An Overview of the Role of Medicinal Plants in Parkinson’s Disease: A Semi-Systematic Review
Abstract
1. Introduction
2. Methods
2.1. Protocol Registration
2.2. Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Study Selection
2.5. Data Extraction
2.6. Search Results
3. Results
3.1. Herbal Products and Parkinson’s Disease
3.1.1. Gastrodia Elata
3.1.2. Ginkgo Biloba
3.1.3. Curcuma Longa
3.1.4. Paeonia Alba Radix
3.1.5. Pueraria Lobata
3.1.6. Scutellaria Baicalensis
3.1.7. Withania Somnifera
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
6-OHDA | 6-Hydroxydopamine |
BBB | Blood–brain barrier |
CNS | Central nervous system |
DA | Dopamine |
ETC | Electron Transport Chain |
GABA | Gamma-Aminobutyric Acid |
GPi | Globus Pallidus Internus |
GSH | Glutathione |
hs-CRP | High-sensitivity C-reactive protein |
IL-1β | Interleukin-1 beta |
IL-4 | Interleukin-4 |
IL-6 | Interleukin-6 |
MAO-I | Monoamine Oxidase Inhibitors |
MDA | Malondialdehyde |
MPTP | 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine |
OS | Oxidative stress |
PD | Parkinson’s disease |
p.o | Per Os |
ROS | Reactive oxygen species |
SNr | Substantia nigra pars reticulata |
TNF-α | Tumor necrosis factoralpha |
References
- World Health Organization. Parkinson Disease; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Phani, S.; Loike, J.D.; Przedborski, S. Neurodegeneration and inflammation in Parkinson’s disease. Park. Relat. Disord. 2012, 18 (Suppl. S1), S207–S209. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Bastia, E.; Schwarzschild, M.A. Therapeutic potential of adenosine A2A receptor antagonists in Parkinson’s disease. Pharmacol. Ther. 2005, 105, 267–310. [Google Scholar] [CrossRef] [PubMed]
- Connolly, B.S.; Lang, A.E. Pharmacological Treatment of Parkinson Disease: A Review. JAMA 2014, 311, 1670–1683. [Google Scholar] [CrossRef]
- Olanow, C.W.; Schapira, A.H. Therapeutic Prospects for Parkinson Disease. Ann. Neurol. 2013, 74, 337–347. [Google Scholar] [CrossRef]
- Surguchov, A.; Bernal, L.; Surguchev, A.A. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules 2021, 11, 624. [Google Scholar] [CrossRef]
- World Health Organization. Traditional Medicine Strategy 2014–2023; WHO Press: Geneva, Switzerland, 2013. [Google Scholar]
- Dai, J.N.; Zong, Y.; Zhong, L.M.; Li, Y.M.; Zhang, W.; Bian, L.G.; Ai, Q.L.; Liu, Y.D.; Sun, J.; Lu, D. Gastrodin Inhibits Expression of Inducible NO Synthase, Cyclooxygenase-2 and Proinflammatory Cytokinesin Cultured LPS-Stimulated Microglia via MAPK Pathways. PLoS ONE 2011, 6, e21891. [Google Scholar] [CrossRef]
- An, H.; Kim, I.S.; Koppula, S.; Kim, B.W.; Park, P.J.; Lim, B.O.; Choi, W.S.; Lee, K.H.; Choi, D.K. Protective Effects of Gastrodiaelata Blumeon MPP⁺-Induced Cytotoxicity in Human Dopaminergic SH-SY5Y Cells. J. Ethnopharmacol. 2010, 130, 290–298. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wang, M.Y.; Fu, X.R.; Yu, P.; Gao, G.-F.; Fan, Y.-M.; Duan, X.-L.; Zhao, B.-L.; Chang, Y.-Z.; Shi, Z.-H. Neuroprotective Effects of Ginkgetin Against Neuroinjury in a Parkinson’s Disease Model Induced by MPTP via Chelating Iron. Free Radic. Res. 2015, 49, 1069–1080. [Google Scholar] [CrossRef]
- Hua, J.; Yin, N.; Yang, B.; Zhang, J.; Ding, J.; Fan, Y.; Hu, G. Ginkgolide B and Bilobalide Ameliorate Neural Cell Apoptosis in α-Synuclein Aggregates. Biomed. Pharmacother. 2017, 96, 792–797. [Google Scholar] [CrossRef]
- Vijayakumaran, S.; Nakamura, Y.; Henley, J.M.; Pountney, D.L. Ginkgolic Acid Promotes Autophagy-Dependent Clearance of Intracellular Alpha-Synuclein Aggregates. Mol. Cell. Neurosci. 2019, 101, 103416. [Google Scholar] [CrossRef]
- Wu, T.; Fang, X.; Xu, J.; Jiang, Y.; Cao, F.; Zhao, L. Synergistic Effects of Ginkgolide B and Protocatechuic Acid on the Treatment of Parkinson’s Disease. Molecules 2020, 25, 3976. [Google Scholar] [CrossRef] [PubMed]
- Ammon, H.P.; Wahl, M.A. Pharmacology of Curcumalonga. Planta Med. 1991, 57, 1–7. [Google Scholar] [CrossRef]
- Zbarsky, V.; Datla, K.P.; Parkar, S.; Rai, D.K.; Aruoma, O.I.; Dexter, D.T. Neuroprotective Properties of the Natural Phenolic Antioxidants Curcumin and Naringenin but Not Quercetin and Fisetin in a 6-OHDA Model of Parkinson’s Disease. Free Radic. Res. 2005, 39, 1119–1125. [Google Scholar] [CrossRef]
- Cao, B.Y.; Yang, Y.P.; Luo, W.F.; Mao, C.J.; Han, R.; Sun, X.; Cheng, J.; Liu, C.F. Paeoniflorin, a Potent Natural Compound, Protects PC12 Cells from MPP⁺ and Acidic Damagevia Autophagic Pathway. J. Ethnopharmacol. 2010, 131, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Cao, Y.B.; Hu, L.F.; Yang, Y.P.; Li, J.; Wang, F.; Liu, C.F. ASICs Mediate the Modulatory Effect by Paeoniflorin on Alpha-Synuclein Autophagic Degradation. Brain Res. 2011, 1396, 77–87. [Google Scholar] [CrossRef]
- Song, J.X.; Choi, M.Y.; Wong, K.C.; Chung, W.W.; Sze, S.C.; Ng, T.B.; Zhang, K.Y. Baicalein Antagonizes Rotenone-Induced Apoptosis in Dopaminergic SH-SY5Y Cells Related to Parkinsonism. Chin. Med. 2012, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Wongtrakul, J.; Thongtan, T.; Kumrapich, B.; Saisawang, C.; Ketterman, A.J. Neuroprotective Effects of Withania somnifera in the SH-SY5Y Parkinson Cell Model. Heliyon 2021, 7, e08172. [Google Scholar] [CrossRef]
- Kumar, H.; Kim, I.S.; More, S.V.; Kim, B.W.; Bahk, Y.Y.; Choi, D.K. Gastrodin Protects Apoptotic Dopaminergic Neuronsina Toxin-Induced Parkinson’s Disease Model. Evid.-Based Complement. Altern. Med. 2013, 2013, 514095. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, J.I.; Lee, W.Y.; Kim, S.E. Neuroprotective Effect of Ginkgo biloba L. Extract in a Rat Model of Parkinson’s Disease. Phytother. Res. 2004, 18, 663–666. [Google Scholar] [CrossRef]
- Fei, C.; Shenggang, S.; E-Tang, T. Experimental Study on Inhibition of Neuronal Toxical Effect of Levodopa by Ginkgo biloba Extract on Parkinson Disease in Rats. J. Univ. Sci. Technol. Med. Sci. 2003, 23, 151–153. [Google Scholar] [CrossRef]
- Yang, S.F.; Wu, Q.; Sun, A.S.; Huang, X.N.; Shi, J.S. Protective Effect and Mechanism of Ginkgo biloba Leaf Extracts for Parkinson Disease Induced by MPTP. Acta Pharmacol. Sin. 2001, 22, 1089–1093. [Google Scholar]
- Zhou, X.; Qi, Y.; Chen, T. Long-Term Pre-Treatment of Antioxidant Ginkgo biloba Extract EGb-761 Attenuates Cerebral Ischemia-Induced Neuronal Damage in Aged Mice. Biomed. Pharmacother. 2017, 85, 256–263. [Google Scholar] [CrossRef]
- Conrad, G.D. Is Ginkgo biloba and/or a Multivitamin Multimineral Supplement a Therapeutic Option for Parkinson’s Disease? A Case Report. Glob. Adv. Health Med. 2014, 3, 43–44. [Google Scholar] [CrossRef] [PubMed]
- El-Ghazaly, M.A.; Sadik, N.A.; Rashed, E.R.; AbdEl-Fattah, A.A. Neuroprotective Effect of EGb761® and Low-Dose Whole-Body γ-Irradiation in a Rat Model of Parkinson’s Disease. Toxicol. Ind. Health 2015, 31, 1128–1143. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, W.; Wang, Y. A Ginkgo biloba Extract Promotes Proliferation of Endogenous Neural Stem Cellsin Vascular Dementia Rats. Neural Regen. Res. 2013, 8, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Xue, Z.Y. Effect of Western Medicine Therapy Assisted by Ginkgo biloba Tablet on Vascular Cognitive Impairment of Non-Dementia. Asian Pac. J. Trop. Med. 2012, 5, 661–664. [Google Scholar] [CrossRef]
- Tripanichkul, W.; Jaroensuppaperch, E.O. Curcumin Protects Nigrostriatal Dopaminergic Neurons and Reduces Glial Activation in 6-Hydroxydopamine Hemiparkinsonian Mice Model. Int. J. Neurosci. 2012, 122, 263–270. [Google Scholar] [CrossRef]
- Ojha, R.P.; Rastogi, M.; Devi, B.P.; Agrawal, A.; Dubey, G.P. Neuroprotective Effect of Curcuminoids Against Inflammation-Mediated Dopaminergic Neurodegeneration in the MPTP Model of Parkinson’s Disease. J. Neuroimmune Pharmacol. 2012, 7, 609–618. [Google Scholar] [CrossRef]
- Pan, J.; Li, H.; Ma, J.F.; Tan, Y.Y.; Xiao, Q.; Ding, J.Q.; Chen, S.-D. Curcumin Inhibition of JNKs Prevents Dopaminergic Neuronal Loss in a Mouse Model of Parkinson’s Disease Through Suppressing Mitochondria Dysfunction. Transl. Neurodegener. 2012, 1, 16. [Google Scholar] [CrossRef]
- Liu, H.Q.; Zhang, W.Y.; Luo, X.T.; Ye, Y.; Zhu, X.Z. Paeoniflorin Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in the MPTP Model of Parkinson’s Disease by Activation of Adenosine A1 Receptor. Br. J. Pharmacol. 2006, 148, 314–325. [Google Scholar] [CrossRef]
- Liu, D.Z.; Zhu, J.; Jin, D.Z.; Zhang, L.M.; Ji, X.Q.; Ye, Y.; Tang, C.P.; Zhu, X.Z. Behavioral Recovery Following Sub-Chronic Paeoniflorin Administration in the Striatal 6-OHDA Lesion Rodent Model of Parkinson’s Disease. J. Ethnopharmacol. 2007, 112, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Wang, X.; Wu, S.; Li, X.; Li, Q. Neuroprotective Effects of Puerarin on 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Induced Parkinson’s Disease Model in Mice. Phytother. Res. 2014, 28, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.; Bae, H.; Min, B.-I.; Cho, S. Yeoldahanso-Tang Improves Motor Dysfunction and Protects Dopaminergic Neuronsin MPTP-Induced Mouse Model of Parkinson’s Disease. J. Ethnopharmacol. 2015, 162, 157–164. [Google Scholar]
- Tu, L.; Wu, Z.Y.; Yang, X.L.; Zhang, Q.; Gu, R.; Wang, Q.; Tian, T.; Yao, H.; Qu, X.; Tian, J.Y. Neuroprotective Effect and Mechanism of Baicalin on Parkinson’s Disease Model Induced by 6-OHDA. Neuropsychiatr. Dis. Treat. 2019, 15, 3615–3625. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, N.; Zou, H.Y. Protective Effect of Baicalin on Mouse with Parkinson’s Disease Induced by MPTP. Zhongguo Zhong Xi Yi Jie He Za Zhi 2007, 27, 1010–1012. [Google Scholar]
- Ma, J.; Wang, R.; Chen, T.; Jiang, S.; Xu, A. Protective Effects of Baicalin in a Caenorhabditis elegans Model of Parkinson’s Disease. Toxicol. Res. 2021, 10, 409–417. [Google Scholar] [CrossRef]
- Ahmad, M.; Saleem, S.; Ahmad, A.S.; Ansari, M.A.; Yousuf, S.; Hoda, N.; Islam, F. Neuroprotective Effects of Withania somnifera on 6-Hydroxydopamine Induced Parkinsonism in Rats. Hum. Exp. Toxicol. 2005, 24, 137–147. [Google Scholar] [CrossRef]
- Prakash, J.; Chouhan, S.; Yadav, S.K.; Westfall, S.; Rai, S.N.; Singh, S.P. Withania somnifera Alleviates Parkinsonian Phenotypes by Inhibiting Apoptotic Pathways in Dopaminergic Neurons. Neurochem. Res. 2014, 39, 2527–2536. [Google Scholar] [CrossRef]
- Prakash, J.; Yadav, S.K.; Chouhan, S.; Singh, S.P. Neuroprotective Role of Withania somnifera Root Extract in Maneb-Paraquat Induced Mouse Model of Parkinsonism. Neurochem. Res. 2013, 38, 972–980. [Google Scholar] [CrossRef]
- Dar, N.J.; Ahmad, M. Neurodegenerative Diseases and Withania somnifera (L.): An Update. J. Ethnopharmacol. 2020, 256, 112769. [Google Scholar] [CrossRef]
- Bhatnagar, M.; Goel, I.; Roy, T.; Shukla, S.D.; Khurana, S.; Cai, H. Complete Comparison Display (CCD) Evaluation of Ethanol Extracts of Centella asiatica and Withania somnifera Shows That They Can Non-Synergistically Ameliorate Biochemical and Behavioural Damages in MPTP Induced Parkinson’s Model of Mice. PLoS ONE 2017, 12, e0177254. [Google Scholar] [CrossRef]
- Sankar, S.R.; Manivasagam, T.; Krishnamurti, A.; Ramanathan, M. The Neuroprotective Effect of Withania somnifera Root Extract in MPTP-Intoxicated Mice: An Analysis of Behavioral and Biochemical Variables. Cell. Mol. Biol. Lett. 2007, 12, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Choi, D.K.; Jung, H.J. Neuroprotective Effects of Vanillyl Alcohol in Gastrodiaelata Blume through Suppression of Oxidative Stress and Anti-Apoptotic Activity in Toxin-Induced Dopaminergic MN9D Cells. Molecules 2011, 16, 5349–5361. [Google Scholar] [CrossRef] [PubMed]
- AcheteDeSouza, G.; DeMarqui, S.V.; Matias, J.N.; Guiguer, E.L.; Barbalho, S.M. Effects of Ginkgo biloba on Diseases Related to Oxidative Stress. Planta Med. 2020, 86, 376–386. [Google Scholar]
- DeKosky, S.T. Ginkgo biloba for preventing cognitive decline in older adults: A randomized trial. JAMA 2008, 300, 2253. [Google Scholar] [CrossRef]
- Snitz, B.E.; O’Meara, E.S.; Carlson, M.C.; Arnold, A.M.; Ives, D.G.; Rapp, S.R.; Saxton, J.; Lopez, O.L.; Dunn, L.O.; Sink, K.M.; et al. Ginkgo biloba for preventing cognitive decline in older adults: A randomized trial. JAMA 2009, 302, 2663. [Google Scholar] [CrossRef]
- Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and Curcumin-Like Molecules: From Spice to Drugs. Curr. Med. Chem. 2013, 21, 204–222. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Chemical Composition and Biological Activities of Essential Oils of Curcuma Species. Nutrients 2018, 10, 716. [Google Scholar] [CrossRef]
- Gupta, S.C.; Patchva, S.; Koh, W.; Aggarwal, B.B. Discovery of Curcumin, a Component of Golden Spice, and Its Miraculous Biological Activities. Clin. Exp. Pharmacol. Physiol. 2012, 39, 283–299. [Google Scholar] [CrossRef]
- Tang, M.; Taghibiglou, C. The mechanisms of action of curcumin in Alzheimer’s disease. J. Alzheimer’s Dis. 2017, 58, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Chen, Y.; Wang, L.; Tou, J. Effects of Baicalin on Inflammatory Reaction, Oxidative Stress and PKD1 and NF-κB Protein Expressions in Rats with Severe Acute Pancreatitis. Acta Cir. Bras. 2018, 33, 556–564. [Google Scholar] [CrossRef]
- Chen, D.S.; Cao, J.G.; Zhu, B.; Wang, Z.L.; Wang, T.F.; Tang, J.J. Baicalin Attenuates Joint Pain and Muscle Dysfunction by Inhibiting Muscular Oxidative Stress in an Experimental Osteoarthritis Rat Model. Arch. Immunol. Ther. Exp. 2018, 66, 453–461. [Google Scholar] [CrossRef]
- Fang, J.; Wang, H.; Zhou, J.; Dai, W.; Zhu, Y.; Zhou, Y.; Wang, X.; Zhou, M. Baicalin Provides Neuroprotection in Traumatic Brain Injury Mice Model Through Akt/Nrf2 Pathway. Drug Des. Dev. Ther. 2018, 12, 2497–2508. [Google Scholar] [CrossRef]
- Yimam, M.; Burnett, B.P.; Brownell, L.; Jia, Q. Clinical and Preclinical Cognitive Function Improvement After Oral Treatment of a Botanical Composition Composed of Extracts from Scutellaria baicalensis and Acacia catechu. Behav. Neurol. 2016, 2016, 7240802. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Du, L.; Zhang, W.; Du, G. Baicale in Exerts Anti-Neuroinflammatory Effects to Protect Against Rotenone-Induced Brain Injury in Rats. Int. Immunopharmacol. 2017, 50, 38–47. [Google Scholar] [CrossRef]
- Yune, T.Y.; Lee, J.Y.; Cui, C.M.; Kim, H.C.; Oh, T.H. Neuroprotective Effect of Scutellaria baicalensis on Spinal Cord Injury in Rats. J. Neurochem. 2009, 110, 1276–1287. [Google Scholar] [CrossRef]
- Leathem, A.; Ortiz-Cerda, T.; Dennis, J.M.; Witting, P.K. Evidence for Oxidative Pathways in the Pathogenesis of PD: Are Antioxidants Candidate Drugs to Ameliorate Disease Progression? Int. J. Mol. Sci. 2022, 23, 8335. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, X.; Yang, X.; Yv, Q.; Ye, F.; Chen, S.; Cui, Y.; Gu, L.; Zhu, M.; Li, W. Baicalin Exerts Neuroprotective Actions by Regulating the Nrf2-NLRP3 Axis in Toxin-Induced Models of Parkinson’s Disease. Chem. Biol. Interact. 2024, 387, 110820. [Google Scholar] [CrossRef] [PubMed]
- Berg, D.; Grote, C.; Rausch, W.D.; Mäurer, M.; Wesemann, W.; Riederer, P.; Becker, G. Iron Accumulation in the Substantia Nigra in Rats Visualized by Ultrasound. Ultrasound Med. Biol. 1999, 25, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, C.W.; Lo, S.Q.; Ang, S.T.; Chew, K.C.M.; Yu, D.; Chai, B.H.; Tan, B.; Tsang, F.; Tai, Y.K.; et al. S-Nitrosylation of Divalent Metal Transporter1 Enhances Iron Uptake to Mediate Loss of Dopaminergic Neurons and Motoric Deficit. J. Neurosci. 2018, 38, 8364–8377. [Google Scholar] [CrossRef]
- Guo, C.; Chen, X.; Xiong, P. Baicalin Suppresses Iron Accumulation After Substantia Nigra Injury: Relationship Between Iron Concentration and Transferrin Expression. Neural Regen. Res. 2014, 9, 630–636. [Google Scholar] [CrossRef]
- Yang, M. Inhibition on Iron Deposition in SN in PD Rats by Baicalin and Its Mechanism. Chin. Pharmacol. Bull. 2011, 27, 1740–1744. [Google Scholar]
- Li, M.; Shi, A.; Pang, H.; Xue, W.; Li, Y.; Cao, G.; Yan, B.; Dong, F.; Li, K.; Xiao, W.; et al. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J. Ethnopharmacol. 2014, 156, 210–215. [Google Scholar] [CrossRef]
- Li, L.; Gao, H.; Lou, K.; Luo, H.; Hao, S.; Yuan, J.; Liu, Z.; Dong, R. Safety, tolerability, and pharmacokinetics of oral baicalein tablets in healthy Chinese subjects: A single-center, randomized, double-blind, placebo-controlled multiple-ascending-dose study. Clin. Transl. Sci. 2021, 14, 2017–2024. [Google Scholar] [CrossRef]
- Dong, R.; Li, L.; Gao, H.; Lou, K.; Luo, H.; Hao, S.; Yuan, J.; Liu, Z. Safety, tolerability, pharmacokinetics, and food effect of baicalein tablets in healthy Chinese subjects: A single-center, randomized, double-blind, placebo-controlled, single-dose phase I study. J. Ethnopharmacol. 2021, 274, 114052. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Ma, W.; Xiao, Y.; Wu, B.; Li, X.; Liu, F.; Qiu, J.; Zhang, G. High doses of baicalin induces kidney injury and fibrosis through regulating TGF-β/Smad signaling pathway. Toxicol. Appl. Pharmacol. 2017, 333, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; He, C.; Yu, W.; Yang, M.; Li, Z.; Li, P.; Zhu, X.; Xiao, C.; Cheng, S. Baicalin attenuated Aβ (1-42)-induced apoptosis in SH-SY5Y cells by inhibiting the ras-ERK signaling pathway. Biomed. Res. Int. 2022, 2022, 9491755. [Google Scholar] [CrossRef] [PubMed]
- Afewerky, H.K.; Ayodeji, A.E.; Tiamiyu, B.B.; Orege, J.I.; Okeke, E.S.; Oyejobi, A.O.; Bate, P.N.N.; Adeyemi, S.B. Critical Review of the Withania somnifera (L.) Dunal: Ethnobotany, Pharmacological Efficacy, and Commercialization Significance in Africa. Bull. Natl. Res. Cent. 2021, 45, 112. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, P.K.; Dudhe, R.; Singh, S. Biological Activities of Withania somnifera. Ann. Biol. Res. 2010, 1, 56–63. [Google Scholar]
- Khazdair, M.R.; Kianmehr, M.; Anaeigoudari, A. Effects of medicinal plants and flavonoids on Parkinson’s disease: A review on basic and clinical evidences. Adv. Pharm. Bull. 2021, 11, 224–232. [Google Scholar] [CrossRef]
- Pathak-Gandhi, N.; Vaidya, A.D. Management of Parkinson’s disease in Ayurveda: Medicinal plants and adjuvant measures. J. Ethnopharmacol. 2017, 197, 46–51. [Google Scholar] [CrossRef]
- De Rus Jacquet, A.; Tambe, M.A.; Ma, S.Y.; McCabe, G.P.; Vest, J.H.C.; Rochet, J.C. Pikuni-Blackfeet traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson’s disease-related symptoms. J. Ethnopharmacol. 2017, 206, 393–407. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, Y.; Yang, W.; Han, L.; Mo, X.; Sheng, J.; Tian, Y.; Gao, X. Correlations between amelioration of rotenone-induced Parkinson’s symptoms by Amomum tsaoko flavonoids and gut microbiota in mice. Int. J. Mol. Sci. 2025, 26, 1676. [Google Scholar] [CrossRef]
Medicinal Plant | Active Compounds | Cell Line Used | Inducing Agent | Plant Concentration | Neuroprotective Effect | Ref. |
---|---|---|---|---|---|---|
Gastrodia elata | Gastrodin, vanillyl alcohol, vanillin | Murine microglial BV 2 cells; SH-SY5Y cells; Dopaminergic MN9D cells | MPP+ | 30, 40, and 60 mmol/L; 10 to 200 mg/mL; 10 to 200 mg/mL | Anti-inflammatory; ↓apoptosis; ↓ROS; ↓Bax/Bcl-2 ratio; ↑ cell viability | [9,10] |
Ginkgo biloba | EGb 761 (standardized extract), flavonoids, terpenoids | SH-SY5Y cells | α-synuclein | Not specified | ↓ ROS; modulated iron metabolism; blocked apoptosis | [11,12,13,14] |
Curcuma longa | Curcumin, bisdemethoxycurcumin, desmethoxycurcumin | SH-SY5Y cells; PINK1 siRNA cells | α-synuclein; paraquat | <5 mmol/L; not specified | Blocks apoptosis and caspase 3 activation; Improve mitochondrial activity | [15,16] |
Paeonia alba radix | Paeoniflorin | PC12 cells | MPP+ | 50 mmol/L | ↓ Apoptosis; ↓release of lactate dehydrogenase | [17,18] |
Pueraria lobata | Puerarin | Not reported | Not reported | Not reported | Not reported | N.A |
Scutellaria baicalensis | Baicalein, baicalin | Not reported | Rotenone | Not specified | ↓ Apoptosis; ↓ ROS | [19] |
Withania somnifera | Withanolides (withaferin A, withanolide D) | SH-SY5Y cells | 6-OHDA | 0.25 to 1 mg/mL | ↑ (GPx) activity; ↓ S-glutathionylation; Improves mitochondrial activity; Modulates oxidative stress proteins | [20] |
Medicinal Plant | Active Compounds | Animal Studies | Inducing Agent | Plant Concentration | Neuroprotective Effect | Route of Administration | BBB Permeability | Synuclein-Based Model | Ref. |
---|---|---|---|---|---|---|---|---|---|
Gastrodia elata | Gastrodin, vanillyl alcohol, vanillin | Mice | MPTP | 10, 30, and 60 mg/kg | ↓Bradykinesia and motor dysfunction | Oral | Yes | Not specified | [21] |
Ginkgo biloba | EGb 761 (standardized extract), flavonoids, terpenoids | Rats; mice; serpine | 6-OHDA; MPTP; MPTP; α-synuclein | Not specified | Improves motor coordination; ↓ levodopa toxicity; ↓ apoptosis and oxidative stress; ↑ dopamine and metabolites; ↑ cell survival and↓ neuronal death. | Not specified | Not specified | Yes | [11,22,23,24,25,26,27,28,29] |
Curcuma longa | Curcumin, bisdemethoxycurcumin, desmethoxycurcumin | Rats; mice | 6-OHDA; MPTP | 200 mg/kg; 150 mg/kg/day; 50 mg/kg/day | ↑ Dopamine; ↓ GSH depletion, protein oxidation, inflammation, and apoptosis; protects nigral neurons; ↓astroglial/microglial activation, MDA; ↑ SOD, GPx, and Ach | Intraperitoneal; oral | Not specified | Not specified | [30,31,32] |
Paeonia alba radix | Paeoniflorin | Mice; rats | MPTP; 6-OHDA | 2.5 and 5 mg/kg; 2.5, 5 and 10 mg/kg twice a day | Protects striatal neurons; ↓ bradykinesia, neuroinflammation; improves dopaminergic survival; may modulate autophagy | Subcutaneous | Not specified | Not specified | [33,34] |
Pueraria lobata | Puerarin | Mice | MPTP | Not specified | Improves motor symptoms and dopamine loss; ↑ GSH, GDNF; activates PI3K/Akt; reduces oxidative stress; restores Lamp-2A expression and autophagy | Not specified | Not specified | Not specified | [35,36] |
Scutellariabaicalensis | Baicalein, baicalin | Rats; mice; Cryptococcus hippocastanum | 6-OHDA; MPTP; 6-OHDA | Not specified | ↓ Oxidative damage and motor deficits; ↑ neurotransmitter release; ↓ MDA, caspase-3, iron accumulation; ↑ GSH, GPx, SOD, CAT, GR, Nrf2, and antioxidant enzymes | Not specified | Not specified | Not specified | [37,38,39] |
Withaniasomnifera | Withanolides (withaferin A, withanolide D) | Mice | MPTP; 6-OHDA | Not specified | ↑ Dopamine, DOPAC, HVA, mitochondrial and endothelial function; ↓ apoptosis, inflammation, oxidative stress; and improves motor function | Not specified | Not specified | Not specified | [40,41,42,43,44,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haxhiu, H.; Hoxha, M.; Zela, I.; Zappacosta, B. An Overview of the Role of Medicinal Plants in Parkinson’s Disease: A Semi-Systematic Review. Biomedicines 2025, 13, 2008. https://doi.org/10.3390/biomedicines13082008
Haxhiu H, Hoxha M, Zela I, Zappacosta B. An Overview of the Role of Medicinal Plants in Parkinson’s Disease: A Semi-Systematic Review. Biomedicines. 2025; 13(8):2008. https://doi.org/10.3390/biomedicines13082008
Chicago/Turabian StyleHaxhiu, Hedie, Malvina Hoxha, Ina Zela, and Bruno Zappacosta. 2025. "An Overview of the Role of Medicinal Plants in Parkinson’s Disease: A Semi-Systematic Review" Biomedicines 13, no. 8: 2008. https://doi.org/10.3390/biomedicines13082008
APA StyleHaxhiu, H., Hoxha, M., Zela, I., & Zappacosta, B. (2025). An Overview of the Role of Medicinal Plants in Parkinson’s Disease: A Semi-Systematic Review. Biomedicines, 13(8), 2008. https://doi.org/10.3390/biomedicines13082008