.; Davis, J.L.; Rudzinski, E.; Feraco, A.M.; et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: Phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018, 19, 705–714. [Google Scholar] [CrossRef] [PubMed]
- A Study to Test the Effect of the Drug Larotrectinib in Adults and Children with NTRK-fusion Positive Solid Tumors (NAVIGATE). Available online: https://clinicaltrials.gov/study/NCT02576431 (accessed on 2 August 2025).
- Yang, Y.Z.; Hu, W.M.; Xia, L.P.; He, W.Z. Association between somatic RET mutations and clinical and genetic characteristics in patients with metastatic colorectal cancer. Cancer Med. 2021, 10, 8876–8882. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Tsuchiya, K.D.; Il Park, D.; Fausel, R.; Kanngurn, S.; Welcsh, P.; Dzieciatkowski, S.; Wang, J.; Grady, W.M. RET is a potential tumor suppressor gene in colorectal cancer. Oncogene 2013, 32, 2037–2047. [Google Scholar] [CrossRef]
- Ashkboos, M.; Nikbakht, M.; Zarinfard, G.; Soleimani, M. RET Protein Expression in Colorectal Cancer; An Immunohistochemical Assessment. Asian Pac. J. Cancer Prev. 2021, 22, 1019–1023. [Google Scholar] [CrossRef]
- Duke, E.S.; Bradford, D.; Marcovitz, M.; Amatya, A.K.; Mishra-Kalyani, P.S.; Nguyen, E.; Price, L.S.L.; Fourie Zirkelbach, J.; Li, Y.; Bi, Y.; et al. FDA Approval Summary: Selpercatinib for the Treatment of Advanced RET Fusion-Positive Solid Tumors. Clin. Cancer Res. 2023, 29, 3573–3578. [Google Scholar] [CrossRef]
- Santos, C.; Sanz-Pamplona, R.; Salazar, R. RET-fusions: A novel paradigm in colorectal cancer. Ann. Oncol. 2018, 29, 1340–1343. [Google Scholar] [CrossRef]
- Takeda, M.; Yoshida, S.; Inoue, T.; Sekido, Y.; Hata, T.; Hamabe, A.; Ogino, T.; Miyoshi, N.; Uemura, M.; Yamamoto, H.; et al. The Role of KRAS Mutations in Colorectal Cancer: Biological Insights, Clinical Implications, and Future Therapeutic Perspectives. Cancers 2025, 17, 428. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Carbonero, N.; Martinez-Useros, J.; Li, W.; Orta, A.; Perez, N.; Carames, C.; Hernandez, T.; Moreno, I.; Serrano, G.; Garcia-Foncillas, J. KRAS and BRAF Mutations as Prognostic and Predictive Biomarkers for Standard Chemotherapy Response in Metastatic Colorectal Cancer: A Single Institutional Study. Cells 2020, 9, 219. [Google Scholar] [CrossRef]
- Koulouridi, A.; Karagianni, M.; Messaritakis, I.; Sfakianaki, M.; Voutsina, A.; Trypaki, M.; Bachlitzanaki, M.; Koustas, E.; Karamouzis, M.V.; Ntavatzikos, A.; et al. Prognostic Value of KRAS Mutations in Colorectal Cancer Patients. Cancers 2022, 14, 3320. [Google Scholar] [CrossRef]
- Abubaker, J.; Bavi, P.; Al-Haqawi, W.; Sultana, M.; Al-Harbi, S.; Al-Sanea, N.; Abduljabbar, A.; Ashari, L.H.; Alhomoud, S.; Al-Dayel, F.; et al. Prognostic significance of alterations in KRAS isoforms KRAS-4A/4B and KRAS mutations in colorectal carcinoma. J. Pathol. 2009, 219, 435–445. [Google Scholar] [CrossRef]
- Dinu, D.; Dobre, M.; Panaitescu, E.; Bîrlă, R.; Iosif, C.; Hoara, P.; Caragui, A.; Boeriu, M.; Constantinoiu, S.; Ardeleanu, C. Prognostic significance of KRAS gene mutations in colorectal cancer-preliminary study. J. Med. Life 2014, 7, 581–587. [Google Scholar]
- Zhang, J.; Zhu, H.; Liu, W.; Miao, J.; Mao, Y.; Li, Q. Prognostic and predictive molecular biomarkers in colorectal cancer. Front. Oncol. 2025, 15, 1532924. [Google Scholar] [CrossRef] [PubMed]
- Lièvre, A.; Bachet, J.B.; Le Corre, D.; Boige, V.; Landi, B.; Emile, J.F.; Côté, J.F.; Tomasic, G.; Penna, C.; Ducreux, M.; et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer. Res. 2006, 66, 3992–3995. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, S.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Zanon, C.; Moroni, M.; Veronese, S.; Siena, S.; Bardelli, A. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer. Res. 2007, 67, 2643–2648. [Google Scholar] [CrossRef] [PubMed]
- De Roock, W.; Piessevaux, H.; De Schutter, J.; Janssens, M.; De Hertogh, G.; Personeni, N.; Biesmans, B.; Van Laethem, J.L.; Peeters, M.; Humblet, Y.; et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann. Oncol. 2008, 19, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Bteich, F.; Mohammadi, M.; Li, T.; Bhat, M.A.; Sofianidi, A.; Wei, N.; Kuang, C. Targeting KRAS in Colorectal Cancer: A Bench to Bedside Review. Int. J. Mol. Sci. 2023, 24, 12030. [Google Scholar] [CrossRef]
- Siddiqui, A.D.; Piperdi, B. KRAS mutation in colon cancer: A marker of resistance to EGFR-I therapy. Ann. Surg. Oncol. 2010, 17, 1168–1176. [Google Scholar] [CrossRef]
- Gymnopoulos, M.; Elsliger, M.A.; Vogt, P.K. Rare cancer-specific mutations in PIK3CA show gain of function. Proc. Natl. Acad. Sci. USA 2007, 104, 5569–5574. [Google Scholar] [CrossRef]
- Wang, H.; Tang, R.; Jiang, L.; Jia, Y. The role of PIK3CA gene mutations in colorectal cancer and the selection of treatment strategies. Front. Pharmacol. 2024, 15, 1494802. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, X.; Lu, H.X.; Shen, L.L.; Gao, N.; Zan, L.K. Detection of PIK3CA gene mutation and its related prognosis in colorectal cancer based on next-generation sequencing. Chin. J. Pathol. 2024, 53, 716–721. [Google Scholar] [CrossRef]
- Graham, T.A.; Sottoriva, A. Measuring cancer evolution from the genome. J. Pathol. 2017, 241, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Fusco, M.J.; West, H.J.; Walko, C.M. Tumor Mutation Burden and Cancer Treatment. JAMA Oncol. 2021, 7, 316. [Google Scholar] [CrossRef]
- Wang, J.; Song, J.; Liu, Z.; Zhang, T.; Liu, Y. High tumor mutation burden indicates better prognosis in colorectal cancer patients with KRAS mutations. Front. Oncol. 2022, 12, 1015308. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Cao, W.; Long, Z.; Kuang, L.; Li, X.; Feng, Y.; Wu, Y.; Zhao, Y.; Chen, Y.; Sun, P.; et al. DNA methylation-based patterns for early diagnostic prediction and prognostic evaluation in colorectal cancer patients with high tumor mutation burden. Front. Oncol. 2023, 12, 1030335. [Google Scholar] [CrossRef]
- Ward, R.; Meagher, A.; Tomlinson, I.; O’Connor, T.; Norrie, M.; Wu, R.; Hawkins, N. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut 2001, 48, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, S.; Haslam, A.; Choy, A.; Diaz-Cano, S.; Galante, J.R.; Mikropoulos, C.; Boussios, S. Microsatellite instability testing in colorectal patients with Lynch syndrome: Lessons learned from a case report and how to avoid such pitfalls. Pers. Med. 2022, 19, 277–286. [Google Scholar] [CrossRef]
- Sinicrope, F.A.; Foster, N.R.; Thibodeau, S.N.; Marsoni, S.; Monges, G.; Labianca, R.; Kim, G.P.; Yothers, G.; Allegra, C.; Moore, M.J.; et al. DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J. Natl. Cancer Inst. 2011, 103, 863–875. [Google Scholar] [CrossRef]
- Mulet-Margalef, N.; Linares, J.; Badia-Ramentol, J.; Jimeno, M.; Sanz Monte, C.; Manzano Mozo, J.L.; Calon, A. Challenges and Therapeutic Opportunities in the dMMR/MSI-H Colorectal Cancer Landscape. Cancers 2023, 15, 1022. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, T.; Cai, X.; Dong, J.; Xia, C.; Zhou, Y.; Ding, R.; Yang, R.; Tan, J.; Zhang, L.; et al. Neoadjuvant Immunotherapy for MSI-H/dMMR Locally Advanced Colorectal Cancer: New Strategies and Unveiled Opportunities. Front. Immunol. 2022, 13, 795972. [Google Scholar] [CrossRef]
- Bhamidipati, D.; Subbiah, V. Impact of tissue-agnostic approvals for patients with gastrointestinal malignancies. Trends Cancer. 2023, 9, 237–249. [Google Scholar] [CrossRef]
- Gao, C.; Hu, J. Targeting parallel bypass signaling to combat adaptive resistance to BRAF inhibition in colorectal cancer. Oncoscience 2018, 5, 57–58. [Google Scholar] [CrossRef]
- Thomas, D.M.; Hackett, J.M.; Plestina, S. Unlocking Access to Broad Molecular Profiling: Benefits, Barriers, and Policy Solutions. Public Health Genom. 2022, 25, 70–79. [Google Scholar] [CrossRef] [PubMed]
Researcher | Domain 1 * | Domain 2 * | Domain 3 * | Domain 4 * | Domain 5 * |
---|---|---|---|---|---|
Chatila et al. [10] | Low concern | Low concern | Low concern | Low concern | Low concern |
Gouda et al. [11] | Low concern | Low concern | Low concern | Low concern | Low concern |
Zhu et al. [12] | Low concern | Some concerns | Some concerns | Low concern | Low concern |
Loree et al. [13] | Low concern | Low concern | Low concern | Low concern | Low concern |
Arter et al. [14] | Low concern | Some concerns | Some concerns | Low concern | Some concerns |
Pietrantonio et al. [15] | Low concern | Low concern | Low concern | Low concern | Low concern |
Bartlett et al. [16] | Low concern | Low concern | Some concerns | Low concern | Low concern |
Piha-Paul et al. [17] | Low concern | Low concern | Some concerns | Low concern | Low concern |
Researcher | Main Research Goal | No. of Patients (Male/Female) | Age (Years) | Tumor Site |
---|---|---|---|---|
Chatila et al. [10] | Recognition of tumor-agnostic biomarkers of response to neoadjuvant chemotherapy | 692 (301/391) | <50 | Rectum (100%) |
Gouda et al. [11] | Test of methylation-specific signatures as mutation-agnostic biomarkers | 20 | 50 (mean) | |
Zhu et al. [12] | Recognition of cell-free methylated DNA markers as agnostic biomarkers of prognosis and treatment response | 35 (19/16) | <55 | Left colon (60%) Right colon (40%) |
Loree et al. [13] | Comparison of plasma to tissue TMB * as an agnostic biomarker of response to chemotherapy | 180 (59/121) | <65 y (n = 93, 51.7%) >65 y (n = 87, 48.3%) | Rectum (15%) Left colon (56%) Right colon (27%) Unknown (2%) |
Arter et al. [14] | Recognition of NTRK and RET fusions as potential agnostic targets of therapy in CRC | 14,812 | 63.5 (mean) | Colon (83%) Rectum (17%) |
Pietrantonio et al. [15] | Recognition of RET fusions as agnostic targets and biomarkers in CRC | 24 (10/14) | 66 (median) | Right colon (54%) Left colon (45%) |
Bartlett et al. [16] | Recognition of TGF-β as an agnostic target of immunotherapy | 549 (292/257) | 64.5 (mean) | Right colon (36%) Left colon (38%) Rectum (26%) |
Piha-Paul et al. [17] | Test of buparlisib as an efficient and safe drug targeting PI3K activated pathway in the therapy of CRC | 18 | NP | NP |
Researcher | No. of Patients | Sample Type | Sequence Desired to Be Addressed | Profiling Method |
---|---|---|---|---|
Chatila et al. [10] | 692 | Tissue biopsies | Gene fusions | MSK-IMPACT sequencing |
Gouda et al. [11] | 20 | Venous blood | Methylated CpG areas | NextSeq 500 MID Output Flow cell |
Zhu et al. [12] | 35 | Venous blood | Methylated cfDNA | Bisulfite-converted DNA, multiplex PCR amplification (12 cycles) of the candidate MDMs *—Roche Diagnostics (Indianapolis, IN, USA) Cobas e411 |
Loree et al. [13] | 180 | Venous blood and tissue biopsies | TMB | GuardantOMNI next-generation sequencing 2.15 Mb, 500 gene panel |
Arter et al. [14] | 14,812 | Tissue biopsies | TMB | MSK-IMPACT, Minerva panel, Samsung panel, Whole exome seq, FMI panel |
Pietrantonio et al. [15] | 24 | Tissue biopsies | RET fusions | Minerva panel sequencing |
Bartlett et al. [16] | 549 | Venous blood | miRNAs | xCell, TIMER, and CIBERSORT |
Piha-Paul et al. [17] | 18 | Tissue biopsies | PI3K mutations | NP |
Researcher | n (Patients) | Most Frequent Gene/Pathway Alterations | MSI Status | Key Molecular Correlations |
---|---|---|---|---|
Chatila et al. [10] | 692 | APC (81%), TP53 (81%), KRAS (42%), FBXW7 (14%), PIK3CA (12%), WNT (85%) and RAS (51%) | 692 MSS; 36 MSI; 4 POLE hypermutant | APC less frequent in lower rectal tumors; KRAS and AMER1 co-occur; TP53 mutually exclusive with PIK3CA/KRAS; APC C-terminal mutations co-occur with KRAS and AMER1; PIK3CA mutations subclonal (30%) |
Gouda et al. [11] | 20 | KRAS mutation (100%) | NP | CpG sites more frequent in CRC; targeted methylation sequencing detected cfDNA in 85% |
Zhu et al. [12] | 35 | BRAF V600E wild-type, RAS wild-type | MSS | |
Loree et al. [13] | 180 | APC (63%), TP53 (55%), KRAS (51%), ATM (14%), BRCA2 (12%) | MSS | High concordance of MSI status between plasma and tissue |
Arter et al. [14] | 14,812 | BRAF V600E, KRAS G12A/C/D; FGFR1 (15%), EGFR (14%), ERBB2 (7%), NTRK1 (7%), RET (7%) | 38% of BRAF-mutated were MSI-H; rest NP | MSI-H group had higher TMB (56.1 ± 19.7) vs. MSS group (11 ± 18.4), p < 0.01 |
Pietrantonio et al. [15] | 24 | RET fusions: NCOA4-RET (12), CCDC6-RET (8), TRIM24-RET (2), TNIP1-RET (1), SNRNP70-RET (1) | MSI-H (48%), MSS (52%) | RET fusions more common in patients > 66 years |
Bartlett et al. [16] | 549 | SMAD2, ACVR1B, SKP1, ACVR2B, SMAD4, ZFYVE9, ACVR2A, SP1, EP300, TGFBR2 | MSS/MSI-L: 472; MSI-H: 76 | 41 miRNAs correlated with mutation burden; 62 with MSI; 17 with PD-L1; 3 miRNAs linked to all three plus M1 macrophage polarization |
Piha-Paul et al. [17] | 18 | PIK3CA gene mutations and PTEN gene aberrations | NP |
Researcher | n | Agnostic Target(s) | Agnostic Biomarker(s) | Neoadjuvant Regimen(s) | Key Oncological Outcomes |
---|---|---|---|---|---|
Chatila et al. [10] | 692 | BRAF V600E mutations, ERBB2 amplifications, KRAS G12C mutations | PIK3CA, NRAS, ATM mutations; CA9; IGF2, L1CAM; immune checkpoint genes (PDCD1, CD274, CTLA4, HAVCR2, LAG3) | CRT ± CNCT; neoadjuvant INCT + CRT | KRAS mutations linked to shorter DFS in CRT–CNCT group; immune-hot MSS tumors showed favorable ICI response |
Gouda et al. [11] | 20 | CpG methylated islands | Methylated ctDNA linked to shorter PFS (8 vs. 54 weeks, p = 0.027) | ||
Zhu et al. [12] | 35 | 13 MDMs (CNNM1, ANKRD13B, FER1L4, etc.) | FOLFOX | MDM-positive score preceded recurrence by median 106 days; rising MDM with stable CEA predicted recurrence | |
Loree et al. [13] | 180 | PD-L1, CTLA4 | pTMB | durvalumab + tremelimumab | OS increased by 2.5 mo vs. BSC (HR 0.72); no PFS benefit |
Arter et al. [14] | 14,812 | NTRK fusions, RET fusions | TMB | RTK inhibitors (pembrolizumab, dostarlimab, nivolumab + ipilimumab) | |
Pietrantonio et al. [15] | 24 | RET fusions (e.g., CCDC6-RET) | RET inhibitors (RXDX-105, pembrolizumab, nivolumab) | ||
Bartlett et al. [16] | 549 | TGF-β, PD-L1 receptors | MSI status, PD-L1 status, TMB | Neutralizing antibodies, ligand traps, small-molecule inhibitors, antisense oligonucleotides | No miRNAs in any group were associated with OS |
Piha-Paul et al. [17] | 18 | activated PI3K pathway | Buparlisib | No clinical benefit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyrochristou, I.; Lianos, G.D.; Kyrochristou, G.D.; Anagnostopoulos, G.; Bali, C.; Boussios, S.; Mitsis, M.; Schizas, D.; Vlachos, K. Agnostic Biomarkers and Molecular Signatures in Colorectal Cancer—Guiding Chemotherapy and Predicting Response. Biomedicines 2025, 13, 2038. https://doi.org/10.3390/biomedicines13082038
Kyrochristou I, Lianos GD, Kyrochristou GD, Anagnostopoulos G, Bali C, Boussios S, Mitsis M, Schizas D, Vlachos K. Agnostic Biomarkers and Molecular Signatures in Colorectal Cancer—Guiding Chemotherapy and Predicting Response. Biomedicines. 2025; 13(8):2038. https://doi.org/10.3390/biomedicines13082038
Chicago/Turabian StyleKyrochristou, Ilektra, Georgios D. Lianos, Gerasimia D. Kyrochristou, Georgios Anagnostopoulos, Christina Bali, Stergios Boussios, Michail Mitsis, Dimitrios Schizas, and Konstantinos Vlachos. 2025. "Agnostic Biomarkers and Molecular Signatures in Colorectal Cancer—Guiding Chemotherapy and Predicting Response" Biomedicines 13, no. 8: 2038. https://doi.org/10.3390/biomedicines13082038
APA StyleKyrochristou, I., Lianos, G. D., Kyrochristou, G. D., Anagnostopoulos, G., Bali, C., Boussios, S., Mitsis, M., Schizas, D., & Vlachos, K. (2025). Agnostic Biomarkers and Molecular Signatures in Colorectal Cancer—Guiding Chemotherapy and Predicting Response. Biomedicines, 13(8), 2038. https://doi.org/10.3390/biomedicines13082038