Induced Pluripotent Stem Cell-Based Cancer Immunotherapy: Strategies and Perspectives
Abstract
1. Introduction
2. The Basic Characteristics of iPSCs and Their Integration with Cancer Immunotherapy
2.1. The Sources and Characteristics of iPSCs
2.2. Types and Applications of Reprogramming Vectors
2.3. iPSCs Reprogramming Standard Protocol
2.4. Quality Control Parameters for Functional iPSCs-Derived Immune Cells
2.5. The Differentiation Process of Immune Cells Derived from iPSCs and Their Advantages and Disadvantages
3. Differentiating iPSCs into Immunocytes: A Potential Cellular Source for Cancer Immunotherapy
3.1. iPSCs-Natural Killer Cells (NK Cells)
3.2. iPSCs-Macrophages
3.3. iPSCs-T Cells
3.4. iPSCs-Dendritic Cells (DCs)
3.5. iPSCs-B Cells
4. Improving the Differentiation of Immunocytes: Small Molecules, Nanoparticles and 3D Culture Systems
5. Improving the Expansion of Immunocytes In Vivo
6. Overcoming the Obstacle of Cancer Targeting Disability in iPSCs-Derived Immunocytes: The Optimization of Antigen Specification and Presentation
6.1. APCs
6.2. CARs
7. Enhancing the Killing Effectivity: Modulating the Tumor Immune Microenvironment and Anti-Apoptosis Mechanisms
7.1. Persistence
7.2. Trafficking
7.3. Overcoming the Mechanisms of Resistance
8. Future Directions and Conclusions
8.1. iPSCs in Cell-Based Cancer Immunotherapy
8.2. Overcoming Limitations with Innovative Techniques
8.3. Clinical Applications and Future Prospects
8.4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DCs | dendritic cells |
iPSCs | induced pluripotent stem cells |
NK | natural killer |
ESCs | embryonic stem cells |
PBMCs | peripheral blood mononuclear cells |
GVHD | graft-versus-host disease |
CRS | cytokine release syndrome |
AHCT | autologous hematopoietic cell transplantation |
HMDMs | human monocyte-derived macrophages |
LAK | lymphokine-activated killer |
TILs | tumor-infiltrating lymphocytes |
CAR | chimeric antigen receptor |
HSCs | hematopoietic stem cells |
TCRs | T cell receptors |
CLL | chronic lymphocytic leukemia |
HAI | hepatic artery infusion |
AML | acute myeloid leukemia |
GM-CSF | granulocyte/macrophage colony-stimulating factor |
moDCs | monocyte-derived DCs |
PSA | prostate-specific antigen |
BAFF | B cell activating factor |
HNF4A | hepatocyte nuclear factor 4 alpha |
CNTs | carbon nanotubes |
ECM | extracellular matrix |
Flt3L | FMS-like tyrosine kinase 3 ligand |
APCs | antigen-presenting cells |
CD40L | CD40 ligand |
SB | Sleeping Beauty |
ZFNs | zinc-finger nucleases |
TALENs | transcription activator-like effector nucleases |
CRISPR | clustered regularly interspaced short palindromic repeats |
CRISPRi | clustered regularly interspaced short palindromic repeat interference |
CIK | cytokine-induced killer |
KIRs | killer immunoglobulin-like receptors |
References
- Singal, A.G.; Llovet, J.M.; Yarchoan, M.; Mehta, N.; Heimbach, J.K.; Dawson, L.A.; Jou, J.H.; Kulik, L.M.; Agopian, V.G.; Marrero, J.A.; et al. Aasld practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023, 78, 1922–1965. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 2015, 161, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Emens, L.A.; Esteva, F.J.; Beresford, M.; Saura, C.; De Laurentiis, M.; Kim, S.B.; Im, S.A.; Wang, Y.; Salgado, R.; Mani, A.; et al. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, her2-positive advanced breast cancer (kate2): A phase 2, multicentre, randomised, double-blind trial. Lancet Oncol. 2020, 21, 1283–1295. [Google Scholar] [CrossRef]
- Yost, K.E.; Satpathy, A.T.; Wells, D.K.; Qi, Y.; Wang, C.; Kageyama, R.; Mcnamara, K.L.; Granja, J.M.; Sarin, K.Y.; Brown, R.A.; et al. Clonal replacement of tumor-specific t cells following pd-1 blockade. Nat. Med. 2019, 25, 1251–1259. [Google Scholar] [CrossRef]
- Sahin, U.; Tureci, O. Personalized vaccines for cancer immunotherapy. Science 2018, 359, 1355–1360. [Google Scholar] [CrossRef]
- Wrzesinski, C.; Paulos, C.M.; Kaiser, A.; Muranski, P.; Palmer, D.C.; Gattinoni, L.; Yu, Z.; Rosenberg, S.A.; Restifo, N.P. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific t cells. J. Immunother. 2010, 33, 1–7. [Google Scholar] [CrossRef]
- Kawamoto, H.; Masuda, K.; Nagano, S.; Maeda, T. Cloning and expansion of antigen-specific t cells using ips cell technology: Development of “off-the-shelf” t cells for the use in allogeneic transfusion settings. Int. J. Hematol. 2018, 107, 271–277. [Google Scholar] [CrossRef]
- Guo, T.; Wei, Q. Cell reprogramming techniques: Contributions to cancer therapy. Cell Reprogram. 2023, 25, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, H.; Masuda, K.; Nagano, S. Development of immune cell therapy using t cells generated from pluripotent stem cells. Adv. Exp. Med. Biol. 2024, 1444, 207–217. [Google Scholar] [CrossRef]
- Ghemrawi, R.; Abuamer, L.; Kremesh, S.; Hussien, G.; Ahmed, R.; Mousa, W.; Khoder, G.; Khair, M. Revolutionizing cancer treatment: Recent advances in immunotherapy. Biomedicines 2024, 12, 2158. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Rowe, R.G.; Daley, G.Q. Induced pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Genet. 2019, 20, 377–388. [Google Scholar] [CrossRef]
- Meng, F.; Li, C.; Xu, W.; Deng, J.; Guan, Y.; Zhang, T.; Yang, B.; Zhang, J.; Li, X.; Han, F.; et al. Induced pluripotent stem cell-derived mesenchymal stem cells enhance acellular nerve allografts to promote peripheral nerve regeneration by facilitating angiogenesis. Neural Regen Res. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, J.; Cao, J.; Zhang, K.; Peng, Y.; Deng, H.; Kang, J.; Pan, G.; Zhang, Y.; Fu, B.; et al. Requirements for human-induced pluripotent stem cells. Cell Prolif. 2022, 55, e13182. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Woon, H.R.; Saw, G.; Zeng, L.; Tan, E.K.; Zhou, Z.D. Induced pluripotent stem cell-related approaches to generate dopaminergic neurons for parkinson’s disease. Neural Regen. Res. 2025, 20, 3193–3206. [Google Scholar] [CrossRef]
- Rodriguez-Polo, I.; Behr, R. Non-human primate pluripotent stem cells for the preclinical testing of regenerative therapies. Neural Regen. Res. 2022, 17, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
- Sokka, J.; Yoshihara, M.; Kvist, J.; Laiho, L.; Warren, A.; Stadelmann, C.; Jouhilahti, E.; Kilpinen, H.; Balboa, D.; Katayama, S.; et al. Crispr activation enables high-fidelity reprogramming into human pluripotent stem cells. Stem Cell Rep. 2022, 17, 413–426. [Google Scholar] [CrossRef]
- Sundaravadivelu, P.K.; Raina, K.; Thool, M.; Ray, A.; Joshi, J.M.; Kaveeshwar, V.; Sudhagar, S.; Lenka, N.; Thummer, R.P. Tissue-restricted stem cells as starting cell source for efficient generation of pluripotent stem cells: An overview. Adv. Exp. Med. Biol. 2022, 1376, 151–180. [Google Scholar] [CrossRef]
- Ray, A.; Joshi, J.M.; Sundaravadivelu, P.K.; Raina, K.; Lenka, N.; Kaveeshwar, V.; Thummer, R.P. An overview on promising somatic cell sources utilized for the efficient generation of induced pluripotent stem cells. Stem Cell Rev. Rep. 2021, 17, 1954–1974. [Google Scholar] [CrossRef]
- Sandelin, S.; Hakala, S.; Lehtinen, L.; Narva, E. Generation of three isogenic human induced pluripotent stem cell lines from normal neonate skin fibroblasts. Stem Cell Res. 2024, 74, 103301. [Google Scholar] [CrossRef]
- Tsuchiya, N.; Zhang, R.; Iwama, T.; Ueda, N.; Liu, T.; Tatsumi, M.; Sasaki, Y.; Shimoda, R.; Osako, Y.; Sawada, Y.; et al. Type I interferon delivery by iPSC-derived myeloid cells elicits antitumor immunity via xcr1+ dendritic cells. Cell Rep. 2019, 29, 162–175.e9. [Google Scholar] [CrossRef] [PubMed]
- Ishigaki, H.; Pham, V.L.; Terai, J.; Sasamura, T.; Nguyen, C.T.; Ishida, H.; Okahara, J.; Kaneko, S.; Shiina, T.; Nakayama, M.; et al. No tumorigenicity of allogeneic induced pluripotent stem cells in major histocompatibility complex-matched cynomolgus macaques. Cell Transplant. 2021, 30, 963689721992066. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Bai, L.; Qi, P.; Lv, J.; Song, X.; Zhang, L. Potential effects of regulating intestinal flora on immunotherapy for liver cancer. Int. J. Mol. Sci. 2023, 24, 11387. [Google Scholar] [CrossRef]
- Bogomiakova, M.E.; Sekretova, E.K.; Anufrieva, K.S.; Khabarova, P.O.; Kazakova, A.N.; Bobrovsky, P.A.; Grigoryeva, T.V.; Eremeev, A.V.; Lebedeva, O.S.; Bogomazova, A.N.; et al. Ipsc-derived cells lack immune tolerance to autologous nk-cells due to imbalance in ligands for activating and inhibitory nk-cell receptors. Stem Cell Res. Ther. 2023, 14, 77. [Google Scholar] [CrossRef]
- Shankar, K.; Capitini, C.M.; Saha, K. Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies. Stem Cell Res. Ther. 2020, 11, 234. [Google Scholar] [CrossRef]
- Jing, R.; Falchetti, M.; Han, T.; Najia, M.; Hensch, L.T.; Meader, E.; Lummertz Da Rocha, E.; Kononov, M.; Wang, S.; Bingham, T.; et al. Maturation and persistence of car t cells derived from human pluripotent stem cells via chemical inhibition of g9a/glp. Cell Stem Cell 2025, 32, 71–85.e5. [Google Scholar] [CrossRef]
- Fang, M.; Allen, A.; Luo, C.; Finn, J.D. Unlocking the potential of iPSC-derived immune cells: Engineering ink and it cells for cutting-edge immunotherapy. Front. Immunol. 2024, 15, 1457629. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; He, X.; Mo, Z.; Zhao, M.; Liang, X.; Hu, K.; Wang, K.; Yue, Y.; Mo, G.; et al. Cd70-targeted iPSC-derived car-nk cells display potent function against tumors and alloreactive t cells. Cell Rep. Med. 2025, 6, 101889. [Google Scholar] [CrossRef] [PubMed]
- Jondal, M.; Targan, S. In vitro induction of cytotoxic effector cells with spontaneous killer cell specificity. J. Exp. Med. 1978, 147, 1621–1636. [Google Scholar] [CrossRef]
- Vivier, E.; Rebuffet, L.; Narni-Mancinelli, E.; Cornen, S.; Igarashi, R.Y.; Fantin, V.R. Natural killer cell therapies. Nature 2024, 626, 727–736. [Google Scholar] [CrossRef]
- Myers, J.A.; Miller, J.S. Exploring the nk cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18, 85–100. [Google Scholar] [CrossRef]
- Diorio, C.; Teachey, D.T.; Grupp, S.A. Allogeneic chimeric antigen receptor cell therapies for cancer: Progress made and remaining roadblocks. Nat. Rev. Clin. Oncol. 2025, 22, 10–27. [Google Scholar] [CrossRef]
- Nahi, H.; Chrobok, M.; Meinke, S.; Gran, C.; Marquardt, N.; Afram, G.; Sutlu, T.; Gilljam, M.; Stellan, B.; Wagner, A.K.; et al. Autologous nk cells as consolidation therapy following stem cell transplantation in multiple myeloma. Cell Rep. Med. 2022, 3, 100508. [Google Scholar] [CrossRef]
- Ko, M.; Kaur, K.; Safaei, T.; Chen, W.; Sutanto, C.; Wong, P.; Jewett, A. Defective patient nk function is reversed by aj2 probiotic bacteria or addition of allogeneic healthy monocytes. Cells 2022, 11, 697. [Google Scholar] [CrossRef]
- Rossbach, B.; Hariharan, K.; Mah, N.; Oh, S.; Volk, H.; Reinke, P.; Kurtz, A. Human iPSC-derived renal cells change their immunogenic properties during maturation: Implications for regenerative therapies. Cells 2022, 11, 1328. [Google Scholar] [CrossRef] [PubMed]
- Poirier, N.; Paquin, V.; Leclerc, S.; Lisi, V.; Marmolejo, C.; Affia, H.; Cordeiro, P.; Theoret, Y.; Haddad, E.; Andelfinger, G.; et al. Therapeutic inducers of natural killer cell killing (thinkk): Preclinical assessment of safety and efficacy in allogeneic hematopoietic stem cell transplant settings. J. Immunother. Cancer 2024, 12, e008435. [Google Scholar] [CrossRef]
- Egli, L.; Kaulfuss, M.; Mietz, J.; Picozzi, A.; Verhoeyen, E.; Munz, C.; Chijioke, O. Car t cells outperform car nk cells in car-mediated effector functions in head-to-head comparison. Exp. Hematol. Oncol. 2024, 13, 51. [Google Scholar] [CrossRef]
- Lim, Z.; Taverniti, A.; Downing, J.; Le, C.; Lopez, P.; Larkins, N.; Chan, D.; Chakera, A.; D’Orsogna, L.; Krishnan, A.; et al. Clinical applicability of 2-field high-resolution and extended hla-allele typing in deceased donor kidney allocation. HLA 2024, 104, e15784. [Google Scholar] [CrossRef]
- Cichocki, F.; van der Stegen, S.J.C.; Miller, J.S. Engineered and banked iPSCs for advanced nk- and t-cell immunotherapies. Blood 2023, 141, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Vodyanik, M.A.; Bork, J.A.; Thomson, J.A.; Slukvin, I.I. Human embryonic stem cell-derived cd34+ cells: Efficient production in the coculture with op9 stromal cells and analysis of lymphohematopoietic potential. Blood 2005, 105, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Woll, P.S.; Martin, C.H.; Miller, J.S.; Kaufman, D.S. Human embryonic stem cell-derived nk cells acquire functional receptors and cytolytic activity. J. Immunol. 2005, 175, 5095–5103. [Google Scholar] [CrossRef]
- Raya, A.; Rodriguez-Piza, I.; Guenechea, G.; Vassena, R.; Navarro, S.; Barrero, M.J.; Consiglio, A.; Castella, M.; Rio, P.; Sleep, E.; et al. Disease-corrected haematopoietic progenitors from fanconi anaemia induced pluripotent stem cells. Nature 2009, 460, 53–59. [Google Scholar] [CrossRef]
- Tabatabaei-Zavareh, N.; Vlasova, A.; Greenwood, C.P.; Takei, F. Characterization of developmental pathway of natural killer cells from embryonic stem cells in vitro. PLoS ONE 2007, 2, e232. [Google Scholar] [CrossRef] [PubMed]
- Knorr, D.A.; Ni, Z.; Hermanson, D.; Hexum, M.K.; Bendzick, L.; Cooper, L.J.N.; Lee, D.A.; Kaufman, D.S. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl. Med. 2013, 2, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Larbi, A.; Gombert, J.; Auvray, C.; L’Homme, B.; Magniez, A.; Feraud, O.; Coulombel, L.; Chapel, A.; Mitjavila-Garcia, M.T.; Turhan, A.G.; et al. The hoxb4 homeoprotein promotes the ex vivo enrichment of functional human embryonic stem cell-derived nk cells. PLoS ONE 2012, 7, e39514. [Google Scholar] [CrossRef]
- Neelapu, S.S. Managing the toxicities of car t-cell therapy. Hematol Oncol. 2019, 37 (Suppl. 1), 48–52. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xue, J.; Jiang, H.; Xue, D. Car-nk cells for gastrointestinal cancer immunotherapy: From bench to bedside. Mol. Cancer 2024, 23, 237. [Google Scholar] [CrossRef]
- Arai, S.; Meagher, R.; Swearingen, M.; Myint, H.; Rich, E.; Martinson, J.; Klingemann, H. Infusion of the allogeneic cell line nk-92 in patients with advanced renal cell cancer or melanoma: A phase I trial. Cytotherapy 2008, 10, 625–632. [Google Scholar] [CrossRef]
- Williams, B.A.; Law, A.D.; Routy, B.; Denhollander, N.; Gupta, V.; Wang, X.; Chaboureau, A.; Viswanathan, S.; Keating, A. A phase I trial of nk-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget 2017, 8, 89256–89268. [Google Scholar] [CrossRef]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Nassif Kerbauy, L.; Overman, B.; Thall, P.; Kaplan, M.; et al. Use of car-transduced natural killer cells in cd19-positive lymphoid tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef]
- Urena-Bailen, G.; Dobrowolski, J.; Hou, Y.; Dirlam, A.; Roig-Merino, A.; Schleicher, S.; Atar, D.; Seitz, C.; Feucht, J.; Antony, J.S.; et al. Preclinical evaluation of crispr-edited car-nk-92 cells for off-the-shelf treatment of aml and b-all. Int. J. Mol. Sci. 2022, 23, 12828. [Google Scholar] [CrossRef]
- Hermanson, D.L.; Bendzick, L.; Pribyl, L.; Mccullar, V.; Vogel, R.I.; Miller, J.S.; Geller, M.A.; Kaufman, D.S. Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells 2016, 34, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi, A.; Bachanova, V.; Patel, K.; Park, J.H.; Flinn, I.; Riedell, P.A.; Bachier, C.; Diefenbach, C.S.; Wong, C.; Bickers, C.; et al. Induced pluripotent stem-cell-derived cd19-directed chimeric antigen receptor natural killer cells in b-cell lymphoma: A phase 1, first-in-human trial. Lancet 2025, 405, 127–136. [Google Scholar] [CrossRef]
- Mass, E.; Nimmerjahn, F.; Kierdorf, K.; Schlitzer, A. Tissue-specific macrophages: How they develop and choreograph tissue biology. Nat. Rev. Immunol. 2023, 23, 563–579. [Google Scholar] [CrossRef]
- Mills, C.D.; Kincaid, K.; Alt, J.M.; Heilman, M.J.; Hill, A.M. M-1/m-2 macrophages and the th1/th2 paradigm. J. Immunol. 2000, 164, 6166–6173. [Google Scholar] [CrossRef]
- Beatty, G.L.; Chiorean, E.G.; Fishman, M.P.; Saboury, B.; Teitelbaum, U.R.; Sun, W.; Huhn, R.D.; Song, W.; Li, D.; Sharp, L.L.; et al. Cd40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011, 331, 1612–1616. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.K.; Wong, W.J.; Moreira, M.; Pasqualini, C.; Ginhoux, F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat. Rev. Immunol. 2025, 25, 108–124. [Google Scholar] [CrossRef]
- Múnera, J.O.; Kechele, D.O.; Bouffi, C.; Qu, N.; Jing, R.; Maity, P.; Enriquez, J.R.; Han, L.; Campbell, I.; Mahe, M.M.; et al. Development of functional resident macrophages in human pluripotent stem cell-derived colonic organoids and human fetal colon. Cell Stem Cell 2023, 30, 1434–1451.e9. [Google Scholar] [CrossRef]
- Monkley, S.; Krishnaswamy, J.K.; Goransson, M.; Clausen, M.; Meuller, J.; Thorn, K.; Hicks, R.; Delaney, S.; Stjernborg, L. Optimised generation of iPSC-derived macrophages and dendritic cells that are functionally and transcriptionally similar to their primary counterparts. PLoS ONE 2020, 15, e0243807. [Google Scholar] [CrossRef]
- Grimm, E.A.; Mazumder, A.; Zhang, H.Z.; Rosenberg, S.A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J. Exp. Med. 1982, 155, 1823–1841. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Suarez, E.R.; Kastrunes, G.; de Campos, N.S.P.; Abbas, R.; Pivetta, R.S.; Murugan, N.; Chalbatani, G.M.; D’Andrea, V.; Marasco, W.A. Evolution of cell therapy for renal cell carcinoma. Mol. Cancer 2024, 23, 8. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Qin, J.; Lin, B.; Zhang, J.; Li, D.; Liu, M. Car-t therapy in solid tumors. Cancer Cell 2025, 43, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Uslu, U.; June, C.H. Beyond the blood: Expanding car t cell therapy to solid tumors. Nat. Biotechnol. 2025, 43, 506–515. [Google Scholar] [CrossRef]
- Schmitt, T.M.; de Pooter, R.F.; Gronski, M.A.; Cho, S.K.; Ohashi, P.S.; Zuniga-Pflucker, J.C. Induction of t cell development and establishment of t cell competence from embryonic stem cells differentiated in vitro. Nat. Immunol. 2004, 5, 410–417. [Google Scholar] [CrossRef]
- Lei, F.; Haque, R.; Weiler, L.; Vrana, K.E.; Song, J. T lineage differentiation from induced pluripotent stem cells. Cell Immunol. 2009, 260, 1–5. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, Y.; Luo, Q.; Zhang, J.; Huang, M.; Xu, Y.; Huo, D.; Shan, W.; Tie, R.; Zhang, M.; et al. Generating hematopoietic cells from human pluripotent stem cells: Approaches, progress and challenges. Cell Regen. 2023, 12, 31. [Google Scholar] [CrossRef]
- Sarkar, J.; Dhepe, S.; Shivalkar, A.; Kuhikar, R.; More, S.; Konala, V.B.R.; Bhanushali, P.; Khanna, A. Generation of human-induced pluripotent stem cell line from pbmc of healthy donor using integration-free sendai virus technology. Stem Cell Res. 2024, 77, 103402. [Google Scholar] [CrossRef] [PubMed]
- Bekhite, M.M.; Hubner, S.; Kretzschmar, T.; Backsch, C.; Weise, A.; Klein, E.; Bogoviku, J.; Westphal, J.; Schulze, P.C. Generation of a human induced pluripotent stem cell lines (ukji003-a) from a patient with fabry disease and healthy donor (ukji004-a). Stem Cell Res. 2025, 82, 103620. [Google Scholar] [CrossRef]
- Iriguchi, S.; Yasui, Y.; Kawai, Y.; Arima, S.; Kunitomo, M.; Sato, T.; Ueda, T.; Minagawa, A.; Mishima, Y.; Yanagawa, N.; et al. A clinically applicable and scalable method to regenerate t-cells from iPSCs for off-the-shelf t-cell immunotherapy. Nat. Commun. 2021, 12, 430. [Google Scholar] [CrossRef]
- Xue, D.; Lu, S.; Zhang, H.; Zhang, L.; Dai, Z.; Kaufman, D.S.; Zhang, J. Induced pluripotent stem cell-derived engineered t cells, natural killer cells, macrophages, and dendritic cells in immunotherapy. Trends Biotechnol. 2023, 41, 907–922. [Google Scholar] [CrossRef]
- Araki, R.; Uda, M.; Hoki, Y.; Sunayama, M.; Nakamura, M.; Ando, S.; Sugiura, M.; Ideno, H.; Shimada, A.; Nifuji, A.; et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 2013, 494, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Deuse, T.; Hu, X.; Gravina, A.; Wang, D.; Tediashvili, G.; De, C.; Thayer, W.O.; Wahl, A.; Garcia, J.V.; Reichenspurner, H.; et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 2019, 37, 252–258. [Google Scholar] [CrossRef]
- Lister, R.; Pelizzola, M.; Kida, Y.S.; Hawkins, R.D.; Nery, J.R.; Hon, G.; Antosiewicz-Bourget, J.; O’Malley, R.; Castanon, R.; Klugman, S.; et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011, 471, 68–73. [Google Scholar] [CrossRef]
- Wen, S.; Zheng, R.; Cai, C.; Jiang, W. Chemical-based epigenetic reprogramming to advance pluripotency and totipotency. Nat. Chem. Biol. 2025, 21, 635–647. [Google Scholar] [CrossRef]
- Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 2011, 3, 95ra73. [Google Scholar] [CrossRef]
- Shabaneh, T.B.; Stevens, A.R.; Stull, S.M.; Shimp, K.R.; Seaton, B.W.; Gad, E.A.; Jaeger-Ruckstuhl, C.A.; Simon, S.; Koehne, A.L.; Price, J.P.; et al. Systemically administered low-affinity her2 car t cells mediate antitumor efficacy without toxicity. J. Immunother. Cancer 2024, 12, e008566. [Google Scholar] [CrossRef]
- Katz, S.C.; Burga, R.A.; Mccormack, E.; Wang, L.J.; Mooring, W.; Point, G.R.; Khare, P.D.; Thorn, M.; Ma, Q.; Stainken, B.F.; et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified t-cell therapy for cea+ liver metastases. Clin. Cancer Res. 2015, 21, 3149–3159. [Google Scholar] [CrossRef]
- Themeli, M.; Kloss, C.C.; Ciriello, G.; Fedorov, V.D.; Perna, F.; Gonen, M.; Sadelain, M. Generation of tumor-targeted human t lymphocytes from induced pluripotent stem cells for cancer therapy. Nat. Biotechnol. 2013, 31, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Lee-Chang, C.; Lesniak, M.S. Next-generation antigen-presenting cell immune therapeutics for gliomas. J. Clin. Investig. 2023, 133, e163449. [Google Scholar] [CrossRef]
- Lardon, F.; Snoeck, H.W.; Berneman, Z.N.; Van Tendeloo, V.F.; Nijs, G.; Lenjou, M.; Henckaerts, E.; Boeckxtaens, C.J.; Vandenabeele, P.; Kestens, L.L.; et al. Generation of dendritic cells from bone marrow progenitors using gm-csf, tnf-alpha, and additional cytokines: Antagonistic effects of il-4 and ifn-gamma and selective involvement of tnf-alpha receptor-1. Immunology 1997, 91, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Rong, Y.; Tang, X.; Yi, K.; Qi, P.; Hou, J.; Liu, W.; He, Y.; Gao, X.; Yuan, C.; et al. Engineered exosomes as an in situ dc-primed vaccine to boost antitumor immunity in breast cancer. Mol. Cancer 2022, 21, 45. [Google Scholar] [CrossRef] [PubMed]
- Breton, G.; Lee, J.; Liu, K.; Nussenzweig, M.C. Defining human dendritic cell progenitors by multiparametric flow cytometry. Nat. Protoc. 2015, 10, 1407–1422. [Google Scholar] [CrossRef]
- Fairchild, P.J.; Brook, F.A.; Gardner, R.L.; Graca, L.; Strong, V.; Tone, Y.; Tone, M.; Nolan, K.F.; Waldmann, H. Directed differentiation of dendritic cells from mouse embryonic stem cells. Curr. Biol. 2000, 10, 1515–1518. [Google Scholar] [CrossRef]
- Wculek, S.K.; Cueto, F.J.; Mujal, A.M.; Melero, I.; Krummel, M.F.; Sancho, D. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2020, 20, 7–24. [Google Scholar] [CrossRef]
- Horton, C.; Davies, T.J.; Lahiri, P.; Sachamitr, P.; Fairchild, P.J. Induced pluripotent stem cells reprogrammed from primary dendritic cells provide an abundant source of immunostimulatory dendritic cells for use in immunotherapy. Stem Cells 2020, 38, 67–79. [Google Scholar] [CrossRef]
- Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 2007, 448, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Elahi, Z.; Jameson, V.; Sakkas, M.; Butcher, S.K.; Mintern, J.D.; Radford, K.J.; Wells, C.A. Efficient generation of human dendritic cells from iPSC by introducing a feeder-free expansion step for hematopoietic progenitors. J. Leukoc. Biol. 2025, 117, qiaf045. [Google Scholar] [CrossRef] [PubMed]
- Silk, K.M.; Silk, J.D.; Ichiryu, N.; Davies, T.J.; Nolan, K.F.; Leishman, A.J.; Carpenter, L.; Watt, S.M.; Cerundolo, V.; Fairchild, P.J. Cross-presentation of tumour antigens by human induced pluripotent stem cell-derived cd141+xcr1+ dendritic cells. Gene Ther. 2012, 19, 1035–1040. [Google Scholar] [CrossRef]
- Liu, D.; Wang, L.; Guo, Y. Advances in and prospects of immunotherapy for prostate cancer. Cancer Lett. 2024, 601, 217155. [Google Scholar] [CrossRef] [PubMed]
- Koido, S.; Taguchi, J.; Shimabuku, M.; Kan, S.; Bito, T.; Misawa, T.; Ito, Z.; Uchiyama, K.; Saruta, M.; Tsukinaga, S.; et al. Dendritic cells pulsed with multifunctional wilms’ tumor 1 (wt1) peptides combined with multiagent chemotherapy modulate the tumor microenvironment and enable conversion surgery in pancreatic cancer. J. Immunother. Cancer 2024, 12, e009765. [Google Scholar] [CrossRef]
- Oba, T.; Makino, K.; Kajihara, R.; Yokoi, T.; Araki, R.; Abe, M.; Minderman, H.; Chang, A.E.; Odunsi, K.; Ito, F. In situ delivery of iPSC-derived dendritic cells with local radiotherapy generates systemic antitumor immunity and potentiates pd-l1 blockade in preclinical poorly immunogenic tumor models. J. Immunother. Cancer 2021, 9, e002432. [Google Scholar] [CrossRef]
- Mantovani, A.; Garlanda, C. Humoral innate immunity and acute-phase proteins. N. Engl. J. Med. 2023, 388, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Helmink, B.A.; Reddy, S.M.; Gao, J.; Zhang, S.; Basar, R.; Thakur, R.; Yizhak, K.; Sade-Feldman, M.; Blando, J.; Han, G.; et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 2020, 577, 549–555. [Google Scholar] [CrossRef]
- Shalapour, S.; Font-Burgada, J.; Di Caro, G.; Zhong, Z.; Sanchez-Lopez, E.; Dhar, D.; Willimsky, G.; Ammirante, M.; Strasner, A.; Hansel, D.E.; et al. Immunosuppressive plasma cells impede t-cell-dependent immunogenic chemotherapy. Nature 2015, 521, 94–98. [Google Scholar] [CrossRef]
- Yiwen, Z.; Shilin, G.; Yingshi, C.; Lishi, S.; Baohong, L.; Chao, L.; Linghua, L.; Ting, P.; Hui, Z. Efficient generation of antigen-specific ctls by the baff-activated human b lymphocytes as apcs: A novel approach for immunotherapy. Oncotarget 2016, 7, 77732–77748. [Google Scholar] [CrossRef]
- Jiang, Z.; Han, Y.; Cao, X. Induced pluripotent stem cell (iPSCs) and their application in immunotherapy. Cell Mol. Immunol. 2014, 11, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wijanarko, K.; Liani, O.; Strumila, K.; Ng, E.S.; Elefanty, A.G.; Stanley, E.G. Lymphoid cell development from fetal hematopoietic progenitors and human pluripotent stem cells. Immunol. Rev. 2023, 315, 154–170. [Google Scholar] [CrossRef]
- Sun, W.; Gao, X.; Lei, H.; Wang, W.; Cao, Y. Biophysical approaches for applying and measuring biological forces. Adv. Sci. 2022, 9, e2105254. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.; Kim, W.; Williams, D.R. Reprogram or reboot: Small molecule approaches for the production of induced pluripotent stem cells and direct cell reprogramming. Acs Chem. Biol. 2014, 9, 80–95. [Google Scholar] [CrossRef]
- Zhu, J.; Reynolds, J.; Garcia, T.; Cifuentes, H.; Chew, S.; Zeng, X.; Lamba, D.A. Generation of transplantable retinal photoreceptors from a current good manufacturing practice-manufactured human induced pluripotent stem cell line. Stem Cells Transl. Med. 2018, 7, 210–219. [Google Scholar] [CrossRef]
- Jing, R.; Duncan, C.B.; Duncan, S.A. A small-molecule screen reveals that hsp90beta promotes the conversion of induced pluripotent stem cell-derived endoderm to a hepatic fate and regulates hnf4a turnover. Development 2017, 144, 1764–1774. [Google Scholar] [CrossRef]
- He, Q.; Wu, Z.; Zhang, L. Carbon dots as a new class of multifunctional nanomaterial in mesenchymal stem cells: Opportunities and challenges. J. Mater. Chem. B 2023, 11, 3511–3536. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Yang, M.; Zhu, Y.; Tomsia, A.; Mao, C. Untangling the effects of peptide sequences and nanotopographies in a biomimetic niche for directed differentiation of iPSCs by assemblies of genetically engineered viral nanofibers. Nano Lett. 2014, 14, 6850–6856. [Google Scholar] [CrossRef]
- Pryzhkova, M.V.; Aria, I.; Cheng, Q.; Harris, G.M.; Zan, X.; Gharib, M.; Jabbarzadeh, E. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials 2014, 35, 5098–5109. [Google Scholar] [CrossRef]
- Safina, I.; Embree, M.C. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomater. 2022, 143, 26–38. [Google Scholar] [CrossRef]
- Lou, J.; Mooney, D.J. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 2022, 6, 726–744. [Google Scholar] [CrossRef]
- Xiang, L.; Yin, Y.; Zheng, Y.; Ma, Y.; Li, Y.; Zhao, Z.; Guo, J.; Ai, Z.; Niu, Y.; Duan, K.; et al. A developmental landscape of 3d-cultured human pre-gastrulation embryos. Nature 2020, 577, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Benya, P.D.; Shaffer, J.D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982, 30, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Badr-Eldin, S.M.; Aldawsari, H.M.; Kotta, S.; Deb, P.K.; Venugopala, K.N. Three-dimensional in vitro cell culture models for efficient drug discovery: Progress so far and future prospects. Pharmaceuticals 2022, 15, 926. [Google Scholar] [CrossRef] [PubMed]
- Ingber, D.E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 2022, 23, 467–491. [Google Scholar] [CrossRef]
- Lv, S.; He, E.; Luo, J.; Liu, Y.; Liang, W.; Xu, S.; Zhang, K.; Yang, Y.; Wang, M.; Song, Y.; et al. Using human-induced pluripotent stem cell derived neurons on microelectrode arrays to model neurological disease: A review. Adv. Sci. 2023, 10, e2301828. [Google Scholar] [CrossRef]
- Seet, C.S.; He, C.; Bethune, M.T.; Li, S.; Chick, B.; Gschweng, E.H.; Zhu, Y.; Kim, K.; Kohn, D.B.; Baltimore, D.; et al. Generation of mature t cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat. Methods 2017, 14, 521–530. [Google Scholar] [CrossRef]
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. Car t cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef]
- Kallies, A.; Zehn, D.; Utzschneider, D.T. Precursor exhausted t cells: Key to successful immunotherapy? Nat. Rev. Immunol. 2020, 20, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Niederlova, V.; Tsyklauri, O.; Kovar, M.; Stepanek, O. Il-2-driven cd8+ t cell phenotypes: Implications for immunotherapy. Trends Immunol. 2023, 44, 890–901. [Google Scholar] [CrossRef]
- Chen, D.; Tang, T.; Deng, H.; Yang, X.; Tang, Z. Interleukin-7 biology and its effects on immune cells: Mediator of generation, differentiation, survival, and homeostasis. Front. Immunol. 2021, 12, 747324. [Google Scholar] [CrossRef]
- Caux, C.; Dezutter-Dambuyant, C.; Schmitt, D.; Banchereau, J. Gm-csf and tnf-alpha cooperate in the generation of dendritic langerhans cells. Nature 1992, 360, 258–261. [Google Scholar] [CrossRef]
- Blom, B.; Ho, S.; Antonenko, S.; Liu, Y.J. Generation of interferon alpha-producing predendritic cell (pre-dc)2 from human cd34+ hematopoietic stem cells. J. Exp. Med. 2000, 192, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Gilliet, M.; Boonstra, A.; Paturel, C.; Antonenko, S.; Xu, X.; Trinchieri, G.; O’Garra, A.; Liu, Y. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by flt3-ligand and granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 2002, 195, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.H.; Proietto, A.I.; Wilson, N.S.; Dakic, A.; Schnorrer, P.; Fuchsberger, M.; Lahoud, M.H.; O’Keeffe, M.; Shao, Q.; Chen, W.; et al. Cutting edge: Generation of splenic cd8+ and cd8- dendritic cell equivalents in fms-like tyrosine kinase 3 ligand bone marrow cultures. J. Immunol. 2005, 174, 6592–6597. [Google Scholar] [CrossRef]
- Brasel, K.; De Smedt, T.; Smith, J.L.; Maliszewski, C.R. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood 2000, 96, 3029–3039. [Google Scholar] [CrossRef]
- Lam, B.; Kung, Y.J.; Lin, J.; Tseng, S.; Tu, H.; Huang, C.; Lee, B.; Velarde, E.; Tsai, Y.C.; Villasmil, R.; et al. In situ vaccination via tissue-targeted cdc1 expansion enhances the immunogenicity of chemoradiation and immunotherapy. J. Clin. Investig. 2024, 134, e171621. [Google Scholar] [CrossRef]
- Mateus, D.; Sebastiao, A.I.; Frasco, M.F.; Carrascal, M.A.; Falcao, A.; Gomes, C.M.; Neves, B.; Sales, M.G.F.; Cruz, M.T. Artificial dendritic cells: A new era of promising antitumor immunotherapy. Small 2023, 19, e2303940. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Chu, Q.; Liu, Y.; Zhang, N. A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 2020, 12, 142. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, T.; Senju, S.; Haruta, M.; Hirosawa, N.; Suzuki, M.; Tatsumi, M.; Ueda, N.; Maki, H.; Nakatsuka, R.; et al. Generation of mouse pluripotent stem cell-derived proliferating myeloid cells as an unlimited source of functional antigen-presenting cells. Cancer Immunol. Res. 2015, 3, 668–677. [Google Scholar] [CrossRef]
- Butterfield, L.H.; Jilani, S.M.; Chakraborty, N.G.; Bui, L.A.; Ribas, A.; Dissette, V.B.; Lau, R.; Gamradt, S.C.; Glaspy, J.A.; Mcbride, W.H.; et al. Generation of melanoma-specific cytotoxic t lymphocytes by dendritic cells transduced with a mart-1 adenovirus. J. Immunol. 1998, 161, 5607–5613. [Google Scholar] [CrossRef]
- Furukawa, Y.; Hamano, Y.; Shirane, S.; Kinoshita, S.; Azusawa, Y.; Ando, J.; Nakauchi, H.; Ando, M. Advances in allogeneic cancer cell therapy and future perspectives on “off-the-shelf” t cell therapy using iPSC technology and gene editing. Cells 2022, 11, 269. [Google Scholar] [CrossRef] [PubMed]
- Lybaert, L.; Lefever, S.; Fant, B.; Smits, E.; De Geest, B.; Breckpot, K.; Dirix, L.; Feldman, S.A.; van Criekinge, W.; Thielemans, K.; et al. Challenges in neoantigen-directed therapeutics. Cancer Cell 2023, 41, 15–40. [Google Scholar] [CrossRef] [PubMed]
- Ladak, R.J.; He, A.J.; Huang, Y.; Ding, Y. The current landscape of mrna vaccines against viruses and cancer-a mini review. Front. Immunol. 2022, 13, 885371. [Google Scholar] [CrossRef]
- Liljenfeldt, L.; Yu, D.; Chen, L.; Essand, M.; Mangsbo, S.M. A hexon and fiber-modified adenovirus expressing cd40l improves the antigen presentation capacity of dendritic cells. J. Immunother. 2014, 37, 155–162. [Google Scholar] [CrossRef]
- Koya, R.C.; Kasahara, N.; Favaro, P.M.B.; Lau, R.; Ta, H.Q.; Weber, J.S.; Stripecke, R. Potent maturation of monocyte-derived dendritic cells after cd40l lentiviral gene delivery. J. Immunother. 2003, 26, 451–460. [Google Scholar] [CrossRef]
- Feder-Mengus, C.; Schultz-Thater, E.; Oertli, D.; Marti, W.R.; Heberer, M.; Spagnoli, G.C.; Zajac, P. Nonreplicating recombinant vaccinia virus expressing cd40 ligand enhances apc capacity to stimulate specific cd4+ and cd8+ t cell responses. Hum. Gene Ther. 2005, 16, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, C.E.; High, K.A.; Joung, J.K.; Kohn, D.B.; Ozawa, K.; Sadelain, M. Gene therapy comes of age. Science 2018, 359, eaan4672. [Google Scholar] [CrossRef]
- Lesch, S.; Benmebarek, M.; Cadilha, B.L.; Stoiber, S.; Subklewe, M.; Endres, S.; Kobold, S. Determinants of response and resistance to car t cell therapy. Semin. Cancer Biol. 2020, 65, 80–90. [Google Scholar] [CrossRef]
- Durand, S.; Cimarelli, A. The inside out of lentiviral vectors. Viruses 2011, 3, 132–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.P.; Levine, B.L.; Binder, G.K.; Berry, C.C.; Malani, N.; Mcgarrity, G.; Tebas, P.; June, C.H.; Bushman, F.D. Analysis of lentiviral vector integration in hiv+ study subjects receiving autologous infusions of gene modified cd4+ t cells. Mol. Ther. 2009, 17, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Ellis, G.I.; Sheppard, N.C.; Riley, J.L. Genetic engineering of t cells for immunotherapy. Nat. Rev. Genet. 2021, 22, 427–447. [Google Scholar] [CrossRef]
- Monjezi, R.; Miskey, C.; Gogishvili, T.; Schleef, M.; Schmeer, M.; Einsele, H.; Ivics, Z.; Hudecek, M. Enhanced car t-cell engineering using non-viral sleeping beauty transposition from minicircle vectors. Leukemia 2017, 31, 186–194. [Google Scholar] [CrossRef]
- Grabundzija, I.; Wang, J.; Sebe, A.; Erdei, Z.; Kajdi, R.; Devaraj, A.; Steinemann, D.; Szuhai, K.; Stein, U.; Cantz, T.; et al. Sleeping beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Res. 2013, 41, 1829–1847. [Google Scholar] [CrossRef]
- Doudna, J.A. The promise and challenge of therapeutic genome editing. Nature 2020, 578, 229–236. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Gao, X.D.; Podracky, C.J.; Nelson, A.T.; Koblan, L.W.; Raguram, A.; Levy, J.M.; Mercer, J.A.M.; Liu, D.R. Programmable deletion, replacement, integration and inversion of large dna sequences with twin prime editing. Nat. Biotechnol. 2022, 40, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Villiger, L.; Joung, J.; Koblan, L.; Weissman, J.; Abudayyeh, O.O.; Gootenberg, J.S. Crispr technologies for genome, epigenome and transcriptome editing. Nat. Rev. Mol. Cell Biol. 2024, 25, 464–487. [Google Scholar] [CrossRef]
- Katti, A.; Diaz, B.J.; Caragine, C.M.; Sanjana, N.E.; Dow, L.E. Crispr in cancer biology and therapy. Nat. Rev. Cancer 2022, 22, 259–279. [Google Scholar] [CrossRef]
- Walton, R.T.; Christie, K.A.; Whittaker, M.N.; Kleinstiver, B.P. Unconstrained genome targeting with near-pamless engineered crispr-cas9 variants. Science 2020, 368, 290–296. [Google Scholar] [CrossRef]
- Hsu, P.D.; Scott, D.A.; Weinstein, J.A.; Ran, F.A.; Konermann, S.; Agarwala, V.; Li, Y.; Fine, E.J.; Wu, X.; Shalem, O.; et al. DNA targeting specificity of rna-guided cas9 nucleases. Nat. Biotechnol. 2013, 31, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Koblan, L.W.; Liu, D.R. Genome editing with crispr-cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020, 38, 824–844. [Google Scholar] [CrossRef]
- Hanna, R.E.; Doench, J.G. Design and analysis of crispr-cas experiments. Nat. Biotechnol. 2020, 38, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor t cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef]
- Mullard, A. Novartis secures first crispr pharma collaborations. Nat. Rev. Drug Discov. 2015, 14, 82. [Google Scholar] [CrossRef]
- Mandegar, M.A.; Huebsch, N.; Frolov, E.B.; Shin, E.; Truong, A.; Olvera, M.P.; Chan, A.H.; Miyaoka, Y.; Holmes, K.; Spencer, C.I.; et al. Crispr interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 2016, 18, 541–553. [Google Scholar] [CrossRef]
- Yilmaz, A.; Cui, H.; Caligiuri, M.A.; Yu, J. Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J. Hematol. Oncol. 2020, 13, 168. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, T.J.; Biederstadt, A.; Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 2022, 22, 557–575. [Google Scholar] [CrossRef] [PubMed]
- Cappell, K.M.; Kochenderfer, J.N. Long-term outcomes following car t cell therapy: What we know so far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar] [CrossRef]
- Bashor, C.J.; Hilton, I.B.; Bandukwala, H.; Smith, D.M.; Veiseh, O. Engineering the next generation of cell-based therapeutics. Nat. Rev. Drug Discov. 2022, 21, 655–675. [Google Scholar] [CrossRef]
- Lotze, M.T.; Olejniczak, S.H.; Skokos, D. Cd28 co-stimulation: Novel insights and applications in cancer immunotherapy. Nat. Rev. Immunol. 2024, 24, 878–895. [Google Scholar] [CrossRef]
- Akbari, B.; Ghahri-Saremi, N.; Soltantoyeh, T.; Hadjati, J.; Ghassemi, S.; Mirzaei, H.R. Epigenetic strategies to boost car t cell therapy. Mol. Ther. 2021, 29, 2640–2659. [Google Scholar] [CrossRef]
- Belk, J.A.; Daniel, B.; Satpathy, A.T. Epigenetic regulation of t cell exhaustion. Nat. Immunol. 2022, 23, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Chow, A.; Perica, K.; Klebanoff, C.A.; Wolchok, J.D. Clinical implications of t cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2022, 19, 775–790. [Google Scholar] [CrossRef]
- Hou, A.J.; Chen, L.C.; Chen, Y.Y. Navigating car-t cells through the solid-tumour microenvironment. Nat. Rev. Drug Discov. 2021, 20, 531–550. [Google Scholar] [CrossRef]
- Derynck, R.; Turley, S.J.; Akhurst, R.J. Tgfbeta biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18, 9–34. [Google Scholar] [CrossRef]
- Hogg, S.J.; Beavis, P.A.; Dawson, M.A.; Johnstone, R.W. Targeting the epigenetic regulation of antitumour immunity. Nat. Rev. Drug Discov. 2020, 19, 776–800. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Hutson, C.; Wu, X.; Xu, J.; Carroll, D. Potential cancer prevention and treatment by silencing the killer cell immunoglobulin-like receptor gene in natural killer cells derived from induced pluripotent stem cells. Enliven J. Stem Cell Res. Regen. Med. 2016, 3, 002. [Google Scholar]
- Albelda, S.M. Car t cell therapy for patients with solid tumours: Key lessons to learn and unlearn. Nat. Rev. Clin. Oncol. 2024, 21, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Choe, J.H.; Watchmaker, P.B.; Simic, M.S.; Gilbert, R.D.; Li, A.W.; Krasnow, N.A.; Downey, K.M.; Yu, W.; Carrera, D.A.; Celli, A.; et al. Synnotch-car t cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci. Transl. Med. 2021, 13, eabe7378. [Google Scholar] [CrossRef] [PubMed]
Parameter | Embryonic Stem Cells (ESCs) | Induced Pluripotent Stem Cells (iPSCs) |
---|---|---|
Source | Derived from the inner cell mass of blastocyst-stage embryos | Generated by reprogramming somatic cells (e.g., skin or blood cells) using transcription factors (e.g., Oct4, Sox2, Klf4, c-Myc) |
Ethical Concerns | High (requires destruction of embryos) | Low (no embryo destruction required) |
Immune Rejection Risk | High (allogeneic, may require immunosuppression) | Low (autologous, patient-specific cells reduce rejection risk) |
Tumorigenicity | High (risk of teratoma formation) | Moderate (depends on reprogramming method; viral vectors may increase risk) |
Reprogramming Needs | Naturally pluripotent (no reprogramming needed) | Requires artificial reprogramming (may introduce genetic abnormalities) |
Epigenetic Memory | None (fully reset epigenetic state) | May retain epigenetic marks from the original cell type, affecting differentiation |
Clinical Applications | Limited due to ethical and immune concerns | Broader potential (disease modeling, personalized medicine, drug screening) |
Future Prospects | Declining use due to ethical issues; mainly used in research | Promising for regenerative medicine, gene therapy, and organoid development |
Method Name | Vector Type | Integration Potential | Efficiency | Safety | Advantages | Disadvantages |
---|---|---|---|---|---|---|
Retroviral | Retrovirus | High (integrates into host genome) | Moderate (~0.1%) | Low (risk of insertional mutagenesis and oncogene activation) | First successful method (Yamanaka factors) Stable long-term expression | High tumorigenicity risk Limited clinical applicability |
Adenoviral | Adenovirus | None (episomal) | Low (~0.001%) | High (no genomic integration) | No genomic integration Lower tumor risk | Low efficiency Transient expression |
Sendai Virus | RNA virus (Sendai) | None (cytoplasmic replication) | High (~1%) | Moderate (viral clearance required) | High efficiency No genomicintegration—works with difficult cell types | Requires rigorous viral clearance Potential immunogenicity |
Episomal Plasmids | Plasmid DNA | Low (episomal, transient) | Low (~0.01%) | High (no integration) | Simple and cost-effective No viral components | Low efficiency Requires multiple transfections |
mRNA Reprogramming | Synthetic mRNA | None | Moderate (~0.1–1%) | High (non-integrating) | High safety profile No genetic modification—scalable | Technically challenging Requires repeated delivery |
Protein Transduction | Recombinant proteins | None | Very low (~0.001%) | High (no genetic material) | No genetic manipulation Ideal for clinical use | Extremely low efficiency Complex purification |
PiggyBac Transposon | Transposon | High (integrates but is removable) | Moderate (~0.1%) | Moderate (excision required) | Reversible integration Higher efficiency than plasmids | Excision may leave genomic scars Residual integration risk |
CRISPR Activation | CRISPR-dCas9 (activation) | None(epigenetic) | Low (~0.01%) | High (no DNA modification) | Precise epigenetic reprogramming No exogenous genes | Low efficiency Off-target effects possible |
Cell Type | Differentiation Protocol | Therapeutic Applications | Clinical Status | Key Advantages/Challenges | References |
---|---|---|---|---|---|
iPSCs-NK Cells | Feeder-free/serum-free protocols with IL-15/IL-2/FLT3L CAR engineering (e.g., NKG2D-2B4-CD3ζ) | Targeting hematologic malignancies (AML, lymphoma) and solid tumors (ovarian, breast) Enhanced ADCC via CD16 engineering | Phase I/II: FT522 (Fate Therapeutics), CNTY-101 (Century Therapeutics) | Advantages: Off-the-shelf, low GVHD risk. | [26] |
iPSCs-T Cells | Stroma-free platforms with Notch signaling G9a/GLP inhibition to enhance maturation CAR-T engineering (e.g., CD19, CD70) | Hematologic cancers (B cell malignancies, AML) Solid tumors (renal cell carcinoma) | Preclinical/Phase I: FT819 (CAR-T for SLE, potential cancer crossover) | Advantages: Unlimited supply, rejuvenated telomeres Challenges: Immature phenotype | [27] |
iPSCs-DCs | GM-CSF/IL-4 differentiation from hematopoietic progenitors | Antigen presentation, tumor vaccine platforms | Preclinical: Limited trials due to manufacturing complexity | Advantages: High antigen uptake Challenges: Low migratory capacity | [28] |
iPSCs-CAR-NKT | IL-15/IL-21-driven differentiation CAR engineering (e.g., CD19, CD70) | Dual targeting of tumors and immunosuppressive TME | Phase I: NKT cell trials for head/neck cancers (Japan) | Advantages: Innate/adaptive immunity synergy Challenges: Scalability | [29] |
iPSCs-Macrophages | M-CSF/IL-3 differentiation CAR-M engineering (e.g., anti-CD19) | Solid tumor infiltration (e.g., glioblastoma) | Preclinical: Emerging interest | Advantages: TME remodeling Challenges: Pro-tumor polarization risks | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xun, X.; Hao, J.; Cheng, Q.; Gao, P. Induced Pluripotent Stem Cell-Based Cancer Immunotherapy: Strategies and Perspectives. Biomedicines 2025, 13, 2012. https://doi.org/10.3390/biomedicines13082012
Xun X, Hao J, Cheng Q, Gao P. Induced Pluripotent Stem Cell-Based Cancer Immunotherapy: Strategies and Perspectives. Biomedicines. 2025; 13(8):2012. https://doi.org/10.3390/biomedicines13082012
Chicago/Turabian StyleXun, Xiaodong, Jialing Hao, Qian Cheng, and Pengji Gao. 2025. "Induced Pluripotent Stem Cell-Based Cancer Immunotherapy: Strategies and Perspectives" Biomedicines 13, no. 8: 2012. https://doi.org/10.3390/biomedicines13082012
APA StyleXun, X., Hao, J., Cheng, Q., & Gao, P. (2025). Induced Pluripotent Stem Cell-Based Cancer Immunotherapy: Strategies and Perspectives. Biomedicines, 13(8), 2012. https://doi.org/10.3390/biomedicines13082012