Treatment Strategies for Cutaneous and Oral Mucosal Side Effects of Oncological Treatment in Breast Cancer: A Comprehensive Review
Abstract
1. Introduction
2. Chemotherapy-Induced Cutaneous Toxicities
2.1. Alopecia
2.2. Hand-Foot Syndrome
- Grade 1 (mild): Minimal skin changes (e.g., erythema, tingling) without pain or functional impairment;
- Grade 2 (moderate): Painful erythema and desquamation interfering with daily activities; may require temporary dose adjustment;
- Grade 3 (severe): Blistering, ulceration, or disabling pain necessitating dose reduction or treatment discontinuation.
2.3. Erythema Exudativum Multiforme (EEM)
2.4. Nail and Skin Changes
2.5. Photosensitivity
2.6. Hyperpigmentation
2.7. Radiation-Recall Dermatitis
2.8. Skin Necrosis
2.9. Neutrophilic Eccrine Hidradenitis
2.10. Eccrine Squamous Metaplasia (Syringometaplasia)
2.11. Sclerotic Dermal Reactions
2.12. Raynaud’s Phenomenon
3. Targeted Therapy-Induced Dermatologic Effects
3.1. EGFR and HER2 Inhibitors
3.1.1. Xerosis and Mucosal Involvement
3.1.2. Pruritus
3.1.3. Acneiform Eruptions
3.2. PI3K Inhibitors
3.3. Precision Oncology and Predictive Markers
4. Hormonal Therapy-Associated Skin Effects
4.1. Alopecia and Xerosis
4.2. Vulvovaginal Atrophy and Genitourinary Syndrome
4.3. Immune-Mediated and Rare Cutaneous Reactions
4.4. Clinical Considerations
5. Radiotherapy-Induced Cutaneous Reactions
- CTCAE v5.0:
- ○
- Grade 1: Faint erythema or dry desquamation;
- ○
- Grade 2: Moderate to brisk erythema; patchy moist desquamation, mainly in skin folds;
- ○
- Grade 3: Moist desquamation outside of skin folds; bleeding induced by minor trauma;
- ○
- Grade 4: Full-thickness dermal ulceration or necrosis; spontaneous bleeding;
- ○
- Grade 5: Death (extremely rare) [41].
- Radiation Therapy Oncology Group (RTOG) Acute Radiation Morbidity Scoring Criteria:
- ○
- Grade 0: No visible change;
- ○
- Grade 1: Follicular erythema, epilation, dry desquamation;
- ○
- Grade 2: Patchy moist desquamation, moderate edema;
- ○
- Grade 3: Confluent moist desquamation, pitting edema;
- ○
- Grade 4: Ulceration, hemorrhage, necrosis [144].
6. Immunotherapy-Related Dermatologic Effects
- Grade 1 (Mild): Limited skin involvement without significant symptoms.
- ○
- Management: Topical corticosteroids (e.g., hydrocortisone, mometasone) and oral antihistamines for pruritus.
- Grade 2 (Moderate): Widespread involvement or bothersome pruritus.
- ○
- Management: Temporary suspension of immunotherapy, initiation of medium- to high-potency topical corticosteroids.
- Grade 3–4 (Severe): Extensive involvement, ulceration, or bullous lesions (e.g., Stevens-Johnson syndrome, toxic epidermal necrolysis).
- ○
7. Oral Mucosal Toxicities in Breast Cancer Patients
Therapy Type | Drug(s) | Oral Mucosal Adverse Effects | Severity (CTCAE) | Management Strategies | References |
---|---|---|---|---|---|
Chemotherapy | 5-FU, capecitabine, methotrexate, trastuzumab-deruxtecan | Oral mucositis (pain, erythema, ulcers) | Grade 1–3 | Cryotherapy during 5-FU, bland rinses, topical lidocaine, systemic analgesics | [185,186,187,188,189,193,194,202,208,212,213] |
Targeted therapy | e.g., everolimus | Stomatitis (aphthous-like lesions) | Grade 1–2 | Dexamethasone mouthwash (prophylactic), topical corticosteroids | [106,190,191,192,193,211] |
Chemotherapy/immunotherapy | Any immunosuppressive therapy | Oral candidiasis | Grade 1–2 (usually) | Topical antifungals (nystatin), systemic fluconazole, oral hygiene | [194] |
Hormonal therapy | Aromatase inhibitors | Xerostomia, mucosal atrophy | Grade 1 | Saliva substitutes, oral moisturizers, frequent hydration | [201,204,205] |
EGFR/mTOR inhibitors | Trastuzumab-deruxtecan, everolimus | Dysgeusia, xerostomia, delayed healing | Grade 1–2 | Zinc supplementation (optional), salivary stimulants, mucosal protective agents | [195,196,197] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-FU | 5-Fluorouracil |
ACE | Angiotensin-converting enzyme |
(C)AEs | (Cutaneous) adverse events |
AIs | Aromatase inhibitors |
AuNPs | Gold nanoparticles |
CDK4/6 | Cyclin-dependent kinase 4 and 6 |
CIA | Chemotherapy-induced alopecia |
COX-2 | Cyclooxygenase-2 |
CTCAE | Common Terminology Criteria for Adverse Events |
DHEA | Dehydroepiandrosterone |
EEM | Erythema exudativum multiforme |
EGFR | Epidermal growth factor receptor |
GSM | Genitourinary syndrome of menopause |
HER2 | Human epidermal growth factor receptor 2 |
HFS | Hand-foot syndrome |
ICIs | Immune checkpoint inhibitors |
IrAEs | Immune-related adverse events |
LDOM | Low-dose oral minoxidil |
MDT | Multidisciplinary team |
mTOR | Mechanistic target of rapamycin |
NEH | Neutrophilic eccrine hidradenitis |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
PI3Kα | Phosphoinositide 3-kinase alpha |
PI3K–AKT–mTOR | Phosphoinositide 3-kinase–AKT–mechanistic target of rapamycin pathway |
PIK3Cα | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
RTOG | Radiation Therapy Oncology Group |
SCLE | Subacute cutaneous lupus erythematosus |
SERMs | Selective estrogen receptor modulators |
SJS | Stevens–Johnson syndrome |
SPF | Sun protection factor |
TNBC | Triple-negative breast cancer |
UV | Ultraviolet |
References
- Lei, S.; Zheng, R.; Zhang, S.; Wang, S.; Chen, R.; Sun, K.; Zeng, H.; Zhou, J.; Wei, W. Global Patterns of Breast Cancer Incidence and Mortality: A Population-Based Cancer Registry Data Analysis from 2000 to 2020. Cancer Commun. 2021, 41, 1183–1194. [Google Scholar] [CrossRef]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global Patterns and Trends in Breast Cancer Incidence and Mortality across 185 Countries. Nat. Med. 2025, 31, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Sarhangi, N.; Hajjari, S.; Heydari, S.F.; Ganjizadeh, M.; Rouhollah, F.; Hasanzad, M. Breast Cancer in the Era of Precision Medicine. Mol. Biol. Rep. 2022, 49, 10023–10037. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Gao, Y.; Zhang, G. The Treatment of Breast Cancer in the Era of Precision Medicine. Cancer Biol. Med. 2025, 22, 322–347. [Google Scholar] [CrossRef]
- Xiong, X.; Zheng, L.W.; Ding, Y.; Chen, Y.F.; Cai, Y.W.; Wang, L.P.; Huang, L.; Liu, C.C.; Shao, Z.M.; Yu, K.D. Breast Cancer: Pathogenesis and Treatments. Signal Transduct. Target. Ther. 2025, 10, 49. [Google Scholar] [CrossRef]
- Lacouture, M.; Sibaud, V. Toxic Side Effects of Targeted Therapies and Immunotherapies Affecting the Skin, Oral Mucosa, Hair, and Nails. Am. J. Clin. Dermatol. 2018, 19 (Suppl. 1), 31–39. [Google Scholar] [CrossRef]
- Deutsch, A.; Leboeuf, N.R.; Lacouture, M.E.; McLellan, B.N. Dermatologic Adverse Events of Systemic Anticancer Therapies: Cytotoxic Chemotherapy, Targeted Therapy, and Immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 485–500. [Google Scholar] [CrossRef]
- Calderon, C.; Carmona-Bayonas, A.; Hernández, R.; Ghanem, I.; Castelo, B.; Martinez de Castro, E.; Ferreira, E.; Ciria, L.; Muñiz, M.; Jimenez-Fonseca, P. Effects of Pessimism, Depression, Fatigue, and Pain on Functional Health-Related Quality of Life in Patients with Resected Non-Advanced Breast Cancer. Breast 2019, 44, 108–112. [Google Scholar] [CrossRef]
- Adamowicz, K.; Baczkowska-Waliszewska, Z. Quality of Life during Chemotherapy, Hormonotherapy or AntiHER2 Therapy of Patients with Advanced, Metastatic Breast Cancer in Clinical Practice. Health Qual. Life Outcomes 2020, 18, 134. [Google Scholar] [CrossRef]
- Čeović, R.; Kovačec, L.; Bukvić Mokos, Z.; Marinović, B. Dermatologic Adverse Events in Oncologic Therapies. Acta Dermatovenerol. Croat. 2022, 30, 237–249. [Google Scholar]
- AbuAloush, Z.; Awad, W.; Mashni, O.; Shkakhwa, F.; Al-Faris, A.; Al-Omari, M.; Nabulsi, S.; Nazer, L. Incidence, Characteristics, and Clinical Impact of Serious Adverse Events in Patients with Breast Cancer Receiving Antineoplastic Treatment in the Ambulatory Setting. Pharmacol. Res. Perspect. 2024, 12, e70020. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kato, S.; Kurzrock, R. Evolution of Precision Oncology, Personalized Medicine, and Molecular Tumor Boards. Surg. Oncol. Clin. N. Am. 2024, 33, 197–216. [Google Scholar] [CrossRef]
- Tonello, S.; Rolla, R.; Tillio, P.A.; Sainaghi, P.P.; Colangelo, D. Microenvironment and Tumor Heterogeneity as Pharmacological Targets in Precision Oncology. Pharmaceuticals 2025, 18, 915. [Google Scholar] [CrossRef]
- Fabi, A.; Rossi, A.; Mocini, E.; Cardinali, L.; Bonavolontà, V.; Cenci, C.; Magno, S.; Barberi, V.; Moretti, A.; Besharat, Z.M.; et al. An Integrated Care Approach to Improve Well-Being in Breast Cancer Patients. Curr. Oncol. Rep. 2024, 26, 346–358. [Google Scholar] [CrossRef]
- Anoop, T.M.; Joseph, P.R.; Pn, M.; Kp, P.; Gopan, G.; Chacko, S. Cutaneous Toxicities in Breast Cancer Patients Receiving Chemotherapy and Targeted Agents—An Observational Clinical Study. Clin. Breast Cancer 2021, 21, e434–e447. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and Beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes Dis. 2022, 10, 1367–1401. [Google Scholar] [CrossRef] [PubMed]
- Munzone, E.; Bagnardi, V.; Campennì, G.; Mazzocco, K.; Pagan, E.; Tramacere, A.; Masiero, M.; Iorfida, M.; Mazza, M.; Montagna, E.; et al. Preventing Chemotherapy-Induced Alopecia: A Prospective Clinical Trial on the Efficacy and Safety of a Scalp-Cooling System in Early Breast Cancer Patients Treated with Anthracyclines. Br. J. Cancer 2019, 121, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Wikramanayake, T.C.; Haberland, N.I.; Akhundlu, A.; Laboy Nieves, A.; Miteva, M. Prevention and Treatment of Chemotherapy-Induced Alopecia: What Is Available and What Is Coming? Curr. Oncol. 2023, 30, 3609–3626. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Anthracycline-Containing and Taxane-Containing Chemotherapy for Early-Stage Operable Breast Cancer: A Patient-Level Meta-Analysis of 100,000 Women from 86 Randomised Trials. Lancet 2023, 401, 1277–1292. [Google Scholar] [CrossRef]
- Kocan, S.; Aktug, C.; Gursoy, A. “Who Am I?” A Qualitative Meta-Synthesis of Chemotherapy-Induced Alopecia and Body Image Perception in Breast Cancer Patients. Support. Care Cancer 2023, 31, 237. [Google Scholar] [CrossRef] [PubMed]
- Gaumond, S.I.; Lee, K.J.; Warp, P.V.; Kamholtz, I.; Dreifus, E.M.; Jimenez, J.J. Parallel Toxicities: A Comparative Analysis of Chemotherapy-Induced Neutropenia and Alopecia. Cancers 2025, 17, 1163. [Google Scholar] [CrossRef] [PubMed]
- Natarelli, N.; Gahoonia, N.; Sivamani, R.K. Integrative and Mechanistic Approach to the Hair Growth Cycle and Hair Loss. J. Clin. Med. 2023, 12, 893. [Google Scholar] [CrossRef]
- Ben Kridis, W.; Boudawara, O.; Khanfir, A. Chemotherapy-Induced Alopecia in Breast Cancer Patients: A Monocentric Prospective Study. Breast Dis. 2024, 43, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Peera, M.; Rose, L.; Kaufman, L.; Zhang, E.; Alkhaifi, M.; Dulmage, B. Hair Loss: Alopecia Fears and Realities for Survivors of Breast Cancer—A Narrative Review. Ann. Palliat. Med. 2024, 13, 1235–1245. [Google Scholar] [CrossRef]
- Rossi, A.; Caro, G.; Fortuna, M.C.; Pigliacelli, F.; D’Arino, A.; Carlesimo, M. Prevention and Treatment of Chemotherapy-Induced Alopecia. Dermatol. Pract. Concept. 2020, 10, e2020074. [Google Scholar] [CrossRef]
- Bhoyrul, B.; Asfour, L.; Lutz, G.; Mitchell, L.; Jerjen, R.; Sinclair, R.D.; Holmes, S.; Chaudhry, I.H.; Harries, M.J. Clinicopathologic Characteristics and Response to Treatment of Persistent Chemotherapy-Induced Alopecia in Breast Cancer Survivors. JAMA Dermatol. 2021, 157, 1335–1342. [Google Scholar] [CrossRef]
- Perez, A.M.; Haberland, N.I.; Miteva, M.; Wikramanayake, T.C. Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention. Curr. Oncol. 2024, 31, 5709–5721. [Google Scholar] [CrossRef]
- Belum, V.R.; de Barros Silva, G.; Laloni, M.T.; Ciccolini, K.; Goldfarb, S.B.; Norton, L.; Sklarin, N.T.; Lacouture, M.E. Cold Thermal Injury from Cold Caps Used for the Prevention of Chemotherapy-Induced Alopecia. Breast Cancer Res. Treat. 2016, 157, 395–400. [Google Scholar] [CrossRef]
- Bajpai, J.; Kagwade, S.; Chandrasekharan, A.; Dandekar, S.; Kanan, S.; Kembhavi, Y.; Ghosh, J.; Banavali, S.D.; Gupta, S. Randomised Controlled Trial of Scalp Cooling for the Prevention of Chemotherapy-Induced Alopecia. Breast 2020, 49, 187–193. [Google Scholar] [CrossRef]
- Silva, G.B.; Ciccolini, K.; Donati, A.; van den Hurk, C. Scalp Cooling to Prevent Chemotherapy-Induced Alopecia. An. Bras. Dermatol. 2020, 95, 631–637. [Google Scholar] [CrossRef]
- Mokbel, K.; Kodresko, A.; Trembley, J.; Jouhara, H. Therapeutic Effect of Superficial Scalp Hypothermia on Chemotherapy-Induced Alopecia in Breast Cancer Survivors. J. Clin. Med. 2024, 13, 5397. [Google Scholar] [CrossRef]
- Haque, E.; Alabdaljabar, M.S.; Ruddy, K.J.; Haddad, T.C.; Thompson, C.A.; Lehman, J.S.; Hashmi, S.K. Management of Chemotherapy-Induced Alopecia (CIA): A Comprehensive Review and Future Directions. Crit. Rev. Oncol. Hematol. 2020, 156, 103093. [Google Scholar] [CrossRef]
- Bellani, D.; Patil, R.; Prabhughate, A.; Shahare, R.; Gold, M.; Kapoor, R.; Shome, D. Pathophysiological Mechanisms of Hair Follicle Regeneration and Potential Therapeutic Strategies. Stem Cell Res. Ther. 2025, 16, 302. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Motavaf, M.; Raza, D.; McLure, A.J.; Osei-Opare, K.D.; Bordone, L.A.; Gru, A.A. Revolutionary Approaches to Hair Regrowth: Follicle Neogenesis, Wnt/β-Catenin Signaling, and Emerging Therapies. Cells 2025, 14, 779. [Google Scholar] [CrossRef]
- Cao, X.; Lu, M.; Li, N.; Cai, L.; Wang, Y.; Zhao, Y. Emerging Biomedical Engineering Strategies for Hair Follicle Regeneration. Bioact. Mater. 2025, 53, 84–113. [Google Scholar] [CrossRef] [PubMed]
- Braghiroli, C.S.; Ieiri, R.; Ocanha, J.P.; Paschoalini, R.B.; Miot, H.A. Do You Know This Syndrome? Hand-Foot Syndrome. An. Bras. Dermatol. 2017, 92, 131–133. [Google Scholar] [CrossRef]
- Kwakman, J.J.M.; Elshot, Y.S.; Punt, C.J.A.; Koopman, M. Management of Cytotoxic Chemotherapy-Induced Hand-Foot Syndrome. Oncol. Rev. 2020, 14, 442. [Google Scholar] [CrossRef]
- Whorton, A.E.; Razzak, A.N.; Jha, P. Hand-Foot Syndrome Presentation Post-Capecitabine Treatment in a Black Patient. Cureus 2022, 14, e26891. [Google Scholar] [CrossRef]
- Miller, K.K.; Gorcey, L.; McLellan, B.N. Chemotherapy-Induced Hand-Foot Syndrome and Nail Changes: A Review of Clinical Presentation, Etiology, Pathogenesis, and Management. J. Am. Acad. Dermatol. 2014, 71, 787–794. [Google Scholar] [CrossRef]
- Freites-Martinez, A.; Santana, N.; Arias-Santiago, S.; Viera, A. Using the Common Terminology Criteria for Adverse Events (CTCAE-Version 5.0) to Evaluate the Severity of Adverse Events of Anticancer Therapies. Actas Dermo-Sifiliogr. 2021, 112, 90–92. [Google Scholar] [CrossRef] [PubMed]
- King, T.L.; Voon, P.J.; Yuen, K.H.; Mohamed Noor, D.A. Hand-Foot Syndrome in Cancer Patients on Capecitabine: Examining Prevalence, Impacts, and Associated Risk Factors at a Cancer Centre in Malaysia. Support. Care Cancer 2024, 32, 345. [Google Scholar] [CrossRef] [PubMed]
- Iimura, Y.; Ishiguro, H.; Hashimoto, H.; Nojima, M.; Oyamada, S.; Mori, K.; Ariyoshi, K.; Kuroda, S.; Hirakawa, S.; Fujiwara, N.; et al. A Randomized, Double-Blind, Placebo-Controlled Phase III Study Evaluating the Preventive Effect of Diclofenac Cream on Capecitabine-Related Hand-Foot Syndrome: Study Protocol of J-SUPPORT2401/JORTC-SUP06 (J-DIRECT). Int. J. Clin. Oncol. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Zaiem, A.; Hammamia, S.B.; Aouinti, I.; Charfi, O.; Ladhari, W.; Kastalli, S.; Aidli, S.E.; Lakhoua, G. Hand-Foot Syndrome Induced by Chemotherapy Drug: Case Series Study and Literature Review. Indian J. Pharmacol. 2022, 54, 208–215. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Fu, X.; Wang, X.X.; Sun, X.J.; He, X.D. Utility of Cooling Patches to Prevent Hand-Foot Syndrome Caused by Pegylated Liposomal Doxorubicin in Breast Cancer Patients. World J. Clin. Cases 2021, 9, 10075–10087. [Google Scholar] [CrossRef]
- Poduje, S.; Vujević, L.; Filipović, N.; Vučić, M.; Buljan, M. Segmental Erythema Multiforme: An Unusual Drug Reaction to Anastrozole. Acta Dermatovenerol. Croat. 2023, 31, 29–31. [Google Scholar]
- Gungor, T.; Gumru, S.; Gumru, B. Erythema Multiforme: A Retrospective Study of Etiologies, Clinical Manifestations, and Treatments. J. Dent. Sci. 2024, 19, 2295–2304. [Google Scholar] [CrossRef]
- Marks, M.E.; Botta, R.K.; Abe, R.; Beachkofsky, T.M.; Boothman, I.; Carleton, B.C.; Chung, W.H.; Cibotti, R.R.; Dodiuk-Gad, R.P.; Grimstein, C.; et al. Updates in SJS/TEN: Collaboration, Innovation, and Community. Front. Med. 2023, 10, 1213889. [Google Scholar] [CrossRef]
- Vossos, H.; Delgado, P.M. Stevens-Johnson Syndrome, Toxic Epidermal Necrolysis: Macules, Papules, and Bullae. J. Am. Psychiatr. Nurses Assoc. 2024, 30, 749–756. [Google Scholar] [CrossRef]
- Shah, H.; Parisi, R.; Mukherjee, E.; Phillips, E.J.; Dodiuk-Gad, R.P. Update on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: Diagnosis and Management. Am. J. Clin. Dermatol. 2024, 25, 891–908. [Google Scholar] [CrossRef]
- Watanabe, Y.; Hama, N. Recent Advances in the Diagnosis and Treatment of Stevens–Johnson Syndrome/Toxic Epidermal Necrolysis. Allergol. Int. 2025, 74, 345–355. [Google Scholar] [CrossRef]
- Sibaud, V.; Lebœuf, N.R.; Roche, H.; Belum, V.R.; Gladieff, L.; Deslandres, M.; Montastruc, M.; Eche, A.; Vigarios, E.; Dalenc, F.; et al. Dermatological Adverse Events with Taxane Chemotherapy. Eur. J. Dermatol. 2016, 26, 427–443. [Google Scholar] [CrossRef]
- Mahon, S.M.; Carr, E. Skin Toxicities: Common Side Effect. Clin. J. Oncol. Nurs. 2021, 25, 32. [Google Scholar] [CrossRef]
- Ladwa, R.; Fogarty, G.; Chen, P.; Grewal, G.; McCormack, C.; Mar, V.; Kerob, D.; Khosrotehrani, K. Management of Skin Toxicities in Cancer Treatment: An Australian/New Zealand Perspective. Cancers 2024, 16, 2526. [Google Scholar] [CrossRef]
- Emvalomati, A.; Oflidou, V.; Papageorgiou, C.; Kemanetzi, C.; Giannouli, M.; Kalloniati, E.; Efthymiadis, K.; Koukoutzeli, C.; Timotheadou, E.; Trigoni, A.; et al. Narrative Review of Drug-Associated Nail Toxicities in Oncologic Patients. Dermatol. Pract. Concept. 2023, 13, e2023064. [Google Scholar] [CrossRef] [PubMed]
- Dan, H.; Jiang, Q.; Jia, X.; Qi, G.; Zong, D.; Li, Z. Dermatologic Toxicities in Epidermal Growth Factor Receptor: A Comprehensive Pharmacovigilance Study from 2013 to 2023. Front. Med. 2024, 10, 1283807. [Google Scholar] [CrossRef] [PubMed]
- Axler, E.N.; Iorizzo, M.; McLellan, B.; Lipner, S.R. Nail Toxicity Associated with Anticancer Agents. J. Am. Acad. Dermatol. 2025, 92, 1327–1336. [Google Scholar] [CrossRef]
- Mittal, S.; Khunger, N.; Kataria, S. Nail Changes with Chemotherapeutic Agents and Targeted Therapies. Indian Dermatol. Online J. 2022, 13, 13–22. [Google Scholar] [CrossRef]
- Capriotti, K.D.; Anadkat, M.; Choi, J.; Kaffenberger, B.; McLellan, B.; Barone, S.; Kukoyi, O.; Goldfarb, S.; Lacouture, M. A Randomized Phase 2 Trial of the Efficacy and Safety of a Novel Topical Povidone-Iodine Formulation for Cancer Therapy-Associated Paronychia. Investig. New Drugs 2019, 37, 1247–1256. [Google Scholar] [CrossRef]
- Sibaud, V.; Sollena, P. Dermatologic Toxicities to Inhibitors of Cyclin-Dependent Kinases CDK 4 and 6: An Updated Review for Clinical Practice. Ann. Dermatol. Venereol. 2023, 150, 208–212. [Google Scholar] [CrossRef]
- Biswal, S.G.; Mehta, R.D. Cutaneous Adverse Reactions of Chemotherapy in Cancer Patients: A Clinicoepidemiological Study. Indian J. Dermatol. 2018, 63, 41–46. [Google Scholar] [CrossRef]
- Salzmann, M.; Marmé, F.; Hassel, J.C. Prophylaxis and Management of Skin Toxicities. Breast Care 2019, 14, 72–77. [Google Scholar] [CrossRef]
- Ferreira, M.N.; Ramseier, J.Y.; Leventhal, J.S. Dermatologic Conditions in Women Receiving Systemic Cancer Therapy. Int. J. Women’s Dermatol. 2019, 5, 285–307. [Google Scholar] [CrossRef]
- Głuszak, P.; Winkel, K.; Dzieciątkowska, M.; Grzejda, M.; Ignasiak, A.; Kurzyca, J.; Piotrowski, I. Xerosis as the Toxicity of Novel Anti-Cancer Therapies—Pathophysiology and Management. Forum Dermatol. 2023, 9, 50–55. [Google Scholar] [CrossRef]
- Johnson, K.; Stoffel, B.; Schwitter, M.; Hayoz, S.; Rojas Mora, A.; Fischer Maranta, A.; El Saadany, T.; Hasler, U.; von Moos, R.; Patzen, A.; et al. Prevention of Taxane Chemotherapy-Induced Nail Changes and Peripheral Neuropathy by Application of Extremity Cooling: A Prospective Single-Centre Study with Intrapatient Comparison. Support. Care Cancer 2024, 32, 554. [Google Scholar] [CrossRef] [PubMed]
- Yodchai, K.; Hubjaroen, S.; Maneekrong, K.; Uthaipan, N. The Efficacy of Chemo-Cooling Gloves in Preventing Nail Toxicity among Thai Women Undergoing Chemotherapy: A Quasi-Experimental Study. Pac. Rim Int. J. Nurs. Res. 2024, 28, 619–631. [Google Scholar] [CrossRef]
- Morrison, A.; Marshall-McKenna, R.; McFadyen, A.K.; Hutchison, C.; Rice, A.M.; Stirling, L.; McIlroy, P.; Macpherson, I.R. A Randomised Controlled Trial of Interventions for Taxane-Induced Nail Toxicity in Women with Early Breast Cancer. Sci. Rep. 2022, 12, 11575. [Google Scholar] [CrossRef]
- Kowalska, J.; Rok, J.; Rzepka, Z.; Wrześniok, D. Drug-Induced Photosensitivity—From Light and Chemistry to Biological Reactions and Clinical Symptoms. Pharmaceuticals 2021, 14, 723. [Google Scholar] [CrossRef] [PubMed]
- Sibaud, V. Anticancer Treatments and Photosensitivity. J. Eur. Acad. Dermatol. Venereol. 2022, 36 (Suppl. 6), 51–58. [Google Scholar] [CrossRef]
- Larson, K.N.; Gagnon, A.L.; Wilson, B.B. Bleomycin-Induced Flagellate Hyperpigmentation. Clin. Case Rep. 2017, 5, 429–430. [Google Scholar] [CrossRef]
- Krajewski, P.K.; Matusiak, Ł.; Szepietowski, J.C. Flagellate Dermatitis Due to Bleomycin Intake. Acta Dermatovenerol. Croat. 2021, 29, 102–104. [Google Scholar]
- Yamada, M.; Iijima, Y.; Seo, M.; Hino, S.; Sano, M.; Sakagami, H.; Horie, N.; Kaneko, T. Cancer Chemotherapy-Associated Pigmentation of the Oral Mucosa. In Vivo 2023, 37, 1880–1885. [Google Scholar] [CrossRef]
- Constantinou, A.; Kotecha, D.; Laouris, P.; de Paula, B. A Closer Look at Chemotherapy-Induced Flagellate Dermatitis. Skin Health Dis. 2022, 2, e92. [Google Scholar] [CrossRef]
- Burris, H.A., III; Hurtig, J. Radiation Recall with Anticancer Agents. Oncologist 2010, 15, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Okuda, H.; Masatsugu, A.; Sijimaya, T.; Arai, R. Skin Necrosis Due to the Extravasation of Irritant Anticancer Agents. Intern. Med. 2018, 57, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Saputro, I.D.; Budi, A.S.; Noverta, D.A. Factors Influencing Skin Necrosis Resulting from Extravasation Injuries and Therapeutic Approaches in the Pediatric Inpatient Ward (January–December 2019). J. Rekonstr. Estet. 2020, 5, 30–36. [Google Scholar]
- Pluschnig, U.; Haslik, W.; Bartsch, R.; Mader, R.M. Extravasation Emergencies: State-of-the-Art Management and Progress in Clinical Research. Memo 2016, 9, 226–230. [Google Scholar] [CrossRef]
- Yeh, I.; George, E.; Fleckman, P. Eccrine Hidradenitis Sine Neutrophils: A Toxic Response to Chemotherapy. J. Cutan. Pathol. 2011, 38, 905–910. [Google Scholar] [CrossRef]
- Crane, J.S.; Krishnamurthy, K. Neutrophilic Eccrine Hidradenitis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448175/ (accessed on 20 July 2025).
- Gallo, E.; Llamas-Velasco, M.; Navarro, R.; Fraga, J.; García-Diez, A. Eccrine Squamous Syringometaplasia Secondary to Cutaneous Extravasation of Docetaxel: Report of Three Cases. J. Cutan. Pathol. 2013, 40, 326–329. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.H.; Lee, M.G.; Chung, K.Y.; Kim, D.S. Eccrine Squamous Syringometaplasia of Underlying Syringoma Associated with Tegafur/Gimeracil/Oteracil (TS-1). Acta Dermato-Venereol. 2015, 95, 999–1000. [Google Scholar] [CrossRef]
- Abbas, O.; Bhawan, J. Syringometaplasia: Variants and Underlying Mechanisms. Int. J. Dermatol. 2016, 55, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Cho, W.C.; Prieto, V.G.; Nagarajan, P. Metaplasia Mimicking Malignancy: A Challenging Case of Florid Eccrine Squamous Syringometaplasia. J. Cutan. Pathol. 2021, 48, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Vemulapalli, R.C.; Gupta, A.; Shreve, M.E.; Rees, D.A. Docetaxel-Induced Systemic Sclerosis with Internal Organ Involvement Masquerading as Congestive Heart Failure. Case Rep. Immunol. 2017, 2017, 4249157. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, Y. Drug-Induced Scleroderma-Like Lesion. Allergol. Int. 2022, 71, 163–168. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, X.; Yue, F.; Su, C.; Tong, Y.; Xu, W. Case Report: Systemic Sclerosis during Neoadjuvant Therapy for Breast Cancer in a 59-Year-Old Woman. Front. Immunol. 2024, 15, 1487508. [Google Scholar] [CrossRef]
- Du, A.X.; Gniadecki, R.; Storek, J.; Osman, M. Case Report: Chemotherapy-Associated Systemic Sclerosis: Is DNA Damage to Blame? Front. Med. 2022, 9, 855740. [Google Scholar] [CrossRef]
- Stein, T.; Cieplewicz-Guźla, P.; Iżykowska, K.; Pieniawska, M.; Żaba, R.; Dańczak-Pazdrowska, A.; Polańska, A. What Is New in Morphea—Narrative Review on Molecular Aspects and New Targeted Therapies. J. Clin. Med. 2024, 13, 7134. [Google Scholar] [CrossRef]
- Khouri, C.; Blaise, S.; Carpentier, P.; Villier, C.; Cracowski, J.L.; Roustit, M. Drug-Induced Raynaud’s Phenomenon: Beyond β-Adrenoceptor Blockers. Br. J. Clin. Pharmacol. 2016, 82, 6–16. [Google Scholar] [CrossRef]
- Nawaz, I.; Nawaz, Y.; Nawaz, E.; Manan, M.R.; Mahmood, A. Raynaud’s Phenomenon: Reviewing the Pathophysiology and Management Strategies. Cureus 2022, 14, e21681. [Google Scholar] [CrossRef]
- Su, K.Y.; Sharma, M.; Kim, H.J.; Kaganov, E.; Hughes, I.; Abdeen, M.H.; Ng, J.H.K. Vasodilators for Primary Raynaud’s Phenomenon. Cochrane Database Syst. Rev. 2021, 2021, CD006687. [Google Scholar] [CrossRef]
- Masoud, V.; Pagès, G. Targeted Therapies in Breast Cancer: New Challenges to Fight against Resistance. World J. Clin. Oncol. 2017, 8, 120–134. [Google Scholar] [CrossRef]
- Min, H.Y.; Lee, H.Y. Molecular Targeted Therapy for Anticancer Treatment. Exp. Mol. Med. 2022, 54, 1670–1694. [Google Scholar] [CrossRef]
- Ye, F.; Dewanjee, S.; Li, Y.; Jha, N.K.; Chen, Z.S.; Kumar, A.; Vishakha; Behl, T.; Jha, S.K.; Tang, H. Advancements in Clinical Aspects of Targeted Therapy and Immunotherapy in Breast Cancer. Mol. Cancer 2023, 22, 105. [Google Scholar] [CrossRef]
- Jallah, J.K.; Dweh, T.J.; Anjankar, A.; Palma, O. A Review of the Advancements in Targeted Therapies for Breast Cancer. Cureus 2023, 15, e47847. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, A.; Ferrari, P. Targeted Therapies and Drug Resistance in Advanced Breast Cancer, Alternative Strategies and the Way beyond. Cancers 2024, 16, 466. [Google Scholar] [CrossRef] [PubMed]
- Sunder, S.S.; Sharma, U.C.; Pokharel, S. Adverse Effects of Tyrosine Kinase Inhibitors in Cancer Therapy: Pathophysiology, Mechanisms and Clinical Management. Signal Transduct. Target. Ther. 2023, 8, 262. [Google Scholar] [CrossRef]
- Recuero, J.K.; Fitz, J.R.; Pereira, A.A.; Bonamigo, R.R. EGFR Inhibitors: Clinical Aspects, Risk Factors and Biomarkers for Acneiform Eruptions and Other Mucosal and Cutaneous Adverse Effects. An. Bras. Dermatol. 2023, 98, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, R.; Jiang, T.; Duan, D.; Wu, Y.; Li, C.; Li, Z.; Ni, R.; Li, L.; Liu, Y. Mechanism of Lethal Skin Toxicities Induced by Epidermal Growth Factor Receptor Inhibitors and Related Treatment Strategies. Front. Oncol. 2022, 12, 804212. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wang, B. Acneiform Eruption Induced by Molecularly Targeted Agents in Antineoplastic Therapy: A Review. J. Cosmet. Dermatol. 2023, 22, 2150–2157. [Google Scholar] [CrossRef]
- Parać, E.; Špiljak, B.; Lugović-Mihić, L.; Bukvić Mokos, Z. Acne-like Eruptions: Disease Features and Differential Diagnosis. Cosmetics 2023, 10, 89. [Google Scholar] [CrossRef]
- Zhu, H.; She, Q.; Li, H.; Zhang, N.; Huang, W.; Xu, Y.; Liu, Z.; Liang, Y. EGFR-TKIs Induce Acneiform Rash and Xerosis via Caspase-3/GSDME-Mediated Pyroptosis of Keratinocytes and Sebocytes. Toxicology 2025, 511, 154018. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.G.; Barrios, D.M.; Blinder, V.S.; Bromberg, J.F.; Drullinsky, P.R.; Funt, S.A.; Jhaveri, K.L.; Lake, D.E.; Lyons, T.; Modi, S.; et al. Dermatologic Adverse Events Related to the PI3Kα Inhibitor Alpelisib (BYL719) in Patients with Breast Cancer. Breast Cancer Res. Treat. 2020, 183, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Leenhardt, F.; Alexandre, M.; Jacot, W. Alpelisib for the Treatment of PIK3CA-Mutated, Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Expert Opin. Pharmacother. 2021, 22, 667–675. [Google Scholar] [CrossRef]
- Chang, D.Y.; Ma, W.L.; Lu, Y.S. Role of Alpelisib in the Treatment of PIK3CA-Mutated Breast Cancer: Patient Selection and Clinical Perspectives. Ther. Clin. Risk Manag. 2021, 17, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Lerebours, F.; Ciruelos, E.; Drullinsky, P.; Ruiz-Borrego, M.; Neven, P.; Park, Y.H.; Prat, A.; Bachelot, T.; Juric, D.; et al. Alpelisib plus Fulvestrant in PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer after a CDK4/6 Inhibitor (BYLieve): One Cohort of a Phase 2, Multicentre, Open-Label, Non-Comparative Study. Lancet Oncol. 2024, 25, e629–e638. [Google Scholar] [CrossRef]
- Fanucci, K.; Giordano, A.; Erick, T.; Tolaney, S.M.; Sammons, S. Practical treatment strategies and novel therapies in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in hormone receptor-positive/human epidermal growth factor receptor 2 (HER2)-negative (HR+/HER2−) advanced breast cancer. ESMO Open 2024, 9, 103997. [Google Scholar] [CrossRef]
- Gallagher, E.J.; Moore, H.; Lacouture, M.E.; Dent, S.F.; Farooki, A.; Goncalves, M.D.; Isaacs, C.; Johnston, A.; Juric, D.; Quandt, Z.; et al. Managing Hyperglycemia and Rash Associated with Alpelisib: Expert Consensus Recommendations Using the Delphi Technique. NPJ Breast Cancer 2024, 10, 12. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, S. Integration of Genomic Profiling and Organoid Development in Precision Oncology. Int. J. Mol. Sci. 2021, 23, 216. [Google Scholar] [CrossRef]
- Kawabata, K.; Nishikubo, H.; Kanei, S.; Aoyama, R.; Tsukada, Y.; Sano, T.; Imanishi, D.; Sakuma, T.; Maruo, K.; Yamamoto, Y.; et al. Significance of Multi-Cancer Genome Profiling Testing for Breast Cancer: A Retrospective Analysis of 3326 Cases from Japan’s National Database. Genes 2024, 15, 792. [Google Scholar] [CrossRef]
- Liu, L.; Graff, S.L.; Wang, Y. New Emerging Therapies Targeting PI3K/AKT/mTOR/PTEN Pathway in Hormonal Receptor-Positive and HER2-Negative Breast Cancer—Current State and Molecular Pathology Perspective. Cancers 2024, 17, 16. [Google Scholar] [CrossRef]
- Sollena, P.; Vasiliki, N.; Kotteas, E.; Stratigos, A.J.; Fattore, D.; Orlandi, A.; Mannino, M.; Di Pumpo, M.; Fida, M.; Starace, M.; et al. Cyclin-Dependent Kinase 4/6 Inhibitors and Dermatologic Adverse Events: Results from the EADV Task Force “Dermatology for Cancer Patients” International Study. Cancers 2023, 15, 3658. [Google Scholar] [CrossRef]
- Liu, Y.; Park, S.; Li, Y. Breaking Cancer’s Momentum: CDK4/6 Inhibitors and the Promise of Combination Therapy. Cancers 2025, 17, 1941. [Google Scholar] [CrossRef]
- Gao, T.; Sun, Y.; Leng, P.; Liu, D.; Guo, Q.; Li, J. CDK4/6 Inhibitors in Breast Cancer Therapy: Mechanisms of Drug Resistance and Strategies for Treatment. Front. Pharmacol. 2025, 16, 1549520. [Google Scholar] [CrossRef]
- Abdelfattah, E.K.; Hosny, S.M.; Kassem, A.B.; Moustafa, H.A.M.; Tawfeik, A.M.; Abdelhafez, M.N.; El-Sheshtawy, W.; Alsfouk, B.A.; Saleh, A.; Salem, H.A. Pharmacogenetics as a Future Tool to Risk-Stratify Breast Cancer Patients According to Chemotoxicity Potential from the Doxorubicin Hydrochloride and Cyclophosphamide (AC) Regimen. Pharmaceuticals 2025, 18, 539. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bayona, R.; Catalán, C.; Cobos, M.A.; Bergamino, M. Pharmacogenomics in Solid Tumors: A Comprehensive Review of Genetic Variability and Its Clinical Implications. Cancers 2025, 17, 913. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Cheung, H.A. Challenges in Treating Estrogen Receptor-Positive Breast Cancer. In Estrogen; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Patel, R.; Klein, P.; Tiersten, A.; Sparano, J.A. An Emerging Generation of Endocrine Therapies in Breast Cancer: A Clinical Perspective. NPJ Breast Cancer 2023, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, K.; Vishwakarma, S.; Yadav, P.; Yadav, M.K. The Current Landscape of Aromatase Inhibitors for the Treatment of Estrogen Receptor-Positive Breast Carcinoma. J. Steroid Biochem. Mol. Biol. 2025, 250, 106729. [Google Scholar] [CrossRef]
- Karatas, F.; Sahin, S.; Sever, A.R.; Altundag, K. Management of Hair Loss Associated with Endocrine Therapy in Patients with Breast Cancer: An Overview. SpringerPlus 2016, 5, 585. [Google Scholar] [CrossRef]
- Dell’Acqua, G.; Richards, A.; Thornton, M.J. The Potential Role of Nutraceuticals as an Adjuvant in Breast Cancer Patients to Prevent Hair Loss Induced by Endocrine Therapy. Nutrients 2020, 12, 3537. [Google Scholar] [CrossRef]
- Cury-Martins, J.; Eris, A.P.M.; Abdalla, C.M.Z.; Silva, G.B.; Moura, V.P.T.; Sanches, J.A. Management of Dermatologic Adverse Events from Cancer Therapies: Recommendations of an Expert Panel. An. Bras. Dermatol. 2020, 95, 221–237. [Google Scholar] [CrossRef]
- Cook, E.D.; Iglehart, E.I.; Baum, G.; Schover, L.L.; Newman, L.L. Missing Documentation in Breast Cancer Survivors: Genitourinary Syndrome of Menopause. Menopause 2017, 24, 1360–1364. [Google Scholar] [CrossRef]
- Lubián López, D.M. Management of Genitourinary Syndrome of Menopause in Breast Cancer Survivors: An Update. World J. Clin. Oncol. 2022, 13, 71–100. [Google Scholar] [CrossRef]
- Cuccu, I.; Golia D’Augè, T.; Firulli, I.; De Angelis, E.; Buzzaccarini, G.; D’Oria, O.; Besharat, A.R.; Caserta, D.; Bogani, G.; Muzii, L.; et al. Update on Genitourinary Syndrome of Menopause: A Scoping Review of a Tailored Treatment-Based Approach. Life 2024, 14, 1504. [Google Scholar] [CrossRef] [PubMed]
- Archer, D.F.; Goldstein, S.R.; Simon, J.A.; Waldbaum, A.S.; Sussman, S.A.; Altomare, C.; Zhu, J.; Yoshida, Y.; Schaffer, S.; Soulban, G. Efficacy and Safety of Ospemifene in Postmenopausal Women with Moderate-to-Severe Vaginal Dryness: A Phase 3, Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. Menopause 2019, 26, 611–621. [Google Scholar] [CrossRef]
- D’Oria, O.; Giannini, A.; Prata, G.; Scudo, M.; Logoteta, A.; Mondo, A.; Perniola, G.; Palaia, I.; Cascialli, G.; Monti, M.; et al. Non-Invasive Treatment of Vulvovaginal Atrophy in Menopause with CO2 Laser. Minerva Obstet. Gynecol. 2021, 73, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Zarkavelis, G.; Kollas, A.; Kampletsas, E.; Vasiliou, V.; Kaltsonoudis, E.; Drosos, A.; Khaled, H.; Pavlidis, N. Aromatase Inhibitors Induced Autoimmune Disorders in Patients with Breast Cancer: A Review. J. Adv. Res. 2016, 7, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Behbahani, S.; Geisler, A.; Kolla, A.; Dreker, M.R.; Kaunitz, G.; Pomeranz, M.K. Art of Prevention: The Importance of Dermatologic Care When Using Aromatase Inhibitors. Int. J. Women’s Dermatol. 2021, 7, 769–773. [Google Scholar] [CrossRef]
- Losada-García, A.; Cortés-Ramírez, S.; Cruz-Burgos, M.; Morales-Pacheco, M.; Cruz-Hernández, C.D.; Gonzalez-Covarrubias, V.; Perez-Plascencia, C.; Cerbón, M.; Rodríguez-Dorantes, M. Hormone-Related Cancer and Autoimmune Diseases: A Complex Interplay to Be Discovered. Front. Genet. 2022, 12, 673180. [Google Scholar] [CrossRef]
- Bowman, S.; Barcenas, C.H.; Lu, H. Aromatase Inhibitors and Their Connection to Autoimmunity. J. Cancer Immunol. 2024, 6, 40–43. [Google Scholar] [CrossRef]
- Generali, D.; Berardi, R.; Caruso, M.; Cazzaniga, M.; Garrone, O.; Minchella, I.; Paris, I.; Pinto, C.; De Placido, S. Aromatase Inhibitors: The Journey from the State of the Art to Clinical Open Questions. Front. Oncol. 2023, 13, 1249160. [Google Scholar] [CrossRef]
- Bray, F.N.; Simmons, B.J.; Wolfson, A.H.; Nouri, K. Acute and Chronic Cutaneous Reactions to Ionizing Radiation Therapy. Dermatol. Ther. 2016, 6, 185–206. [Google Scholar] [CrossRef]
- Wei, J.; Meng, L.; Hou, X.; Qu, C.; Wang, B.; Xin, Y.; Jiang, X. Radiation-Induced Skin Reactions: Mechanism and Treatment. Cancer Manag. Res. 2018, 11, 167–177. [Google Scholar] [CrossRef]
- Seité, S.; Bensadoun, R.J.; Mazer, J.M. Prevention and Treatment of Acute and Chronic Radiodermatitis. Breast Cancer Targets Ther. 2017, 9, 551–557. [Google Scholar] [CrossRef]
- Iacovelli, N.A.; Torrente, Y.; Ciuffreda, A.; Guardamagna, V.A.; Gentili, M.; Giacomelli, L.; Sacerdote, P. Topical Treatment of Radiation-Induced Dermatitis: Current Issues and Potential Solutions. Drugs Context 2020, 9, 2020-4-7. [Google Scholar] [CrossRef]
- Kiprian, D.; Szykut-Badaczewska, A.; Gradzińska, A.; Czuwara, J.; Rudnicka, L. How to Manage Radiation-Induced Dermatitis? Nowotw. J. Oncol. 2022, 72, 86–95. [Google Scholar] [CrossRef]
- Cavalcante, L.G.; Domingues, R.A.R.; Junior, B.O.; Fernandes, M.A.R.; Pessoa, E.C.; Abbade, L.P.F. Incidence of Radiodermatitis and Factors Associated with Its Severity in Women with Breast Cancer: A Cohort Study. An. Bras. Dermatol. 2024, 99, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Nanthong, R.; Tungfung, S.; Soonklang, K.; Mahikul, W. Predictive Factors Associated with Acute Radiation Dermatitis in Patients with Breast Cancer: A Retrospective Cohort Study. PeerJ 2025, 13, e19202. [Google Scholar] [CrossRef]
- Spałek, M. Chronic Radiation-Induced Dermatitis: Challenges and Solutions. Clin. Cosmet. Investig. Dermatol. 2016, 9, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, M.A.; Lee, S.F.; Wong, H.C.Y.; Tse, S.S.W.; Chan, A.W.; Kwan, J.Y.Y.; Hircock, C.; Simone, C.B., II; Chow, E.; Choi, J.I. Chronic Radiation Dermatitis in Breast Cancer Patients: Pathophysiology, Prevention and Management Strategies, and Clinical Impact. Ann. Palliat. Med. 2025, 14, 3. [Google Scholar] [CrossRef]
- Ramseier, J.Y.; Ferreira, M.N.; Leventhal, J.S. Dermatologic Toxicities Associated with Radiation Therapy in Women with Breast Cancer. Int. J. Women’s Dermatol. 2020, 6, 349–356. [Google Scholar] [CrossRef]
- Bennardo, L.; Passante, M.; Cameli, N.; Cristaudo, A.; Patruno, C.; Nisticò, S.P.; Silvestri, M. Skin Manifestations after Ionizing Radiation Exposure: A Systematic Review. Bioengineering 2021, 8, 153. [Google Scholar] [CrossRef]
- Cox, J.D.; Stetz, J.; Pajak, T.F. Toxicity Criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [Google Scholar] [CrossRef]
- Kole, A.J.; Kole, L.; Moran, M.S. Acute Radiation Dermatitis in Breast Cancer Patients: Challenges and Solutions. Breast Cancer Targets Ther. 2017, 9, 313–323. [Google Scholar] [CrossRef]
- Forde, E.; Van den Berghe, L.; Buijs, M.; Cardone, A.; Daly, J.; Franco, P.; Julka-Anderson, N.; Lechner, W.; Marignol, L.; Marvaso, G.; et al. Practical Recommendations for the Management of Radiodermatitis: On Behalf of the ESTRO RTT Committee. Radiat. Oncol. 2025, 20, 46. [Google Scholar] [CrossRef]
- Uysal, B.; Gamsız, H.; Dincoglan, F.; Demiral, S.; Sager, O.; Dirican, B.; Beyzadeoglu, M. Comparative Evaluation of Topical Corticosteroid and Moisturizer in the Prevention of Radiodermatitis in Breast Cancer Radiotherapy. Indian J. Dermatol. 2020, 65, 279–283. [Google Scholar] [CrossRef]
- Kuszaj, O.; Day, M.; Tse, S.S.W.; Lee, S.F.; Wang, A.J.; Bayrakdarian, S.; Vesprini, D.; Corbin, K.; Karam, I.; Choi, J.I.; et al. A Critical Review of Randomized Controlled Trials on Topical Corticosteroids for the Prevention of Radiation Dermatitis in Breast Cancer. Support. Care Cancer 2025, 33, 147. [Google Scholar] [CrossRef]
- Zasadziński, K.; Spałek, M.J.; Rutkowski, P. Modern Dressings in Prevention and Therapy of Acute and Chronic Radiation Dermatitis—A Literature Review. Pharmaceutics 2022, 14, 1204. [Google Scholar] [CrossRef]
- Wong, H.C.Y.; Lee, S.F.; Caini, S.; Chan, A.W.; Kwan, J.Y.Y.; Waddle, M.; Sonis, S.; Herst, P.; Alcorn, S.; Bonomo, P.; et al. Barrier Films or Dressings for the Prevention of Acute Radiation Dermatitis in Breast Cancer: A Systematic Review and Network Meta-Analysis. Breast Cancer Res. Treat. 2024, 207, 477–496. [Google Scholar] [CrossRef] [PubMed]
- Nunes Filho, P.; Albuquerque, C.; Pilon Capella, M.; Debiasi, M. Immune Checkpoint Inhibitors in Breast Cancer: A Narrative Review. Oncol. Ther. 2023, 11, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Rebaudi, F.; De Franco, F.; Goda, R.; Obino, V.; Vita, G.; Baronti, C.; Iannone, E.; Pitto, F.; Massa, B.; Fenoglio, D.; et al. The Landscape of Combining Immune Checkpoint Inhibitors with Novel Therapies: Secret Alliances against Breast Cancer. Cancer Treat. Rev. 2024, 130, 102831. [Google Scholar] [CrossRef] [PubMed]
- Nandi, D.; Sharma, D. Integrating Immunotherapy with Conventional Treatment Regime for Breast Cancer Patients—An Amalgamation of Armamentarium. Front. Immunol. 2024, 15, 1477980. [Google Scholar] [CrossRef] [PubMed]
- Sriramulu, S.; Thoidingjam, S.; Speers, C.; Nyati, S. Present and Future of Immunotherapy for Triple-Negative Breast Cancer. Cancers 2024, 16, 3250. [Google Scholar] [CrossRef] [PubMed]
- Corti, C.; Koca, B.; Rahman, T.; Mittendorf, E.A.; Tolaney, S.M. Recent Advances in Immune Checkpoint Inhibitors for Triple-Negative Breast Cancer. Immunotargets Ther. 2025, 14, 339–357. [Google Scholar] [CrossRef]
- Essalihi, A.; Bouchra, O.; Khadiri, K.; Khadrouf, Z.; Karkouri, M. Immunotherapy for Triple-Negative Breast Cancer: Current Trends and Future Prospects. J. Egypt. Natl. Cancer Inst. 2025, 37, 51. [Google Scholar] [CrossRef] [PubMed]
- Ran, R.; Chen, X.; Yang, J.; Xu, B. Immunotherapy in Breast Cancer: Current Landscape and Emerging Trends. Exp. Hematol. Oncol. 2025, 14, 77. [Google Scholar] [CrossRef]
- Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.O., III; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; LeBoeuf, N.R.; et al. Managing Toxicities Associated with Immune Checkpoint Inhibitors: Consensus Recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef]
- Tattersall, I.W.; Leventhal, J.S. Cutaneous Toxicities of Immune Checkpoint Inhibitors: The Role of the Dermatologist. Yale J. Biol. Med. 2020, 93, 123–132. [Google Scholar]
- Gumusay, O.; Callan, J.; Rugo, H.S. Immunotherapy Toxicity: Identification and Management. Breast Cancer Res. Treat. 2022, 192, 1–17. [Google Scholar] [CrossRef]
- Teng, Y.-S.; Yu, S. Molecular Mechanisms of Cutaneous Immune-Related Adverse Events (irAEs) Induced by Immune Checkpoint Inhibitors. Curr. Oncol. 2023, 30, 6805–6819. [Google Scholar] [CrossRef]
- Yin, Q.; Wu, L.; Han, L.; Zheng, X.; Tong, R.; Li, L.; Bai, L.; Bian, Y. Immune-Related Adverse Events of Immune Checkpoint Inhibitors: A Review. Front. Immunol. 2023, 14, 1167975. [Google Scholar] [CrossRef]
- Watanabe, T.; Yamaguchi, Y. Cutaneous Manifestations Associated with Immune Checkpoint Inhibitors. Front. Immunol. 2023, 14, 1071983. [Google Scholar] [CrossRef]
- Gault, A.; Anderson, A.E.; Plummer, R.; Stewart, C.; Pratt, A.G.; Rajan, N. Cutaneous Immune-Related Adverse Events in Patients with Melanoma Treated with Checkpoint Inhibitors. Br. J. Dermatol. 2021, 185, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Shalata, W.; Weissmann, S.; Itzhaki Gabay, S.; Sheva, K.; Abu Saleh, O.; Jama, A.A.; Yakobson, A.; Rouvinov, K. A Retrospective, Single-Institution Experience of Bullous Pemphigoid as an Adverse Effect of Immune Checkpoint Inhibitors. Cancers 2022, 14, 5451. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.; Guo, Z.; Wen, X.; Zeng, X.; Wu, L.; Huang, L. Case Report: Immune Checkpoint Inhibitor-Related Vitiligo-Like Depigmentation in Non-Melanoma Advanced Cancer: A Report of Three Cases and a Pooled Analysis of Individual Patient Data. Front. Oncol. 2023, 12, 1099108. [Google Scholar] [CrossRef]
- Russo, F.; Pira, A.; Mariotti, F.; Papaccio, F.; Giampetruzzi, A.R.; Bellei, B.; Di Zenzo, G. The Possible and Intriguing Relationship between Bullous Pemphigoid and Melanoma: Speculations on Significance and Clinical Relevance. Front. Immunol. 2024, 15, 1416473. [Google Scholar] [CrossRef]
- Eshaq, A.M.; Flanagan, T.W.; Ba Abbad, A.A.; Makarem, Z.A.A.; Bokir, M.S.; Alasheq, A.K.; Al Asheikh, S.A.; Almashhor, A.M.; Binyamani, F.; Al-Amoudi, W.A.; et al. Immune Checkpoint Inhibitor-Associated Cutaneous Adverse Events: Mechanisms of Occurrence. Int. J. Mol. Sci. 2025, 26, 88. [Google Scholar] [CrossRef] [PubMed]
- Vaez-Gharamaleki, Y.; Akbarzadeh, M.A.; Jadidi-Niaragh, F.; Mahmoodpoor, A.; Sanaie, S.; Hosseini, M.S. Dermatologic Toxicities Related to Cancer Immunotherapy. Toxicol. Rep. 2025, 14, 102021. [Google Scholar] [CrossRef]
- Makhoul, I.; Atiq, M.; Alwbari, A.; Kieber-Emmons, T. Breast Cancer Immunotherapy: An Update. Breast Cancer 2018, 12, 1178223418774802. [Google Scholar] [CrossRef]
- Disis, M.L.; Stanton, S.E. Immunotherapy in breast cancer: An introduction. Breast 2018, 37, 196–199. [Google Scholar] [CrossRef]
- Bayraktar, S.; Batoo, S.; Okuno, S.; Glück, S. Immunotherapy in breast cancer. J. Carcinog. 2019, 18, 2. [Google Scholar] [CrossRef]
- Pilipow, K.; Darwich, A.; Losurdo, A. T-cell-based breast cancer immunotherapy. Semin. Cancer Biol. 2021, 72, 90–101. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef] [PubMed]
- Cheema, P.K.; Iafolla, M.A.J.; Abdel-Qadir, H.; Bellini, A.B.; Chatur, N.; Chandok, N.; Comondore, V.R.; Cunningham, M.; Halperin, I.; Hu, A.B.; et al. Managing Select Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitors. Curr. Oncol. 2024, 31, 6356–6383. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Yu, L.; Zhang, J.; Chen, Y.; Fu, Y.; Tang, J.; Liao, D. Achilles’ Heel of Currently Approved Immune Checkpoint Inhibitors: Immune Related Adverse Events. Front. Immunol. 2024, 15, 1292122. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Johnson, D.B. Immune-Related Adverse Events and Anti-Tumor Efficacy of Immune Checkpoint Inhibitors. J. Immunother. Cancer 2019, 7, 306. [Google Scholar] [CrossRef]
- Connolly, C.; Bambhania, K.; Naidoo, J. Immune-Related Adverse Events: A Case-Based Approach. Front. Oncol. 2019, 9, 530. [Google Scholar] [CrossRef]
- Watson, A.S.; Goutam, S.; Stukalin, I.; Ewanchuk, B.W.; Sander, M.; Meyers, D.E.; Pabani, A.; Cheung, W.Y.; Heng, D.Y.C.; Cheng, T.; et al. Association of Immune-Related Adverse Events, Hospitalization, and Therapy Resumption With Survival Among Patients With Metastatic Melanoma Receiving Single-Agent or Combination Immunotherapy. JAMA Netw. Open 2022, 5, e2245596. [Google Scholar] [CrossRef]
- Olsson Ladjevardi, C.; Koliadi, A.; Rydén, V.; El-Naggar, A.I.; Digkas, E.; Valachis, A.; Ullenhag, G.J. Multiple Immune-Related Adverse Events Secondary to Checkpoint Inhibitor Therapy in Patients with Advanced Cancer: Association with Treatment Effectiveness. Front. Oncol. 2024, 14, 1399171. [Google Scholar] [CrossRef]
- Villa, A.; Lodolo, M.; Sonis, S. Oral Mucosal Toxicities in Oncology. Expert Opin. Pharmacother. 2025, 26, 481–489. [Google Scholar] [CrossRef]
- Mao, X.; Wu, S.; Huang, D.; Li, C. Complications and Comorbidities Associated with Antineoplastic Chemotherapy: Rethinking Drug Design and Delivery for Anticancer Therapy. Acta Pharm. Sin. B 2024, 14, 2901–2926. [Google Scholar] [CrossRef]
- Allana, A.; Shamsi, U.; Rashid, Y.; Khan, F.R.; Rozi, S. Oral Mucositis & Oral Health Related Quality of Life in Women Undergoing Chemotherapy for Breast Cancer in Karachi, Pakistan: A Multicenter Hospital Based Cross-Sectional Study. PLoS ONE 2024, 19, e0295456. [Google Scholar] [CrossRef]
- Reuss, J.M.; Alonso-Gamo, L.; Garcia-Aranda, M.; Reuss, D.; Albi, M.; Albi, B.; Vilaboa, D.; Vilaboa, B. Oral Mucosa in Cancer Patients—Putting the Pieces Together: A Narrative Review and New Perspectives. Cancers 2023, 15, 3295. [Google Scholar] [CrossRef] [PubMed]
- Marinho, P.M.L.; Barbosa-Lima, R.; Santos, J.C.d.O.; Santos, D.K.d.C.; Sobral, G.S.; Vassilievitch, A.C.; Amorim, B.F.; Costa, J.d.S.; Fonseca, T.V.; Silva, G.M.; et al. Mucosite Oral Relacionada à Quimioterapia Em Pacientes Com Câncer de Mama: Uma Breve Revisão. Res. Soc. Dev. 2021, 10, e25610313338. [Google Scholar] [CrossRef]
- Melero-Cortés, L.M.; Vargas-Rodríguez, C.; García-Hernández, Z.; Martínez-Maestre, M.A. Oral Mucositis Induced by Chemotherapy: A Challenge in the Treatment of Patients with Breast Cancer. Eur. Gynecol. Obstet. 2023, 5, 115–120. [Google Scholar] [CrossRef]
- Villa, A.; Sonis, S.T. Mucositis. Curr. Opin. Oncol. 2015, 27, 159–164. [Google Scholar] [CrossRef]
- Shetty, S.S.; Maruthi, M.; Dhara, V.; de Arruda, J.A.A.; Abreu, L.G.; Mesquita, R.A.; Teixeira, A.L.; Silva, T.A.; Merchant, Y. Oral Mucositis: Current Knowledge and Future Directions. Disease-a-Month 2022, 68, 101300. [Google Scholar] [CrossRef]
- Grünwald, V.; Weikert, S.; Pavel, M.E.; Hörsch, D.; Lüftner, D.; Janni, W.; Geberth, M.; Weber, M.M. Practical Management of Everolimus-Related Toxicities in Patients with Advanced Solid Tumors. Oncol. Res. Treat. 2013, 36, 295–302. [Google Scholar] [CrossRef]
- Paplomata, E.; Zelnak, A.; O’Regan, R. Everolimus: Side Effect Profile and Management of Toxicities in Breast Cancer. Breast Cancer Res. Treat. 2013, 140, 453–462. [Google Scholar] [CrossRef]
- Rugo, H.S.; Seneviratne, L.; Beck, J.T.; Glaspy, J.A.; Peguero, J.A.; Pluard, T.J.; Dhillon, N.; Hwang, L.C.; Nangia, C.; Mayer, I.A.; et al. Prevention of Everolimus-Related Stomatitis in Women with Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer Using Dexamethasone Mouthwash (SWISH): A Single-Arm, Phase 2 Trial. Lancet Oncol. 2017, 18, 654–662. [Google Scholar] [CrossRef]
- Calvo, A.S.; Rochefort, J.; Javelot, M.J.; Descroix, V.; Lescaille, G. Management of MTOR Inhibitors Oral Mucositis: Current State of Knowledge. J. Oral Med. Oral Surg. 2019, 25, 11. [Google Scholar] [CrossRef]
- Vila, T.; Sultan, A.S.; Montelongo-Jauregui, D.; Jabra-Rizk, M.A. Oral Candidiasis: A Disease of Opportunity. J. Fungi 2020, 6, 15. [Google Scholar] [CrossRef]
- Vigarios, E.; Epstein, J.B.; Sibaud, V. Oral Mucosal Changes Induced by Anticancer Targeted Therapies and Immune Checkpoint Inhibitors. Support. Care Cancer 2017, 25, 1713–1739. [Google Scholar] [CrossRef] [PubMed]
- Chmieliauskaite, M.; Stojanov, I.; Saraghi, M.; Pinto, A. Oral Adverse Events Associated with Targeted Cancer Therapies. Gen. Dent. 2018, 66, 26–31. [Google Scholar] [PubMed]
- Sakai, Y.; Katsura, K.; Kotake, M.; Toyama, A. A Cross-Sectional Survey of Oral Adverse Events and Oral Management Needs in Outpatients Receiving Cancer Drug Therapy. Cancers 2025, 17, 641. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Bruno, J.S.; Al-Qadami, G.H.; Laheij, A.M.G.A.; Bossi, P.; Fregnani, E.R.; Wardill, H.R. From Pathogenesis to Intervention: The Importance of the Microbiome in Oral Mucositis. Int. J. Mol. Sci. 2023, 24, 8274. [Google Scholar] [CrossRef]
- Tito, C.; Masciarelli, S.; Colotti, G.; Fazi, F. EGF Receptor in Organ Development, Tissue Homeostasis and Regeneration. J. Biomed. Sci. 2025, 32, 24. [Google Scholar] [CrossRef]
- Park, S.-H.; Strauss, S.M. Original Research: Oral Health Concerns of Female Breast Cancer Survivors on Adjuvant Endocrine Therapy. AJN Am. J. Nurs. 2023, 123, 24–29. [Google Scholar] [CrossRef]
- Elad, S.; Cheng, K.K.F.; Lalla, R.V.; Yarom, N.; Hong, C.; Logan, R.M.; Bowen, J.; Gibson, R.; Saunders, D.P.; Zadik, Y.; et al. MASCC/ISOO Clinical Practice Guidelines for the Management of Mucositis Secondary to Cancer Therapy. Cancer 2020, 126, 4423–4431. [Google Scholar] [CrossRef]
- Elad, S.; Raber-Durlacher, J.E.; Brennan, M.T.; Saunders, D.P.; Mank, A.P.; Zadik, Y.; Quinn, B.; Epstein, J.B.; Blijlevens, N.M.A.; Waltimo, T.; et al. Basic Oral Care for Hematology–Oncology Patients and Hematopoietic Stem Cell Transplantation Recipients: A Position Paper from the Joint Task Force of the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO) and the European Society for Blood and Marrow Transplantation (EBMT). Support. Care Cancer 2015, 23, 223–236. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Yang, X.; Li, C.; Song, Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front. Microbiol. 2022, 13, 895537. [Google Scholar] [CrossRef]
- Bostanghadiri, N.; Kouhzad, M.; Taki, E.; Elahi, Z.; Khoshbayan, A.; Navidifar, T.; Darban-Sarokhalil, D. Oral Microbiota and Metabolites: Key Players in Oral Health and Disorder, and Microbiota-Based Therapies. Front. Microbiol. 2024, 15, 1431785. [Google Scholar] [CrossRef] [PubMed]
- Klymiuk, I.; Bilgilier, C.; Mahnert, A.; Prokesch, A.; Heininger, C.; Brandl, I.; Sahbegovic, H.; Singer, C.; Fuereder, T.; Steininger, C. Chemotherapy-Associated Oral Microbiome Changes in Breast Cancer Patients. Front. Oncol. 2022, 12, 949071. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Chen, X.; Li, Q.; Liu, Y.; Cai, J. Effects of Chemotherapy and Immunotherapy on Microbial Diversity in TME and Engineered Bacterial-Mediated Tumor Therapy. Front. Immunol. 2023, 14, 1084926. [Google Scholar] [CrossRef]
- Bell, A.; Kasi, A. Oral mucositis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK565848/ (accessed on 20 July 2025).
- Bertl, K.; Savvidis, P.; Kukla, E.B.; Schneider, S.; Zauza, K.; Bruckmann, C.; Stavropoulos, A. Including Dental Professionals in the Multidisciplinary Treatment Team of Head and Neck Cancer Patients Improves Long-Term Oral Health Status. Clin. Oral. Investig. 2022, 26, 2937–2948. [Google Scholar] [CrossRef] [PubMed]
- Vigarios, E.; Warnakulasuriya, S.; Pomar, P.; Maret, D. Integrating Dental and Oral Care in Oncology: A Crucial Step towards Comprehensive Cancer Treatment. Lancet Oncol. 2025, 26, e184. [Google Scholar] [CrossRef]
- Al-Rudayni, A.H.M.; Gopinath, D.; Maharajan, M.K.; Veettil, S.K.; Menon, R.K. Efficacy of Oral Cryotherapy in the Prevention of Oral Mucositis Associated with Cancer Chemotherapy: Systematic Review with Meta-Analysis and Trial Sequential Analysis. Curr. Oncol. 2021, 28, 2852–2867. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, H.; Guo, W.; Zhong, X.; Sun, J.; Zhang, T.; Wang, Z.; Ma, X. Safety and Efficacy Profile of Trastuzumab Deruxtecan in Solid Cancer: Pooled Reanalysis Based on Clinical Trials. BMC Cancer 2022, 22, 923. [Google Scholar] [CrossRef]
- Ciruelos, E.; García-Sáenz, J.Á.; Gavilá, J.; Martín, M.; Rodríguez, C.A.; Rodríguez-Lescure, Á. Safety Profile of Trastuzumab Deruxtecan in Advanced Breast Cancer: Expert Opinion on Adverse Event Management. Clin. Transl. Oncol. 2024, 26, 1539–1548. [Google Scholar] [CrossRef]
- Yang, B.; Li, W.; Shi, J. Preventive Effect of Probiotics on Oral Mucositis Induced by Anticancer Therapy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Oral. Health 2024, 24, 1159. [Google Scholar] [CrossRef]
- Islam, S.; Ahmed, M.M.S.; Islam, M.A.; Hossain, N.; Chowdhury, M.A. Advances in Nanoparticles in Targeted Drug Delivery–A Review. Results Surf. Interfaces 2025, 19, 100529. [Google Scholar] [CrossRef]
- Ramezani, V.; Ghadirian, S.; Shabani, M.; Boroumand, M.A.; Daneshvar, R.; Saghafi, F. Efficacy of Curcumin for Amelioration of Radiotherapy-Induced Oral Mucositis: A Preliminary Randomized Controlled Clinical Trial. BMC Cancer 2023, 23, 354. [Google Scholar] [CrossRef]
- Choudhury, M.; Brunton, P.; Schwass, D.; Pletzer, D.; Ratnayake, J.; Dias, G.; Tompkins, G. Effectiveness of Gold Nanoparticles in Prevention and Treatment of Oral Mucositis in Animal Models: A Systematic Review. Syst. Rev. 2024, 13, 39. [Google Scholar] [CrossRef]
- Lopez, D. Pharmacogenetics: An Important Part of Drug Development with A Focus on Its Application. Int. J. Biomed. Investig. 2018, 1, 111. [Google Scholar] [CrossRef]
Therapy Type | Drug(s) | Cutaneous Adverse Effects | Severity (CTCAE) | Frequency | Mechanism/Pathophysiology | Management Strategies | References |
---|---|---|---|---|---|---|---|
Chemotherapy | Paclitaxel, Docetaxel | Alopecia, nail changes, xerosis | Grade 1–2 | Very common | Targets rapidly dividing matrix keratinocytes; affects skin adnexa | Scalp cooling, minoxidil 5%, emollients, nail protection | [16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67] |
Chemotherapy | Capecitabine, Doxorubicin (lip.) | Hand-foot syndrome | Grade 1–3 | Common | Cytotoxicity to basal epidermal keratinocytes in high-pressure areas | Urea creams, corticosteroids, analgesics, dose reduction | [37,38,39,40,41,42,43,44,45] |
Targeted therapy | Lapatinib | Acneiform rash, pruritus, xerosis | Grade 1–2 | Common | EGFR inhibition disrupts follicular keratinocyte differentiation and immune homeostasis | Tetracyclines, topical corticosteroids, moisturizers | [63,97,98,99,100,101,102] |
Targeted therapy | Alpelisib | Maculopapular rash | Grade 1–3 | Common | PI3K pathway inhibition → cytokine-mediated inflammation | Antihistamines, topical/systemic corticosteroids, therapy interruption | [103,104,105,106,107,108] |
Hormonal therapy | Anastrozole, Tamoxifen | Alopecia, urticarial vasculitis, xerosis | Grade 1–2 | Common | Estrogen depletion alters epidermal turnover and hair cycling; immune-mediated reactions | Minoxidil, corticosteroids, hydration therapy | [63,117,118,119,120,121,122] |
Radiotherapy | N/A | Radiodermatitis | Grade 1–3 | Very common | Radiation-induced damage to basal keratinocytes and skin vasculature | Hyaluronic acid, silver sulfadiazine, topical corticosteroids | [133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150] |
Immunotherapy | Atezolizumab | Lichenoid rash, Vitiligo-like depigmentation | Grade 1–3 | Less common | T-cell-mediated autoimmune reaction triggered by immune checkpoint blockade | Topical/systemic corticosteroids, immunotherapy suspension if necessary | [151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181] |
Adverse Effect | Causative Agents/Drug Classes | Recommended Topical Treatment | Recommended Systemic Treatment | References |
---|---|---|---|---|
Alopecia | Taxanes (paclitaxel, docetaxel), anthracyclines, aromatase inhibitors, tamoxifen | Topical minoxidil, calcitriol, bimatoprost (eyelashes); scalp cooling during chemotherapy | Low-dose oral minoxidil (LDOM), spironolactone | [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,120,121] |
Nail changes | Taxanes, EGFR inhibitors, anthracyclines | Emollients, nail strengtheners, topical antibiotics, and corticosteroids; cooling gloves | Oral antibiotics (e.g., doxycycline), analgesics | [16,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67] |
Erythema exudativum multiforme | Platinum-based drugs, antimetabolites | Topical corticosteroids, emollients | Systemic corticosteroids | [46,47,48,49,50,51] |
Xerosis | EGFR inhibitors, hormonal therapy | Soap-free cleansers (pH 5–6), moisturizers with ceramides, niacinamide, 3–10% urea cream | – | [16,61,62,63,64,97,98,122] |
Hand-foot syndrome (HFS) | Capecitabine, liposomal doxorubicin, 5-FU | Urea 10% cream, high-potency corticosteroids, analgesic patches | COX-2 inhibitors, pyridoxine (B6), analgesics | [37,38,39,40,41,42,43,44,45] |
Acneiform eruptions | EGFR inhibitors (lapatinib), trastuzumab | Topical antibiotics, corticosteroids, retinoids, benzoyl peroxide | Oral tetracyclines (e.g., doxycycline) | [63,97,98,99,100,101,102] |
Photosensitivity | Methotrexate, 5-FU, dacarbazine | Topical corticosteroids, broad-spectrum sunscreens | Oral corticosteroids, analgesics | [68,69] |
Recall reactions | Methotrexate, gemcitabine, doxorubicin | Topical corticosteroids, wound care | – | [52,54,74] |
Skin necrosis | Doxorubicin (extravasation), vinca alkaloids | Wound care | – | [61,75,76,77] |
Neutrophilic eccrine hidradenitis | Cytotoxic chemotherapy (e.g., cytarabine, bleomycin) | – | Systemic corticosteroids, dapsone, analgesics | [78,79] |
Eccrine squamous metaplasia | Cytotoxic chemotherapy | – | Systemic corticosteroids, dapsone, analgesics | [80,81,82,83] |
Hyperpigmentation | Bleomycin, 5-FU, daunorubicin, EGFR inhibitors | Bleaching agents (e.g., hydroquinone), emollients | Oral antihistamines (for pruritus) | [8,70,71,72,73] |
Sclerotic dermal reactions | Radiotherapy, taxanes, gemcitabine | High-potency corticosteroids, tacrolimus, imiquimod, emollients | Systemic corticosteroids | [84,85,86,87,88] |
Raynaud’s phenomenon | Tamoxifen, cisplatin | – | Calcium channel blockers, ACE inhibitors | [89,90,91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brnić, S.; Špiljak, B.; Zanze, L.; Barac, E.; Likić, R.; Lugović-Mihić, L. Treatment Strategies for Cutaneous and Oral Mucosal Side Effects of Oncological Treatment in Breast Cancer: A Comprehensive Review. Biomedicines 2025, 13, 1901. https://doi.org/10.3390/biomedicines13081901
Brnić S, Špiljak B, Zanze L, Barac E, Likić R, Lugović-Mihić L. Treatment Strategies for Cutaneous and Oral Mucosal Side Effects of Oncological Treatment in Breast Cancer: A Comprehensive Review. Biomedicines. 2025; 13(8):1901. https://doi.org/10.3390/biomedicines13081901
Chicago/Turabian StyleBrnić, Sanja, Bruno Špiljak, Lucija Zanze, Ema Barac, Robert Likić, and Liborija Lugović-Mihić. 2025. "Treatment Strategies for Cutaneous and Oral Mucosal Side Effects of Oncological Treatment in Breast Cancer: A Comprehensive Review" Biomedicines 13, no. 8: 1901. https://doi.org/10.3390/biomedicines13081901
APA StyleBrnić, S., Špiljak, B., Zanze, L., Barac, E., Likić, R., & Lugović-Mihić, L. (2025). Treatment Strategies for Cutaneous and Oral Mucosal Side Effects of Oncological Treatment in Breast Cancer: A Comprehensive Review. Biomedicines, 13(8), 1901. https://doi.org/10.3390/biomedicines13081901